
Part VII

Integrated Environments

341

20 Integrated development
using ECLIPSE

In the previous chapters we presented a number of tools that are helpful when
working on software projects. However, these tools differ from each other
in the operation and in the presentation of the outcomes. Integrated environ- Integrated

environmentsments try to combine these tools with each other under the same graphical
interface and make them intuitively operational. The following requirements
are made on integrated environments:

Intuitive operation. It should be possible to use it without a handbook or
any training.

Automation. Routine tasks should be carried out as automatically as possi-
ble or by using short commands (a keystroke).

Interoperability. The outcomes and data of a tool should be able to be used
by other tools without any trouble.

Abstraction. The environment should support as many programming lan-
guages, operating systems, and kinds of tools as possible in order to
be considered abstractly from their special features.

Functionality. It should support as many phases of the software develop-
ment as possible.

Most commercial compilers come in an integrated development environment
(IDE). However they provide more than support in the edit-compile-debug Integrated

development
environment, IDE

cycle. Furthermore, IDEs are mostly connected to a specific programming
language, a specific compiler and debugger, and a specific operating system;
they do not provide any way to integrate external tools—therefore they are
referred to as a closed environment. On the other hand, an open environ- Open and closed

environmentsment provides a way to integrate other tools, as well as interfaces for access-
ing data and functions of the environment. An environment of this kind is
ECLIPSE, which we will introduce in this chapter.

ECLIPSE has been developed by Object Technology International (OTI)
and was donated as open source by IBM. During the e-hype the name

342 20 Integrated development using ECLIPSE

ECLIPSE has been chosen to express that ECLIPSE outshines existing IDEs.
However, in order to invite SUN to join ECLIPSE and avoid a renaming, the
official source for the name is the Pink Floyd album “Dark Side Of The
Moon” in which a song is called “Eclipse”.

ECLIPSE refers to itself as “an IDE for anything, and for nothing in par-
ticular”. The design of ECLIPSE reflects this principle: the core of ECLIPSE

is small and compact, and the actual functionality is realized in plug-ins. Byplug-ins

the use of the plug-in concept ECLIPSE is extensible and allows a seamless
integration of third party tools into the ECLIPSE user interface.

Although ECLIPSE is implemented in JAVA, it does not run on all oper-
ating systems that are supported by JAVA. The reason is the Standard Widget
Toolkit (SWT) which is only available for WINDOWS, MacOS, LINUX and
some UNIX dialects. SWT is faster than the JAVA widgets and closer to the
look and feel of the operating system. ECLIPSE itself only supports the devel-
opment for the JAVA programming language. However, additional third-party
plug-ins extend ECLIPSE for further programming languages, like C, C ++,
PYTHON, PERL und PHP.

ECLIPSE can be used in all phases of software development, especially
in phases that deal with source code. These are the later phases of software
development, like implementation and maintenance. ECLIPSE provides tool
support for most activities that were introduced in previous chapters: ver-
sion management (CVS), program building (ANT), software testing (JUNIT),
and debugging. Furthermore, ECLIPSE provides various ways of visualizing
source code properties and supports the refactoring of existing source code.

20.1 Projects in ECLIPSE

Software products consist of thousands of source files and dozens of li-
braries; therefore, they need to be divided into manageable parts. Most
IDEs offer projects for this kind of structuring. Each project has a projectProjects

directory, which contains the files belonging to the project. Besides source
code, make files, and documentation, this directory also contains a project
description. The project description consists of specific information about
the project, such as the version management used, or dependencies to other
projects.

In ECLIPSE, each user has a workspace which contains one or moreWorkspace

projects. For instance, Figure 20.1 on the facing page shows the workspace
for ASPECTJ. The ASPECTJ tool consists of several modules, which are re-
alized as projects in ECLIPSE. For each project, there are directories for theProjects in ECLIPSE

source files (src) and the binary files (bin). Furthermore, each project has
a file called .project with project settings and in some cases a file called
.classpath that contains the JAVA classpath. An additional project called

20.2 The user interface 343

Figure 20.1
A sample workspace

lib collects all libraries used by ASPECTJ, and is included by the other
projects.

The term resources summarizes projects, directories, and files in Resources

ECLIPSE. Resources can be tagged with markers. Internally, ECLIPSE uses Markers

such markers to highlight errors, warnings, or bookmarks in the source code.

20.2 The user interface

The graphical user interface of ECLIPSE is called the workbench. Besides Workbench

the mandatory menu bars, tool bars, and status bars, the ECLIPSE workbench
consists of editors, views, and perspectives.

20.2.1 Editors

With an editor a developer opens and changes files. An editor follows the Editors

open-modify-save-cycle. This means, only opened files can be modified,
and changes take not effect until they are saved. Editors usually extend the
ECLIPSE menu bars and tool bars with additional entries.

In Figure 20.2 three editors are opened: one for HelloWorld.java,
ASTView.java, and UpdateViewAction.java, respectively. How-
ever, only one is visible because multiple editors are displayed in a stacked
manner.

344 20 Integrated development using ECLIPSE

Figure 20.2
The ECLIPSE

workbench
20.2.2 Views

In contrast to editors, views focus on the presentation of information aboutViews

an item. It is possible to change the item, but the changes take effect imme-
diately. ECLIPSE provides many predefined views:

❏ The Bookmarks View contains all bookmarks.

❏ The Navigator View simplifies navigation through the workspace.

❏ The Outline View shows the structure of files.

❏ The Problems View displays warnings and errors.

❏ The Properties View contains properties of files, e.g., the size.

❏ The Search View lists results of a search.

❏ The Tasks View collects tasks for the user.

In Figure 20.2 several views are opened: the Outline View, the Tasks View
(concealed), and the Problems View. Furthermore, two JAVA views are dis-
played: the Package Explorer and the Hierarchy View (concealed). The

20.3 Working in teams 345

Package Explorer simplifies—like the Navigator View—the navigation, but
its main focus is on JAVA projects. The Hierarchy View visualizes inheritance
hierarchies and will be discussed in detail in Section 20.5.1.

20.2.3 Perspectives

The selection and arrangement of editors and views depends heavily on the Perspectives
task of the user. For instance, during development she needs other views
than during debugging. In order to enable a fast shift between tasks, ECLIPSE

groups editors and views to perspectives. A perspective controls the arrange-
ment and visibility of editors and views (task orientation). Furthermore, per- Task orientation and

information filteringspectives can restrict the visibility of resources and actions (information fil-
tering). Several perspectives can be opened at a particular time, but only one
perspective is visible. In practice, perspectives are defined and customized
by the user. However, ECLIPSE provides many predefined perspectives:

❏ for exploring the workspace: Resource

❏ for working with CVS: Repository Exploring, Team Synchronizing

❏ for searching errors: Debug

❏ for JAVA programming: Java, Java Browsing, Java Type Hierarchy

❏ for developing ECLIPSE plug-ins: Plug-in Development

In Figure 20.2 the JAVA perspective is opened. By the use of the horizontal
tool bar on the top right, we can shift to other perspectives very fast, like to
the Debug or CVS perspective.

