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What Makes a Good Bug Report?

Thomas Zimmermann, Member, IEEE, Rahul Premraj, Nicolas Bettenburg, Member, IEEE,
Sascha Just, Member, IEEE, Adrian Schroter, Member, IEEE, and Cathrin Weiss

Abstract—In software development, bug reports provide crucial information to developers. However, these reports widely differ in their
quality. We conducted a survey among developers and users of APACHE, ECLIPSE, and MOZILLA to find out what makes a good bug
report. The analysis of the 466 responses revealed an information mismatch between what developers need and what users supply.
Most developers consider steps to reproduce, stack traces, and test cases as helpful, which are, at the same time, most difficult to
provide for users. Such insight is helpful for designing new bug tracking tools that guide users at collecting and providing more helpful
information. Our CUEZILLA prototype is such a tool and measures the quality of new bug reports; it also recommends which elements
should be added to improve the quality. We trained CUEZILLA on a sample of 289 bug reports, rated by developers as part of the
survey. The participants of our survey also provided 175 comments on hurdles in reporting and resolving bugs. Based on these
comments, we discuss several recommendations for better bug tracking systems, which should focus on engaging bug reporters,

better tool support, and improved handling of bug duplicates.

Index Terms—Testing and debugging, distribution, maintenance, and enhancement, human factors, management, measurement.

1 INTRODUCTION

BUG reports are vital for any software development. They
allow users to inform developers of the problems
encountered while using a software. Bug reports typically
contain a detailed description of a failure and they
occasionally hint at the location of the fault in the code
(in the form of patches or stack traces). However, bug
reports vary in their quality of content; they often provide
inadequate or incorrect information. Thus, developers
sometimes have to face bugs with descriptions such as
“Sem Web” (APACHE bug COCOON-1254), “wqqwqw”
(ECLIPSE bug #145133), or just “GUI” with comment “The
page is too clumsy” (MOZILLA bug #109242). It is no
surprise that developers are slowed down by poorly
written bug reports because identifying the problem from
such reports takes more time.

In this paper, we investigate the quality of bug reports
from the perspective of developers. We expected several
factors to impact the quality of bug reports, such as the
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length of descriptions, formatting, and presence of stack
traces and attachments (such as screenshots). To find out
which matter most, we asked 872 developers from the
APACHE, ECLIPSE, and MOZILLA projects to:

1.  Complete a survey on important information in bug
reports and the problems they faced with them. We
received a total of 156 responses to our survey
(Section 2).

2. Rate the quality of bug reports from very poor to very
good on a five-point Likert scale [42]. We received a
total of 1,244 votes for 289 randomly selected bug
reports (Section 6).

In addition, we asked 1,354 repor’cers1 from the same
projects to complete a similar survey, out of which 310
responded. The results of both surveys suggest that there is
a mismatch between what developers consider most
helpful and what users provide and revealed several
hurdles in bug reporting (Sections 3, 4, and 5).

To enable swift fixing of bugs, the mismatch between
developers and reporters should be bridged, for example,
with tool support for reporters to furnish information that
developers want. We developed a prototype tool called
CUEZILLA, which gauges the quality of bug reports and
suggests to reporters what should be added to make a bug
report better.

1. CUEZILLA measures the quality of bug reports. We
trained and evaluated CUEZILLA on the 289 bug
reports rated by the developers (Section 7).

2. CUEZILLA provides incentives to reporters. We auto-
matically mined the bug databases for encouraging
facts such as “Bug reports with stack traces are fixed
sooner” (Section 8).

1. Throughout this paper, reporter refers to the people who create bug
reports and are not assigned to any. Mostly, reporters are end-users, but in
many cases, they are also experienced developers.