20.3 Working in teams

In practice, a team works on several locations simultaneously, and each
developer has an own workspace that needs to be synchronized with the
other ones (for concepts of version control, see Chapter 3 and 4). ECLIPSE

supports teamwork by a special team environment that simplifies manage-
ment, sharing, and synchronization of resources. The version archive is
called repository by ECLIPSE and is accessed with plug-ins called repository Repository provider

providers. ECLIPSE supports optimistic as well as pessimistic cooperation
strategies.

In order to prevent an accidental loss of resources, ECLIPSE maintains
a built-in local history. This history stores complete copies and not only Local history

differences like RCS. Besides recovery, the history is valuable for comparing
two different versions of a file. The history is limited by maximum size and
maximum age thresholds.

346 20 Integrated development using ECLIPSE

ECLIPSE supports CVS by default. However, other SCM products can be
integrated with additional plug-ins. Such plug-ins exists for CLEARCASE,
PERFORCE, PVCS, SOURCE INTEGRITY, SUBVERSION, VISUAL SOURCE

SAFE, and many other.
Although the functionality is the same for all SCM systems, the workflow

is always different. In order to allow developers an easy use of familiar toolsIntegration of a
repository provider in ECLIPSE, repository providers have very much freedom in their realiza-

tion. The integration in ECLIPSE takes place on two levels:

Integration into the workspace. In some cases, a repository provider has
to intervene or even prevent actions that change resources, e.g., mod-
ification of a locked file. For this purpose, ECLIPSE provides two
hooks: Before moving or deleting a resource, ECLIPSE calls the re-Hooks

source move/delete hook, and before a file is opened or saved, it calls
the file modification validator.

Integration into the workbench. The integration into the user interface is
also passively. ECLIPSE defines placeholders for actions, preferences,
and properties, but it is up to the repository provider to define concrete
UI elements.

Figure 20.3
The Synchronize

View

In ECLIPSE, the central view for version control with CVS is the SynchronizeSynchronize View

View (Figure 20.3), which is opened from the context menu by Team →

Synchronize with Repository. This view compares the workspace with the

20.4 The JAVA editor of ECLIPSE 347

repository, and shows differences that are classified in incoming and outgo- Incoming and
outgoing changesing changes. For incoming changes, the file in the CVS archive has been

modified, and for outgoing changes the file in the workspace. Files that need
to be integrated have incoming and outgoing changes, and are emphasized—
like in Figure 20.3 the file HelloWorld.java. The directory images
and the file HelloWorldGUI.java have been added to the repository
and are incoming changes. ECLIPSE can sort changes by change sets that are Change sets

changes grouped logically by comment, author, and date.
If changes need to be integrated, ECLIPSE provides besides automatic

integration a graphical diff/merge tool. Like SDIFF (Section 2.4), this tool
compares both files vis-a-vis in two columns. Differences are highlighted
and can be accessed easily. During integration, the developer decides for
every difference, whether to use the version of the first or second file.

In contrast to the line-based comparison of DIFF (Chapter 2), this tool
compares hierarchical structures (structure-based comparison). In Fig- Structure-based

comparisonure 20.3 on the preceding page the structure of the file HelloWorld.java
is compared. The tool recognizes that the method dummy() has been
deleted. Furthermore it finds a conflict in the method main because it has
been changed in both versions. On source code level of main, we notice
that a local variable called unusedObject has been removed and the
comment of main has been adjusted. The compare tool works on arbitrary
files, even on the local history.

Figure 20.4
The CVS Resource
History

The Resource History View is important for version control because it visu- Resource History
Viewalizes the course of versioning. Figure 20.4 shows the Resource History for

the file XXX.YYY of ASPECTJ. For every revision, it contains the tags, date,
author, and comment. By a double-click on the revision number, the revision
can be viewed without overriding the working copy. Furthermore, arbitrary
revisions can be compared with each other.

20.4 The JAVA editor of ECLIPSE

The JAVA editor of ECLIPSE supports developers in many ways. It

❏ improves presentation and navigation through source code,

348 20 Integrated development using ECLIPSE

❏ reduces annoying type work,

❏ checks for errors and code smells during editing, and

❏ present fixes for frequent programming mistakes.

The syntax highlighting of the editor improves the readability of source code.
If the mouse pointer hovers above an element, additional information (like
JAVADOC comments) fades in. ECLIPSE can collapse complete methods or
classes to a single line, thus increasing the clarity of large source files. Re-
markable are the quick diffs, which highlight changes since the last savingQuick diffs

or commit to the version archive. The hyperlink mode simplifies navigation
by making all JAVA elements clickable. For instance, clicking on Object,
opens the source code of the class Object. This mode is enabled, by hold-Hyperlink mode

ing the Ctrl key pressed.

Figure 20.5
The content assist

functionality

By the use of content assist features, developers can reduce annoying typeContent assist

work. For instance, it is sufficient to type the beginning of a class or function
name, and then select one of the recommended names (see Figure 20.5).
ECLIPSE also takes care of necessary import statements in this scenario. In
a similar way, ECLIPSE creates skeletons for JAVADOC comments or loops.
For instance, a /** and a line break produce a JAVADOC comment, and a
for makes a for loop. Furthermore, ECLIPSE can creates get and set
methods for fields. Content assist features simplify not only development,
but also avoid programming mistakes.

ECLIPSE checks for errors and code smells during programming. In theChecks for errors
and code smells menuWindows→ Preferences→ Compiler a multitude of checks can be acti-

vated (have a look at the topics Style, Advanced,Unused Code, and Javadoc).
It is highly recommended to activate most of these checks to recognize poten-
tial faults early. Figure 20.2 shows some examples for such warnings in the
Problems View. Usually, variables and methods, that are never read or used,
are candidates for superfluous code (like in our example dummy()). How-
ever, in many cases they are indicators for programming errors and undesired
effects. The same holds for local variables that hide fields. In our example
hides the variable name of main() the field name of class HelloWorld.

20.5 Program comprehension with JDT 349

Thus the field name remains null and our program print “Hello World,
null” in any case. Such errors are avoided by taking warnings seriously.

Additional plug-ins extend the Problems View with more messages. For
instance, the CHECKSTYLE plug-in checks for further code smells, includ-
ing user-defined ones (see also Chapter 17), and displays the results in this
view.

Figure 20.6
Samples quick fixes

A special feature of ECLIPSE are the so-called quick fixes, which fix an error Quick Fix

at the touch of one button. Instances for such quick fixes are: add a type cast,
catch an exception, add missing imports, or change the order of parameters
in method calls or declarations (see Figure 20.6).

20.5 Program comprehension with JDT

Software engineering separates between forward and reverse engineering:

Forward Engineering is the proceeding development of software: from the
specification to the design, and from the design to the finished product.

Reverse Engineering is the process of identifying and displaying structures
and relations in a finished or unfinished product.

Reverse engineering is not only important during maintenance, but also dur-
ing earlier phases, for instance, if one has to work in unfamiliar code. The
main problem is a lack of locality: if you look at an element (e.g., a func- Locality
tion, method, class, or a variable) in unfamiliar software, the dependencies
and effects of these elements are spread across the entire software. You must
therefore try to restore locality by abstraction: important elements are made
visible, unimportant elements are not displayed.

For analyzing and understanding large software, command line tools are
not well suited because they are text-based. For example, GREP can restore
locality, since only the lines containing the text pattern are shown. How-
ever, GREP takes no other dependencies into account. In order to detect
connections and structures better, we finally have to abstract from the source

350 20 Integrated development using ECLIPSE

code, since a textual representation gets confusing even for small programs.
Graphical browsers use icons and annotations to provide various levels ofGraphical browser
abstraction, which make intuitive comprehension and navigation easier.

The JAVA standard library consists of several thousand files and classes—
a size that is almost impossible to handle with traditional tools and editors.
For instance, if we want to understand what a Button in this library is, the
Java Development Tools (JDT) of ECLIPSE support us in many ways: BesidesJava Development

Tools, JDT many special views and perspectives, JDT provides a powerful search engine
for JAVA.

20.5.1 The Hierarchy View

The Java Type Hierarchy View is added to the workbench byWindow→ ShowHierarchy View

View→Other → Java→Hierarchy. The symbol to be shown is selected with
Focus on from the view, or with Open Type Hierarchy of its context menu.

Figure 20.7
The Hierarchy View

The Hierarchy View in Figure 20.7 shows the elements of the class
Button. In the upper area of the view we find the inheritance hierarchy
of the class Button. It contains all classes and interfaces of which
Button inherits methods or fields. We recognize that Button extends the
classes Component and Object. Furthermore, we notice that Button
implements the interface Accessible itself, and for the other interfaces it
inherits the implementation of Component.

The lower area of the view displays the methods and variable defined by
Button. With Show all InheritedMemberswe extend this list to all methods
and variables that are visible for Button. Different icons and colors are
used to emphasize the kind, the visibility, and the inheritance of methods.
For instance, we recognize that the method toString() is inherited of the

20.5 Program comprehension with JDT 351

class Component, where the original implementation of the class Object
was overridden.

20.5.2 The Java Browsing Perspective

Another abstraction of the class Button is the Java Browsing Perspective Java Browsing
Perspective(see Figure 20.8, Window → Open Perspective → Other → Java Browsing).

In contrast to the Package Explorer, the projects, packages, types, and mem-
bers are displayed in separate views, which can be filtered by certain criteria.
Thus the developer can switch to other program parts faster. Like every per-
spective the Java Browsing Perspective can be extended by additional views,
e.g., by the Hierarchy View that has been described in the previous section.

Figure 20.8
Die Java Browsing
Perspective

20.5.3 The Call Hierarchy

TheCall Hierarchy is another important abstraction for program comprehen- Call Hierarchy

sion. The Call Hierarchy shows for a given method

❏ of which methods it is called (caller hierarchy), and

❏ which methods it calls itself (callee hierarchy).

The Call Hierarchy is opened from the context menu of a method by Open
Call Hierarchy. Figure 20.9 on the following page shows the Caller Hierar-

352 20 Integrated development using ECLIPSE

chy for the method wait(long) of the class Object. All methods that
call wait(long) are displayed in a tree: wait(long) is called by the
method remove(long), which is called only by remove().

Figure 20.9
The Call Hierarchy

20.5.4 Searching in JAVA source code

In addition to a traditional text-based search (including regular expres-Syntax-based search

sions), ECLIPSE allows a syntax-based search for JAVA elements (see
Figure 20.10 on the next page, Search → Java). It is possible to search for
types, constructors, fields, and packages; the search can be restricted to
declarations, references, implementations, read accesses, or write accesses.
For instance, this syntax-based search can find all locations that read the
variable label of Button. The results for this query are listed in the
Search View and marked in the source code with arrows (see Figure 20.8). In
our example, there are six read references distributed across four methods:
getActionCommand, getLabel, paramString, and setLabel.
The occurrence of setLabel may be surprising, but is reasonable because
setLabel checks that label actually changed, before assigning a new
value and notifying its observers.

Search is not limited to single files, if desired, it takes place in the entire
workspace or the system libraries. However, for a quick search the command
Occurrences in File exists in context menus. This command only searchesOccurrences in File

in the currently activated editor for any occurrence of the selection.
In contrast to a text-based search, a syntax-based search is more precise

and returns no incorrect results. For that reason, syntax-based search is su-
perior to text-based search in most situations. Exceptions are makefiles or
text files, where a syntax-based search is unavailable or impossible. In some
situations, inaccuracy is desired like for the search in comments.

However, a semantic-based search is even more powerful than a syntax-
based search. For instance, it finds references across method calls (variables

20.6 Refactoring 353

Figure 20.10
The JAVA search in
ECLIPSE

are passed as parameters and referenced inside the called method). Such a
search needs a data flow analysis as described in Chapter 18 and 19.

20.6 Refactoring

A refactoring is a semantic preserving code transformation, that improves Refactoring

the structure and quality of programs. Like design patterns there is no gen-
eral approach, rather a catalog of approaches. Refactorings can be applied
in the design, in the implementation, and in the maintenance of software. In
practice, refactoring is not always semantic-preserving and therefore some
kind of risk. For that reason, refactoring should be performed exclusively Requirements for

refactoringwith tool support and never manually. Furthermore, a test suite for regres-
sion tests is recommended to guarantee semantic-preservation, and a version
control to restore previous versions, in case the refactoring fails.

ECLIPSE and JDT support refactoring actively (see menu Refactor): on Refactoring in
ECLIPSEthe one hand, ECLIPSE integrates CVS and JUNIT, and on the other hand, JDT

provides automatic refactoring procedures. A selection of such procedures
is presented below.

Move/Rename classes, methods, and fields. This refactoring adjusts pack-
ages, file names, as well as uses of the element to the new name. Even
references in comments are handled and for fields the names of get
and set are changed.

Extract Method converts a selection into a new method. The signature is
determined automatically, and the selection is replaced by a call to the
new method.

354 20 Integrated development using ECLIPSE

Extract Interface supports the process of creating a new interface from an
existing class. The methods that should be part of the new interface
are selected in a dialog.

Change Signature modifies the signature of a method. For this, the refac-
toring adjusts calls to the method and inserts user-specified dummy
values for new parameters.