Published by the IEEE Computer Society
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TABLE 1
Number of Invitations Sent to and Responses by Developers and Reporters of the APACHE, ECLIPSE, and MOZILLA Projects

Developers Reporters
Project Contacted Bounces Reached Responses (Rate) Comments Contacted Bounces Reached Responses (Rate) Comments
APACHE 194 5 189 34 (18.0%) 12 165 17 148 37 (25.0%) 10
ECLIPSE 365 29 336 50 (14.9%) 15 378 8 370 50 (13.5%) 20
MOZILLA 313 29 284 72 (25.4%) 21 811 130 681 223 (32.7%) 97
Total 872 63 809 156 (19.3%) 48 1354 155 1199 310 (25.9%) 127

To summarize, this paper makes the following contributions:

1. a survey on how bug reports are used among
2,226 developers and reporters, out of which 466

responded;

2. empirical evidence for a mismatch between what
developers expect and what reporters provide;

3. recommendations on how to improve bug tracking
systems;

4. empirical evidence that bug duplicates contain extra
information that can be helpful for fixing bugs;

5. the CUEZILLA prototype that measures the quality of
bug reports and suggests how reporters could
enhance their reports so that their problems get
fixed sooner; and

6. our data set and R scripts to allow replication and

extension of this research (see Appendix A).
We conclude this paper with threats to validity (Section 9),
related work (Section 10), and future research directions
(Section 11).

2 SURVEY DESIGN

To collect facts on how developers use the information in
bug reports and what problems they face, we conducted an
online survey among the developers of APACHE, ECLIPSE,
and MOZILLA. In addition, we contacted bug reporters to
find out what information they provide and which is most
difficult to provide.

For any survey, the response rate is crucial to draw
generalizations from a population. Keeping a questionnaire
short is one key to a high response rate. In our case, we
aimed for a total completion time of 5 minutes, which
we also advertised in the invitation e-mail (“we would
much appreciate 5 minutes of your time”).

2.1 Selection of Participants

Each examined projects’ bug database contains several
hundred developers that are assigned to bug reports. Of
these, we selected only experienced developers for our survey
since they have a better knowledge of fixing bugs. We
defined experienced developers as those assigned to at least
50 bug reports in their respective projects. Similarly, we
contacted only experienced reporters, which we defined as
having submitted at least 25 bug reports (= a user) while at
the same time being assigned to zero bugs (= not a developer)
in the respective projects. Several responders in the reporter
group pointed out that they had some development
experience, though mostly in other software projects.

Table 1 presents for each project the number of developers
and reporters contacted via personalized e-mail, the number
of bounces, and the number of responses and comments
received. The response rate was the highest for MOZILLA
reporters at 32.7 percent. Our overall response rate of
23.2 percent is comparable to other Internet surveys in
software engineering, which range from 14 to 20 percent [52].

2.2 The Questionnaire

Keeping the 5 minute rule in mind, we asked developers
the following questions, which we grouped as follows (see
Fig. 1):

Contents of bug reports. Which items have developers
previously used when fixing bugs? Which three items helped
the most?

Such insight aids in guiding reporters to provide or even
focus on information in bug reports that is most important
to developers. We provided 16 items selected on the basis of
Eli Goldberg’s bug writing guidelines [27] or being
standard fields in the BUGZILLA database.

Developers were free to check as many items as they
wished for the first question (D1), but at most three for the
second question (D2), thus indicating the importance of
items.

Problems with bug reports. Which problems have devel-
opers encountered when fixing bugs? Which three problems
caused most delay in fixing bugs?

Our motivation for this question was to find prominent
obstacles that can be tackled in the future by more cautious,
and perhaps even automated, reporting of bugs.

Typical problems are when reporters accidentally pro-
vide incorrect information, for example, an incorrect
operating system.” Other problems in bug reports include
poor use of language (ambiguity), bug duplicates, and
incomplete information. Spam recently has become a
problem, especially for the TRAC issue tracking system.
We decided not to include the problem of incorrect
assignments to developers because bug reporters have little
influence on the triaging of bugs.

In total, we provided 21 problems that developers
could select. Again, they were free to check as many items
for the first question (D3) as they wished, but at most
three for the second question (D4).

For the reporters of bugs, we asked the following
questions (again see Fig. 1):

Contents of bug reports. Which items have reporters
previously provided? Which three items were most difficult to
provide?

2. Did you know? In ECLIPSE, 205 bug reports were submitted for
“Windows” but later reassigned to “Linux.”
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Contents of bug reports.

D1: Which of the following items have you previously used when fixing bugs?

D2: Which three items helped you the most?

R1: Which of the following items have you previously provided when reporting bugs?
R2: Which three items were the most difficult to provide?

R3: In your opinion, which three items are most relevant for developers when fixing bugs?

Q product Q hardware Q observed behavior Q screenshots

Q component Q operating system Q expected behavior Q code examples
Q version U summary Q steps to reproduce Q error reports
U severity U build information O stack traces 0 test cases

Problems with bug reports.