Local Rename is not a pure refactoring because it works only on the opened
file and not on the whole project. Local Rename is called like a quick
fix and is very helpful to rename local variables of a method.

Organize Imports is not a pure refactoring, either. Organize Imports opti-
mizes import statements: superfluous imports are removed and wild-
cards like * are resolved.

The refactorings of ECLIPSE do not guarantee that the semantic of a program
is preserved. Therefore ECLIPSE displays a preview, which lists all changes
that will be performed by a refactoring (Figure 20.11). Developers can select
desired changes from this list or cancel the complete refactoring.

Figure 20.11
The refactoring

“Extract Method”

20.7 Debugging with ECLIPSE

With the JAVA debugger of ECLIPSE we can control the execution of pro-
grams, and examine and change program states (for concepts of debugging,
see Chapter 15). The debugger supports hot fix, that means, modifications
on source code affect the running program immediately. Furthermore, it not
only supports local debugging on the developer’s computer, but also remote
debugging over networks.

20.8 Resource changes and building programs 355

Figure 20.12
The Debug
Perspective

For debugging of programs, the developer can access the Debug Per-Debug Perspective

spective (see Figure 20.12,Window→ Open Perspective→ Other → Debug),
which provides many additional views:

❏ The Debug View contains processes, threads and call stacks.

❏ The Variables View shows values of visible variables.

❏ The Breakpoints View lists all breakpoints.

❏ TheExpressions View evaluates expressions and manages watchpoints.

❏ In the Displays View we can define displays that are refreshed at every
program stop.

❏ The Threads and Monitors View shows, which threads hold locks, and
which threads wait for the release of locks.

20.8 Resource changes and building programs

The different views of ECLIPSE have to be updated if resources change. For Resource change
listener

356 20 Integrated development using ECLIPSE

this, ECLIPSE uses the concept of resource change listeners that are notified
at changes.

Resources are organized hierarchically. Thus changes do not affect only
the resource itself, but also resources that are in the hierarchy above the
changed resource. For instance, ECLIPSE highlights erroneous files and di-
rectories with label decorations. A directory is erroneous if one of the con-
tained files or subdirectories is erroneous. In case, the developer fixes an
erroneous file, ECLIPSE possibly has to refresh the label decorations of all
enclosing directories. Therefore ECLIPSE does not just notify resource lis-
teners, but provides them with a resource delta tree. A resource delta treeResource delta tree

contains in a tree all resources affected by a change. Figure 20.13 shows an
example for such a tree: the directory C, including all of its files, has been
deleted (-); the file b has been added (+) to the directory B; and the file a2
has been modified (*). We recognize, that a change on a file always affects
the enclosing directories, and that unchanged files, like a1, are not contained
in a resource delta tree.

Figure 20.13
Resource delta tree

Resource delta trees are not only important for resource listeners, but alsoProject builder
for project builders. A project builder gets a resource delta tree and provides
several kinds of program construction:

❏ For an incremental build (see Section 8.2), the project builder usesIncremental build

the resource delta tree to determine the resources that need to be re-
build. Afterwards it rebuilds only these resources. For instance, a JAVA

project builder might recompile only changed JAVA files.

❏ A special case of incremental build is auto build, which automaticallyAuto build

performs an incremental build after every resource change.

❏ After some changes an incremental build is not possible anymore (e.g.,Full build

changes on compiler settings), and a full build is necessary.

Both, resource listeners and project builders react to resource changes—what
are the differences? A resource listener watches single resources, while aResource Listener

vs. Builder project builder always watches a complete project. Therefore, a resource

20.9 The design of ECLIPSE 357

listener registers at the resource; a project builder, in contrast, registers at
ECLIPSE and is assigned to projects that have a specific project nature. They Project Natures
also differ in the cost of implementation: Project builders are much more
complicated than resource listeners, which are rather light-weight.

20.9 The design of ECLIPSE

ECLIPSE is an open and extensible platform for development tools. This
requires a mechanism that allows tool developers to integrate their tools into
ECLIPSE without loss of independence. ECLIPSE realizes this idea by its
plug-in architecture. At the time of this writing, more than 500 plug-ins exist
for ECLIPSE.

20.9.1 The architecture of ECLIPSE

Figure ?? shows the architecture of ECLIPSE. The Software Development Kit
(SDK) of ECLIPSE consists of three parts:

Eclipse Platform. The Eclipse Platform provides the basic functionality of Eclipse Platform

ECLIPSE. It consists of the Platform Runtime, which is the core of
ECLIPSE and is responsible for loading and managing plug-ins. The
Platform Runtime is the only part of ECLIPSE that is not realized as
a plug-in; all other components are integrated via the plug-in mech-
anism. The Workspace manages resources (see also Section 20.1)
and the Workbench realizes the graphical user interface (see also Sec-
tion 20.2). All other components, like Team, Help or Debug, are built
on both, the Workspace and the Workbench.

Java Development Tools (JDT). The Java Development Tools extend Java Development
Tools, JDTECLIPSE in order to provide functionality specific for JAVA, like the

views described in Section 20.5.

Plug-in Development Environment (PDE). The Plug-in Development En- Plug-in Development
Environment, PDEvironment extends ECLIPSE to provide functionality specific for plug-

in development. As plug-ins are developed in JAVA, PDE not only
extends the Eclipse Platform, but also JDT.

20.9.2 The plug-in mechanism

A plug-in is the smallest possible unit that extends ECLIPSE with a new func-
tionality. A plug-in must contribute to at least one extension point, which Extension point

means it provides an implementation for it. In other words, extension points
are a mechanism to connect two plug-ins with each other. ECLIPSE defines
many extension points itself, but third party plug-ins also can define exten-
sion points. A plug-in consists of two parts:

358 20 Integrated development using ECLIPSE

Figure 20.14
The ECLIPSE

architecture

Declaration. The declaration of a plug-in is the manifest-file calledDeclaration
of a plug-in plugin.xml. This XML-file describes which extension points

are implemented (at least one), and what new extension points are
defined (optional). Furthermore this file contains dependencies to
other plug-ins. Example ?? shows a complete manifest-file that is
described in detail in Section ??.

Implementation. The implementation of a plug-in is written in JAVA. How-Implementation
of a plug-in ever, some plug-ins need no JAVA implementation; an example is the

help of ECLIPSE that is also realized with the plug-in mechanism.

Figure ?? illustrates the plug-in concept for two plug-ins. The plug-in AInteraction
of plug-ins defines a new extension point P and an interface I. In order to use this new

extension point, the plug-in B has to implement interface I with an own
class C. This class is contributed to the extension point via the manifest-file.
Finally, the plug-in A can query for extensions, and use located classes, like
in our example C.

Figure 20.15
The plug-in concept

20.10 A sample plug-in: the ASTView 359

Simple tools consist of only one plug-in, however, complex tools have
multiple plug-ins. Therefore, ECLIPSE allows the combination of several
plug-ins into a feature. A feature has additional information, like a license Feature

and a reference to an update site in the Internet. These updates are installed
with the update manager of ECLIPSE.

During the startup of ECLIPSE, the Platform Runtime reads all manifest
files and creates the plug-in registry. The plug-in registry contains dependen- Plug-in registry

cies between plug-ins, and manages contributions to extension points. Plug-
ins are not loaded until that moment, where their functionality is called by
the user first (lazy loading). This approach speeds up the startup of ECLIPSE Lazy loading

enormously. The activation of a plug-in may cause the activation of other
plug-ins on which the activated plug-in depends.

20.9.3 Integration of tools in ECLIPSE

The complete integration of a tool into ECLIPSE can be very expensive. Levels of integration
in ECLIPSETherefore several levels of integration exist.

No integration. An integration into ECLIPSE is not always necessary, for
instance, if the tools has a comfortable user interface and does not
exchange data with other tools.

Integration by call. This kind of integration starts the tool in an own process
and window. The tools is responsible for the management of resources,
but profits of some ECLIPSE components like the version control.

Data integration. The integration of tools is possible with data sharing.
Tools that follow this approach need an access method, an exchange
protocol, and a transformation procedure. ECLIPSE supports data in-
tegration by many open standards, like WebDAV, XMI, and XSLT. The
risks of data sharing are loss of integrity and the danger of high cou-
pling between tools.

Integration by an API. In this case, a tool provides access to its functional-
ity by an API. However, the user interface of the tool should be sepa-
rated of its core.

Integration by GUI. This level integrates the tool directly into the ECLIPSE

user interface by extending menus, tool bars, views and perspectives.

20.10 A sample plug-in: the ASTView

In this section we present a sample plug-in. The plug-in shows the abstract
syntax tree (AST) of a JAVA file in a view (Figure ??). Internally, ECLIPSE

360 20 Integrated development using ECLIPSE

represents JAVA files with such trees. However, they are a cross between a
pure abstract syntax tree and a parse tree because ECLIPSE includes brackets
and comments.

Figure 20.16
The ASTView

The plug-in provides the following functionality:

❏ Select a JAVA file from its context menu.

❏ Show the AST for this file in a view.

❏ Open vertices in an editor at a double-click.

We now explain snippets of the plug-in. The complete source code is printed
on page ??–??. For trying the plug-in yourself, please consider the notes in
the practice section on page ??.

Declare the Plug-in

The file plugin.xml (see Example ??) contains the declaration of a
plug-in. Besides general information and a reference to the code archive
(ASTView.jar), the file contains dependencies to other plug-ins:

❏ org.eclipse.core.resources for access to resources,

❏ org.eclipse.ui for the user interface,

❏ org.eclipse.jdt.core for JAVA specific functionality, and

❏ org.eclipse.jdt.ui for the JAVA editor.

20.10 A sample plug-in: the ASTView 361

In order to extend ECLIPSE with a new view, we use the extension point
org.eclipse.ui.views:

<extension

point="org.eclipse.ui.views">

<category

name="Wiley"

id="astview.category.wiley">

</category>

<view

name="AST View"

icon="icons/sample.gif"
category="astview.category.wiley"

class="astview.views.ASTView"

id="astview.views.ASTView">

</view>

</extension>

By the use of category we extend the dialog Windows → Show View →

Other with a new category named “Wiley” (name). Using view, we insert a
new view in this category. The view is called “AST View” and realized in the
class “astview.views.ASTView” (class). Our view is identified throughout
ECLIPSE by the value in id.

Furthermore we want to extend all context menus for JAVA files. The
respective extension point is org.eclipse.ui.popupMenus:

<extension

point="org.eclipse.ui.popupMenus">

<objectContribution

objectClass=
"org.eclipse.jdt.core.ICompilationUnit"

id="astview.ICompilationUnit">

<action

label="Update AST View"

class="astview.actions.UpdateViewAction"

enablesFor="1"

id="astview.actions.UpdateView">

</action>

</objectContribution>

</extension>

To show our entry only for JAVA files, we define an objectContribution
that shows entries only for elements of type objectClass. We
select ICompilationUnit as type because this class represents
JAVA files in ECLIPSE. The action will be called “Update AST
View” (label), and is enabled for exactly one selected element
(enablesFor). In case the user selects our action, ECLIPSE calls
the class “astview.actions.UpdateViewAction” (class).

362 20 Integrated development using ECLIPSE

Create the AST

In ECLIPSE, the creation of an AST from a JAVA file is simple:

ICompilationUnit unit = ...;

ASTParser parser = ASTParser.newParser(AST.JLS2);

parser.setSource(unit);
CompilationUnit root =

(CompilationUnit) parser.createAST(null);

The variable unit represents the JAVA file of interest and is determined by
selection of the context menu (see below).

Display the AST

We display the AST in a view by the use of a TreeViewer. A TreeViewerTreeViewer

consists of four parts:

Input. The input data will be displayed by the TreeViewer. For our plug-in
the input data is the root of the AST, because it can be used to access
the complete AST.

ContentProvider. A ContentProvider maps the input to the structure of the
viewer. In our example the structure is a tree, and we have to imple-
ment methods to access the parents (getParent()) and children of
a node (getChildren() and hasChildren()). The parent is
stored in nodes, but for determining the children we have to traverse
the AST with an implementation of an ASTVisitor.

LabelProvider. A LabelProvider defines the format of tree elements.
The text is determined by getText() and an optional icon by
getImage(). For our example, we simply use the class name of a
node and its toString-representation.

Sorter. A Sorter sorts the displayed input. For our example we need no
Sorter.

Update the view

Whenever the user selects the actionUpdate AST View in a context menu, the
method run() of the class UpdateViewAction is called. This method
performs the following steps:

❏ Determine the selected JAVA file: We take the first and only element of
the selection (selection) of the context menu.

Object obj = ((IStructuredSelection)

selection).getFirstElement();

ICompilationUnit unit = (ICompilationUnit) obj;

20.11 Automation and intuition 363

❏ Find the ASTView: Before updating the view, we have to find it. For
that purpose, we use the workbench and the identifier of the view, to
determine the IViewPart that represents our ASTView.

IWorkbenchPage page = workbenchPart.getSite().

getWorkbenchWindow().getActivePage();
IViewPart vp =

page.findView("astview.views.ASTView");

Open Elements in an Editor

In order to open elements in an editor, we define an action called
doubleClickAction. The run()-method of this action determines the
element, on which the user double-clicked (node), and opens this element
in an editor:

IJavaElement elem =

unit.getElementAt(node.getStartPosition());

IEditorPart javaEditor = JavaUI.openInEditor(elem);

JavaUI.revealInEditor(javaEditor, elem);

The action has to be added to the TreeViewer with a call to the method
addDoubleClickListener().