D3: Which of the following problems have you encountered when fixing bugs?

D4: Which three problems caused you most delay in fixing bugs?

You were given wrong:
Q product name

0 component name

Q version number

Q hardware

Q operating system

Q observed behavior

0 expected behavior

There were errors in:
Q code examples

Q steps to reproduce
Q test cases

Q stack traces

The reporter used: Others:
0 bad grammar Q duplicates
Q unstructured text 0 spam

Q prose text

Q too long text

0 non-technical language
Q no spell check

Q incomplete information
Q viruses/worms

Comments.

D5/R4: Please feel free to share any interesting thoughts or experiences.

Fig. 1. The questionnaire presented to APACHE, ECLIPSE, and MOZILLA developers (Dz) and reporters (Rx).

We listed the same 16 items to reporters as we had listed
to developers before. This allowed us to check whether the
information provided by reporters is in line with what
developers frequently use or consider to be important (by
comparing the results for R1 with D1 and D2). The second
question helped us to identify items, which are difficult to
collect and for which better tools might support reporters in
this task.

Reporters were free to check as many items for the first
question (R1) as they wished, but at most three for the
second question (R2).

Contents considered to be relevant. Which three items do
reporters consider to be most relevant for developers?

Again, we listed the same items to see how much
reporters agree with developers (comparing R3 with D2).

For this question (R3), reporters were free to check at
most three items, but could choose any item, regardless of
whether they selected it for question R1.

Additionally, we asked both developers and reporters
about their thoughts and experiences with respect to bug
reports (D5/R4).

2.3 Parallelism between Questions

In the first two parts of the developer survey and the first part
of the reporter survey, questions share the same items but
have different limitations (select as many as you wish versus
the three most important). We will briefly explain the
advantages of this parallelism using D1 and D2 as examples.

1. Consistency check. When fixing bugs, all items that
helped a developer the most (selected in D2) must
have been used previously (selected in D1). If this
is not the case, i.e., an item is selected in D2 but not
in D1, the entire response is regarded as incon-
sistent and discarded.

2. Importance of items. We can additionally infer the
importance of individual items. For instance, for

item 4, let Npi(¢) be the number of responses in
which it was selected in question D1. Similarly,
Np1,p2(i) is the number of responses in which the
item was selected in both questions D1 and D2.?
Then, the importance of item i corresponds to the
conditional likelihood that item i is selected in D2
when selected in D1:

N .
Importance(i) = ]?’—DF,(;).
D12

Other parallel questions were D3 and D4, as well as R1 and R2.

3 SURVEY RESULTS

In this section, we discuss our findings from the survey
responses. For developers, we received a total of 156 re-
sponses, out of which 26 (or 16.7 percent) failed the
consistency check and were removed from our analysis. For
reporters, we received 310 and had to remove 95 inconsistent
responses (30.6 percent). The results of our survey are
summarized in Table 2 (for developers) and Table 3 (for
reporters). In the tables, responses for each item are annotated
as bars (me=—), which can be broken down into their
constituents and interpreted as below (again, explained with
D1 and D2 as examples):

m—— All consistent responses for the project

- Number of times that item was selected in D1

- Number of times that item was selected in D1 and
D2

= Number of times that item was selected in D1 but
not D2

The colored part (mm+=) denotes the count of responses for
an item in question D1 and the black part (=) of the bar

3. When all responses are consistent, Np; p2(2) = Np2(¢) holds.
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TABLE 2
Results from the Survey among Developers

Contents of bug reports (D1/D2).

==—1 product (5%)
===—1 component (3%)
=" version (12%)
== severity (0%)

=
——

hardware (0%)
operating system (4%)
summary (13%)

=———1 build information (8%)

In parentheses: importance of item.

screenshots (26%)
code examples (14%)
error reports (12%)
test cases (51%)

observed behavior (33%)
expected behavior (22%)
steps to reproduce (83%)
stack traces (57%)

| m——
| m—
| S—
[

Problems with bug reports (D3/D4).

In parentheses: severeness of problem.