20.11 Automation and intuition

In the previous sections, we showed how the requirements for integrated
environments, such as intuitive operation, interoperability, abstraction, and
functionality are met by ECLIPSE. Compared to traditional command line
tools, ECLIPSE has clear advantages in the area of abstraction and intuitive
operation.

But what about the last requirement, that of automation? Command
line tools can be automated without any major problems by the use of shell
scripts. Usually, integrated environments have large deficits here, because an
operation is only possible via the graphical user interface; unfortunately, this
holds for ECLIPSE as well. However, most tools integrated by ECLIPSE, like
JUNIT, ANT, and CVS, are available as command line tools as well. There-
fore the lack of automation does not matter very much.

For ECLIPSE, a more important issue, is the growing number of plug-
ins. Every day, more plug-ins are published that are not mature enough.
Furthermore, the support for other programming languages lags behind the
support of JAVA. However, the ECLIPSE boom has just begun, and we do not
know its future yet.

364 20 Integrated development using ECLIPSE

Concepts

❏ Integrated environments provide various tools in a shared, unified, and
intuitively operational environment.

❏ Open environments allow the integration of external tools. Access in-
terfaces to the data and functions of the environment are useful (like
the ECLIPSE API).

❏ High integration provides programmers with a uniform user interface,
modularity allows the individual further development of external tools,
and interoperability enables the cooperation and exchange between in-
tegrated tools.

❏ An user interface divides into editors, views, and perspectives. Graphi-
cal browsers provide different views with various levels of abstraction.

❏ Refactorings improve the structure of programs.

❏ Incremental builder enable editing of source code on-the-fly by effi-
cient compiling techniques.

❏ Plug-ins allow the flexible extension of ECLIPSE.

❏ Extension points are potential locations for extensions. All contributed
extensions are managed in the plug-in registry.

Exercises

1. Discuss the advantages and the potential risks of an open development
environment, like ECLIPSE. Why develop many company commercial
plug-ins for ECLIPSE, anyway?

2. We have introduced different views on JAVA source code. What
views are reasonable for other programming languages, like C, C ++,
PYTHON, PERL und PHP?

3. Not all tools presented in this book are integrated in ECLIPSE. Is an
integration of the following tools reasonable, and if yes how can it
look like?

(a) AUTOCONF (Chapter 9)

(b) DEJAGNU (Chapter 12)

(c) BUGZILLA (Chapter 14)

(d) GPROF and GCOV (Chapter 16)

(e) CHECKSTYLE (Chapter 17)

20.11 Automation and intuition 365

(f) LINT (Chapter 18)

(g) UNRAVEL (Chapter 19)

If an integration is not reasonable, is it possible to integrate some of
the tool’s concepts?

4. Why uses ECLIPSE its own widget toolkit (JFACE and SWT), and not
the default JAVA toolkits (AWT and SWING)? Research on the Internet.

5. Your company develops an editor that is based on AWT and SWING.
Your boss likes ECLIPSE and wants to integrate it into ECLIPSE. Com-
pare the costs and benefits of the different kinds of integration to each
other, and plan the integration. Research on the Internet, whether a
direct integration of AWT and SWING components is possible.

6. We only considered integration from the user’s and developer’s per-
spective. What other perspective can you think of?

7. There exist more than 500 plug-ins. What are the disadvantages of
such a huge number? Figure out a reasonable categorization for plug-
ins. Are there plug-in catalogs on the Internet?

8. Research on the ECLIPSE Rich Client Platform. Make up the future of
ECLIPSE on the dark side of the moon. What about a Sun?

Bibliographic notes

The first integrated development environment was SMALLTALK, where the
graphical programming environment was part of the system and was de-
scribed in ?. SMALLTALK was developed together with graphical worksta-
tions.

Earlier software development environments were strongly syntax ori-
ented: The source code was input for a syntax controlled editor, and the
program always was kept in a compiled state. These include: PSG from ?
and the Synthesizer Generator from ?.

The term source code engineering, coined by ?, describes the activities
taken on by many development environments. In the meantime, the research
has broken loose from its source code orientation and now looks at software
engineering environments, that are oriented to the entire software develop-
ment process.
? describes the architecture of ECLIPSE. The operation of ECLIPSE is

topic of ?, as well as of ?. In contrast, ? focus on the development of plug-
ins. You find recent information on ECLIPSE at:

http://www.eclipse.org/

366 20 Integrated development using ECLIPSE

Other programming environments

Most commercial compilers come in an integrated development environment
(IDE). However, apart from integrated GUI builders, they rarely support more
than the edit-compile-debug cycle. Typical programming environments, such
as CODEWARRIOR, NETBEANS, the Visual series of Microsoft, or the Visu-
alAge series of IBM, have the problem that many visualization tools are only
available for sources that have been compiled without any errors.

There are only a few cross-platform environments that support several
programming languages, version control systems, and external tools:

❏ SNiFF+ by Wind River is an open environment that supports several
programming languages and operating systems. External tools are
integrated by adapters. SNiFF+ provides graphical browsers that are
similar to those of ECLIPSE. However, the focus of SNiFF+ is on code
analysis

❏ SOURCE NAVIGATOR is very similar to SNiFF+, and also focuses on
code analysis. It supports the integration of external tools, and is the
only open environment, besides ECLIPSE and SNiFF+.

❏ C-FORGE by Code Forge supports more than 30 programming lan-
guages and several version control systems. Like ECLIPSE, it provides
searches and browsers for source code, as well as debugging tools.

❏ CODEBEAMER by Intland is a web-based development environment,
that supports program comprehension and communication between
developers. A web-interface accesses version control systems, and
examines source code with several tools. CODEBEAMER is a enhance-
ment for existing development environments; consequently, there is a
CODEBEAMER plug-in for ECLIPSE.

❏ TOGETHER by Borland contains an integrated UML editor and pro-
vides many skeletons for design patterns. Another highlight are the
numerous software metrics. TOGETHER also exists as a plug-in for
ECLIPSE.

Sometimes, ECLIPSE is called the “EMACS of the 21. century”. The EMACS

editor, or the “grandmother” of all editors, is famous since ever. It can be
extended by LISP , and many external programming tools are supported. This
even goes to real programming environments, like JDE for JAVA. Besides
programming, with EMACS one can write emails, surf in the Internet—or
write books like this one . . .

367

Exercices VII

In this exercise you create the Rational example of Chapter 13 in ECLIPSE.
Furthermore you develop your own plug-in: the ASTView presented in Chap-
ter 20.

Introduction to ECLIPSE

1. Download and install ECLIPSE.

2. Create a new JAVA project named Rational (use File → New →

Project).

3. Create a class Rational that contains methods for comparison
(equals, compareTo), and for the four basic arithmetics (add,
subtract, multiply, divide).