You were given wrong: There were errors in: The reporter used: Others:
=——— product name (7%) =——— code examples (15%) =——1 bad grammar (16%) == duplicates (10%)
=—— component name (15%) w1 steps to reproduce (79%) wm==—— unstructured text (34%) = spam (0%)

version number (22%)
hardware (8%)
operating system (20%)
observed behavior (48%)
expected behavior (27%)

= test cases (38%)
——— stack traces (25%)

| e—
| s—
| e —
| o —

prose text (18%)

too long text (26%)
non-technical language (19%)
no spell check (0%)

mmmm— incomplete information (74%)
——— viruses/worms (0%)

130 consistent responses by APACHE, ECLIPSE, and MOZILLA developers.

TABLE 3
Results from the Survey among Reporters

Contents of bug reports (R1/R2).

=====1 product (0%)
m=——x component (22%)
== version (1%)
= severity (5%)

= hardware (1%)
====x1 operating system (1%)
e==——x1 summary (4%)
== build information (3%)

In parentheses: difficulty of item.

observed behavior (2%)
expected behavior (3%)
steps to reproduce (51%)
stack traces (24%)

=———1 screenshots (8%)
code examples (43%)
error reports (2%)

test cases (75%)

| —
 ——
[ s—

Contents considered to be relevant for developers (R3).

——— product (7%)
———= component (4%)
=——— version (12%)
——— severity (2%)

——— hardware (0%)
———= operating system (4%)
——— summary (6%)
——— build information (8%)

[ —
/T
[ s—

In parentheses: frequency of item in R3.

observed behavior (33%) ——
expected behavior (22%)
steps to reproduce (78%)

stack traces (33%)

screenshots (5%)
code examples (9%)
error reports (9%)
test cases (43%)

—
—
o —

215 consistent responses by APACHE, ECLIPSE, and MOZILLA reporters.

denotes the count of responses for the item in both question
D1 and D2. The larger the black bar is in proportion to the
gray bar, the higher the corresponding item’s importance is
in the developers’ perspective. The importance of every
item is listed in parentheses.

Tables 2 and 3 present the results for all three projects
combined. For project-specific tables, we refer to Appendix B.

3.1 Contents of Bug Reports (Developers)

Table 2 shows that the most widely used items across projects
are steps to reproduce, observed and expected behavior, stack traces,
and test cases. Information rarely used by developers is
hardware and severity. ECLIPSE and MOZILLA developers
favorably used screenshots, while APACHE and ECLIPSE
developers more often used code examples and stack traces.

For the importance of items, steps to reproduce stand out
clearly. Next in line are stack traces and test cases, both of
which help to narrow down the search space for defects.
Observed behavior, albeit weakly, mimics steps to reproduce
the bug, which is why it may be rated important. Screenshots
were rated as high, but often are helpful only for a subset of
bugs, e.g., GUI errors.

Smaller surprises in the results are the relatively low
importance of items such as expected behavior, code examples,
summary, and mandatory fields such as version, operating
system, product, and hardware. As pointed out by a MOZILLA

developer, not all projects need the information that is
provided by mandatory fields:
That’s why product and usually even component information is
irrelevant to me and that hardware and to some degree [OS] fields

are rarely needed as most our bugs are usually found in all
platforms.

In any case, we advise caution when interpreting these
results: Items with low importance in our survey are not
totally irrelevant because they still might be needed to
understand, reproduce, or triage bugs.

3.2 Contents of Bug Reports (Reporters)

The items provided by most reporters are listed in the first
part of Table 3. As expected observed and expected behavior and
steps to reproduce rank highest. Only a few users added stack
traces, code examples, and test cases to their bug reports. An
explanation might be the difficulty in providing these
items, which is reported in parentheses. All three items rank
among the more difficult items, with test cases being the most
difficult item. Surprisingly, steps to reproduce and component
are considered to be difficult as well. For the latter, reporters
revealed in their comments that often it is impossible for
them to locate the component in which a bug occurs.
Among the items considered to be most helpful to
developers, reporters ranked steps to reproduce and test cases
highest. Comparing the results for test cases among all three
questions reveals that most reporters consider them to be
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Developers

Reporters

Developers

steps to (97%)

observed behavior (95%)

steps to reproduce (98%)