4. Create a tester named RationalTest as described in Chapter 13
(for methods equals, compareTo). Use the dialog File → New →

Other → Java → JUnit → Test Case.

5. Execute RationalTest with Run → Run As → JUnit Test, and
check whether Rational passes all test cases.

6. Now create a RationalArithTest class, that contains test cases
for the basic arithmetics (add, subtract, multiply, divide).

7. Create a test suite named AllRationalTests, that combines the
tests of RationalTest and RationalArithTest. Use the di-
alog File → New → Other → Java → JUnit → Test Suite. Check with
this test suite, whether your Rational class passes all tests.

8. Compare the current version of the class Rational with a previous
version from the local history (in the context menu Compare with →

Local History).

9. Reconstruct the version history of an arbitrary open-source project
with the tools of ECLIPSE. (You will find some open-source projects
on www.sourceforge.net).

368 Exercises VII

10. Explore the JAVA standard library (rt.jar) with ECLIPSE. Start with
the Java Browsing Perspective or with the hyperlink mode (press key
Ctrl). Possibly, you have to add the JAVA source code as a source
attachment. You will find the source in the archive src.zip in the
main directory of your JAVA installation.

Plug-in Development in ECLIPSE

1. Create a Hello World plug-in before trying out the ASTView plug-in.
You will find instructions on the Internet, e.g., in the article “Your First
Plug-in” on www.eclipse.org.

2. Get familiar with the ECLIPSE help (Help → Help Contents). Use it to
research on:

❏ abstract syntax trees (AST)

❏ actions

❏ viewers, particularly, the TreeViewer

❏ the extension point org.eclipse.ui.views

❏ the extension point org.eclipse.ui.popupMenus

3. Create a new plug-in project named ASTView. In the New File dia-
log, use the wizard Plug-in Project and name the class that controls
the plug-in life-cycle astview.ASTViewPlugin (case-sensitive).
ECLIPSE should automatically import the correct libraries.

4. Open the manifest editor for the file plug-in.xml, and create the
plug-in description (see Example ??). You can enter the source code
in the page plugin.xml or use the input fields on the other pages of the
editor.

5. Call the commandPDE Tools→Update Classpath in the context menu
of plugin.xml, to refresh the list of libraries that will be imported
by ECLIPSE.

6. Now you can test the declaration of our ASTView: Start the plug-in
test environment with Run → Run As → Runtime Workbench. A sec-
ond workbench opens; check whether the dialog Windows → Show
View → Other contains the entry “Wiley”. Close the test workbench
afterwards.

7. Use the Resource Perspective to create a directory called icons and
insert an arbitrary image named sample.gif. This image will be
the logo of the ASTView.

Exercises VII 369

8. In order to finish the plug-in, implement the remaining classes
ASTView and UpdateViewAction (see Examples ?? and ??). If
you are unfamiliar with an operation, look it up in the ECLIPSE help.

Example 20.1
Plug-in description
plugin.xml

1 <?xml version="1.0" encoding="UTF-8"?>
2 <?eclipse version="3.0"?>
3 <plugin
4 id="ASTView"
5 name="ASTView Plug-in"
6 version="1.0.0"
7 provider-name=""
8 class="astview.ASTViewPlugin">
9

10 <runtime>
11 <library name="astview.jar"/>
12 </runtime>
13 <requires>
14 <import plugin="org.eclipse.core.runtime.compatibility"/>
15 <import plugin="org.eclipse.ui.ide"/>
16 <import plugin="org.eclipse.ui.views"/>
17 <import plugin="org.eclipse.jface.text"/>
18 <import plugin="org.eclipse.ui.workbench.texteditor"/>
19 <import plugin="org.eclipse.ui.editors"/>
20 <import plugin="org.eclipse.core.resources"/>
21 <import plugin="org.eclipse.ui"/>
22 <import plugin="org.eclipse.jdt.core"/>
23 <import plugin="org.eclipse.jdt.ui"/>
24 </requires>
25
26 <extension
27 point="org.eclipse.ui.views">
28 <category
29 name="Wiley"
30 id="astview.category.wiley">
31 </category>
32 <view
33 name="AST View"
34 icon="icons/sample.gif"
35 category="astview.category.wiley"
36 class="astview.views.ASTView"
37 id="astview.views.ASTView">
38 </view>
39 </extension>
40
41 <extension
42 point="org.eclipse.ui.perspectiveExtensions">
43 <perspectiveExtension
44 targetID="org.eclipse.jdt.ui.JavaPerspective">
45 <view
46 relative="org.eclipse.ui.views.ContentOutline"
47 relationship="stack"
48 id="astview.views.ASTView">
49 </view>
50 </perspectiveExtension>
51 </extension>
52
53 <extension
54 point="org.eclipse.ui.popupMenus">
55 <objectContribution
56 objectClass="org.eclipse.jdt.core.ICompilationUnit"

370 Exercises VII

57 id="astview.ICompilationUnit">
58 <action
59 label="Update AST View"
60 class="astview.actions.UpdateViewAction"
61 enablesFor="1"
62 id="astview.actions.UpdateView">
63 </action>
64 </objectContribution>
65 </extension>
66
67
68 </plugin>

Example20.2
Class ASTView

1 package astview.views;
2
3 import java.util.ArrayList;
4
5 import org.eclipse.core.resources.ResourcesPlugin;
6 import org.eclipse.jdt.core.ICompilationUnit;
7 import org.eclipse.jdt.core.IJavaElement;
8 import org.eclipse.jdt.core.JavaModelException;
9 import org.eclipse.jdt.core.dom.AST;

10 import org.eclipse.jdt.core.dom.ASTNode;
11 import org.eclipse.jdt.core.dom.ASTParser;
12 import org.eclipse.jdt.core.dom.ASTVisitor;
13 import org.eclipse.jdt.core.dom.CompilationUnit;
14 import org.eclipse.jdt.ui.JavaUI;
15 import org.eclipse.jface.action.Action;
16 import org.eclipse.jface.dialogs.MessageDialog;
17 import org.eclipse.jface.viewers.DoubleClickEvent;
18 import org.eclipse.jface.viewers.IDoubleClickListener;
19 import org.eclipse.jface.viewers.IStructuredSelection;
20 import org.eclipse.jface.viewers.ITreeContentProvider;
21 import org.eclipse.jface.viewers.LabelProvider;
22 import org.eclipse.jface.viewers.TreeViewer;
23 import org.eclipse.jface.viewers.Viewer;
24 import org.eclipse.swt.SWT;
25 import org.eclipse.swt.graphics.Image;
26 import org.eclipse.swt.widgets.Composite;
27 import org.eclipse.swt.widgets.Display;
28 import org.eclipse.swt.widgets.Shell;
29 import org.eclipse.ui.IActionBars;
30 import org.eclipse.ui.IEditorPart;
31 import org.eclipse.ui.ISharedImages;
32 import org.eclipse.ui.PartInitException;
33 import org.eclipse.ui.PlatformUI;
34 import org.eclipse.ui.part.ViewPart;
35
36
37 /**
38 * Class OurVisitor
39 */
40 class OurVisitor extends ASTVisitor {
41
42 private int currentDepth;
43 private int maxDepth;
44 private ArrayList children;
45
46 public OurVisitor(int depth) {

Exercises VII 371

47 this.currentDepth = 0;
48 this.maxDepth = depth;
49 children = new ArrayList();
50 }
51
52 public void postVisit(ASTNode node) {
53 currentDepth--;
54 }
55
56 public void preVisit(ASTNode node) {
57 if (currentDepth > 0 && currentDepth <= maxDepth) {
58 children.add(node);
59 }
60 currentDepth++;
61 }
62
63 public Object[] getChildren() {
64 return children.toArray();
65 }
66 }
67
68
69 /**
70 * Class ASTView
71 */
72 public class ASTView extends ViewPart {
73
74 private TreeViewer viewer;
75 private Action sampleAction;
76 private Action doubleClickAction;
77 private ICompilationUnit unit;
78
79 /**
80 * Inner Class ViewContentProvider
81 */
82 class ViewContentProvider implements ITreeContentProvider {
83
84 public void inputChanged
85 (Viewer v, Object oldInput, Object newInput) {
86 }
87
88 public void dispose() {
89 }
90
91 public Object[] getElements(Object parent) {
92 return getChildren(parent);
93 }
94
95 public Object getParent(Object child) {
96 if (child instanceof ASTNode) {
97 return ((ASTNode)child).getParent();
98 }
99 return null;

100 }
101
102 public Object [] getChildren(Object parent) {
103 if (parent instanceof ASTNode) {
104 OurVisitor myVisitor = new OurVisitor(1);
105 ((ASTNode) parent).accept(myVisitor);
106 return myVisitor.getChildren();
107 }
108 return new Object[0];
109 }

372 Exercises VII

110
111 public boolean hasChildren(Object parent) {
112 if (parent instanceof ASTNode) {
113 OurVisitor myVisitor = new OurVisitor(1);
114 ((ASTNode) parent).accept(myVisitor);
115 return myVisitor.getChildren().length>0;
116 }
117 return false;
118 }
119 }
120
121
122 /**
123 * Inner Class ViewLabelProvider
124 */
125 class ViewLabelProvider extends LabelProvider {
126
127 public String getText(Object obj) {
128 String[] className =
129 obj.getClass().getName().split("\\.");
130 return className[className.length - 1]
131 + ": " + obj.toString();
132 }
133 public Image getImage(Object obj) {
134 return null;
135 }
136 }
137
138
139 /**
140 * Source code of ASTView
141 */
142 public ASTView() {}
143
144
145 public void createPartControl(Composite parent) {
146 viewer = new TreeViewer
147 (parent, SWT.MULTI | SWT.H_SCROLL | SWT.V_SCROLL);
148 viewer.setContentProvider(new ViewContentProvider());
149 viewer.setLabelProvider(new ViewLabelProvider());
150 viewer.setSorter(null);
151 viewer.setInput(ResourcesPlugin.getWorkspace());
152
153 makeActions();
154 hookDoubleClickAction();
155 contributeToActionBars();
156 }
157
158
159 private void makeActions() {
160
161 sampleAction = new Action() {
162 public void run() {
163 Shell shell = Display.getDefault().getActiveShell();
164 MessageDialog.openInformation
165 (shell, "Sample Action", "A message dialog.");
166 }
167 };
168 sampleAction.setImageDescriptor
169 (PlatformUI.getWorkbench().getSharedImages().
170 getImageDescriptor(ISharedImages.IMG_OBJS_INFO_TSK));
171
172 doubleClickAction = new Action() {

Exercises VII 373

173 public void run() {
174 IStructuredSelection selection =
175 (IStructuredSelection) viewer.getSelection();
176 ASTNode node = (ASTNode) selection.getFirstElement();
177 try {
178 IJavaElement elem =
179 unit.getElementAt(node.getStartPosition());
180 IEditorPart javaEditor = JavaUI.openInEditor(elem);
181 JavaUI.revealInEditor(javaEditor, elem);
182 } catch (JavaModelException e) {
183 e.printStackTrace();
184 } catch (PartInitException e) {
185 e.printStackTrace();
186 }
187 }
188 };
189 }
190
191
192 private void hookDoubleClickAction() {
193 viewer.addDoubleClickListener(new IDoubleClickListener() {
194 public void doubleClick(DoubleClickEvent event) {
195 doubleClickAction.run();
196 }
197 });
198 }
199
200
201 private void contributeToActionBars() {
202 IActionBars bars = getViewSite().getActionBars();
203 bars.getToolBarManager().add(sampleAction);
204 }
205
206
207 public void setFocus() {
208 viewer.getControl().setFocus();
209 }
210
211
212 public void setInput(ICompilationUnit unit) {
213 this.unit = unit;
214 ASTParser c = ASTParser.newParser(AST.JLS2);
215 c.setSource(unit);
216 c.setResolveBindings(false);
217 CompilationUnit root =
218 (CompilationUnit) c.createAST(null);
219 viewer.setInput(root);
220 }
221 }

Example 20.3
Class
UpdateViewAction

1 package astview.actions;
2
3 import org.eclipse.jdt.core.ICompilationUnit;
4 import org.eclipse.jface.action.IAction;
5 import org.eclipse.jface.viewers.ISelection;
6 import org.eclipse.jface.viewers.IStructuredSelection;
7 import org.eclipse.ui.IObjectActionDelegate;
8 import org.eclipse.ui.IViewPart;
9 import org.eclipse.ui.IWorkbenchPage;

374 Exercises VII

10 import org.eclipse.ui.IWorkbenchPart;
11
12 import astview.views.ASTView;
13
14
15 public class UpdateViewAction implements IObjectActionDelegate {
16
17 private IWorkbenchPart workbenchPart;
18 private ISelection selection;
19
20 public void setActivePart(IAction action,
21 IWorkbenchPart targetPart)
22 {
23 workbenchPart = targetPart;
24 }
25
26 public void run(IAction action) {
27 Object obj =
28 ((IStructuredSelection) selection).getFirstElement();
29 ICompilationUnit unit = (ICompilationUnit) obj;
30
31 IWorkbenchPage page =
32 workbenchPart.getSite().getWorkbenchWindow().
33 getActivePage();
34
35 IViewPart vp = page.findView("astview.views.ASTView");
36
37 if (vp instanceof ASTView) {
38 ((ASTView) vp).setInput(unit);
39 }
40
41 }
42
43 public void selectionChanged(IAction action,
44 ISelection selection)
45 {
46 this.selection = selection;
47 }
48 }