Reporters

steps to (83%)

expected behavior (89%)

observed behavior (96%)

stack traces (57%)

expected behavior (94%)

test cases (51%)

stack traces (89%) product (94%) observed behavior (33%)

test cases (85%) version (91%) screenshots (26%)

summary (81%) operating system (90%) expected behavior (22%)

screenshots (75%) summary (90%) code examples (14%)

version (75%) component (87%) summary (13%)

code examples (68%) severity (77%) version (12%)

component (67%) build information (60%) error reports (12%)

product (65%) screenshots (60%) build information (8%)

error reports (65%) test cases (56%) product (5%)

operating system (63%) error reports (53%) operating system (4%)

build information (62%) stack traces (50%) component (3%)

severity (47%) hardware (48%) hardware (0%)

steps to reproduce (98%)

Developers

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 36, NO.5, SEPTEMBER/OCTOBER 2010

observed behavior (96%)

steps to reproduce (83%)

Reporters

expected behavior (94%)

stack traces (57%)

steps to reproduce (78%)

test cases (51%)

test cases (43%)

observed behavior (33%)

product (94%) observed behavior (33%) stack traces (33%)

version (91%) screenshots (26%) expected behavior (22%)

operating system (90%) expected behavior (22%) version (12%)

code

summary (90%) (14%) code (9%)

component (87%) summary (13%) error reports (9%)

severity (77%) version (12%) build information (8%)

build information (60%) error reports (12%) product (7%)

screenshots (60%) build information (8%) summary (6%)

test cases (56%) product (5%) screenshots (5%)

error reports (53%) operating system (4%) component (4%)

stack traces (50%) component (3%) operating system (4%)

hardware (32%) code examples (36%) severity (0%)

(@)

(b)

hardware (48%) hardware (0%) severity (2%)

code examples (36%) severity (0%) hardware (0%)

SIS

Fig. 2. Mismatch between developers and reporters. (a) Information used by developers versus provided by reporters. (b) Most helpful for
developers versus provided by reporters. (c) Most helpful for developers versus reporters expected to be helpful.

helpful, but only a few provide them because they are most
difficult to provide. This suggests that capture/replay tools
which record test cases [34], [47], [65] should be integrated
into bug tracking systems. A similar but weaker observation
can be made for stack traces, which are often hidden in log
files and difficult to find. On the other hand, both
developers and reporters consider components only as
marginally important; however, as discussed above, they
are rather difficult to provide.

3.3 Evidence for Information Mismatch

We compared the results from the developer and reporter
surveys to find out whether they agree on what is important
in bug reports.

First, we compared which information developers use to
resolve bugs (question D1) and which information reporters
provide (R1). In Fig. 2a, items in the left column are sorted
decreasingly by the percentage of developers who have
used them, while items in the right column are sorted
decreasingly by the percentage of reporters who have
provided them. Lines connect same items across columns
and indicate the agreement (or disagreement) between
developers and reporters on that particular item. Fig. 2a
shows that the results match only for the top three items
and the last one. In between there are many disagreements,
the most notable ones for stack traces, test cases, code examples,
product, and operating system. Overall, the Spearman
correlation between what developers use and what repor-
ters provide was 0.321, far from being ideal.*

Next, we checked whether reporters provide the informa-
tion that is most important for developers. In Fig. 2b, the left
column corresponds to the importance of an item for
developers (measured by questions D2 and D7), and the
right column to the percentage of reporters who provided an
item (R1). Developers and reporters still agree on the first and
last item; however, overall the disagreement increased. The
Spearman correlation of —0.035 between what developers

4. Spearman correlation computes agreement between two rankings:
Two rankings can be opposite (value —1), unrelated (value 0), or perfectly
matched (value 1). We refer to textbooks for details [61].

consider as important and what reporters provide shows a
huge gap. In particular, it indicates that reporters do not
focus on the information important for developers.

Interestingly, Fig. 2c shows that most reporters know
which information developers need. In other words,
ignorance of reporters is not a reason for the aforemen-
tioned information mismatch. As before, the left column
corresponds to the importance of items for developers; the
right column now shows what reporters expect to be most
relevant (question R3). Overall, there is strong agreement;
the only notable disagreement is for screenshots. This is
confirmed by the Spearman correlation of 0.839, indicating
a very strong relation between what developers and
reporters consider as important. A breakdown of project-
specific mismatch is presented in Appendix B.3.

As a consequence, to improve bug reporting systems,
one could tell users while they are reporting a bug what
information is important (e.g., screenshots). At the same
time, one should provide better tools to collect important
information, because often this information is difficult to
obtain for users (see Section 3.2).

3.4 Problems with Bug Reports

Among the problems experienced by developers, incom-
plete information was, by far, most commonly encountered.
Other common problems include errors in steps to reproduce
and test cases, bug duplicates, and incorrect version numbers,
observed and expected behavior. Another issue that developers
often seemed challenged by is the fluency in language of the
reporter. Most of these problems are likely to lead
developers astray when fixing bugs.

The most severe problems were errors in steps to
reproduce and incomplete information. In fact, in question
D5, many developers commented on being plagued by bug
reports with incomplete information:

The biggest causes of delay are not wrong information, but absent
information.

Other major problems included errors in test cases and
observed behavior. A very interesting observation is that
developers do not suffer too much from bug duplicates,
although earlier research considered this to be a serious
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Provide tool support to collect information.
(Recommendation #5)

Provide better search features.
(Recommendation #7)

Provide tools that help to reproduce bugs.
(Recommendation #8)
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Support different user levels.
(Recommendation #1)

Information

L Provide automated feedback on bug
Centric

reports and suggest what information is
missing. (CUEZILLA, Section 7)

Improving

bug tracking
systems

Reward bug reporters when they do a
good job. (Recommendation #2)

Mark experienced reporters
(Recommendation #3)

Fig. 3. Four areas to improve bug tracking systems.

problem [22], [54], [60]. Possibly developers can easily
recognize duplicates and sometimes even benefit from a
different bug description (see Section 5 for a discussion of
the value of bug duplicates).

The low occurrence of spam is not surprising: In
BUGZILLA and JIRA, reporters have to register before they
can submit bug reports; this registration successfully
prevents spam. Last, errors in stack traces are highly unlikely
because they are copy-pasted into bug reports, but when an
error happens, it can be a severe problem.

4 ANALYSIS OF COMMENTS

Recall that in addition to responses to the specific questions
asked in our survey, we also received 175 comments from
the survey participants (see Table 1). In the comments field,
the participants were free to elaborate upon any experiences
or issues encountered while using bug tracking systems that
were not covered by our questions.

To understand which other hurdles developers and
reporters face with today’s bug tracking, we analyzed the
comments with an open card sort. Card sorting is an
inexpensive and user-centered sorting technique that is
widely used in information architecture to create mental
models and derive taxonomies from input (see Barker
[9]). We first manually examined and split comments into
more atomic parts (statements). We then sorted the
resulting 237 statements to identify common themes and
problems that were established while doing the card sort.
Based on these insights [35], we make recommendations to
improve current bug tracking systems, which fall into the
following four areas.

1. Tool-centric improvements are made to the features
provided by bug tracking systems. They can help to
reduce the burden of information collection and
provision. An example of tool-centric enhancements
is capture/replay tools, which can provide steps to
reproduce automatically [7].

Provide feedback on bug reports.
(Recommendation #4)

Find volunteers to translate bug reports.
Recommendation #6)

Encourage users to submit additional
details. (Recommendation #9, Section 5)

2. Information-centric improvements focus directly on the
information being provided. As an example, we
discuss in Section 7 the CUEZILLA tool, which
provides real-time feedback on the quality of a bug
report and what information can be added to
increase value.

3. Process-centric improvements to bug tracking systems
focus on administration of activities related to bug
fixing. For example, bug triaging, i.e., deciding which
bugs get fixed and determining which developer
should resolve the bug, can be automated [4], [14].

4. User-centric improvements include both reporters and
developers. Reporters can be educated on what
information to provide and how to collect it.
Developers too can benefit from similar training on
what information to expect in bug reports and how
this information can be used to resolve bugs.

The four areas are summarized in Fig. 3; we subsequently
discuss specific comments and recommendations according
to the numbers above. This section focuses on recommen-
dations on how to engage users and build better tool
support. In Section 5, we propose an improved handling of
bug duplicates. In Section 7, we present a prototype tool
CUEZILLA that helps reporters to submit better quality bug
reports.

4.1 Engage Reporters
User levels. Often users of a software have different levels
of knowledge, as pointed out by one developer:
In OSS, there is a big gap with the knowledge level of bug
reporters. Some will include exact locations in the code to fix, while
others just report a wierd behavior that is difficult to reproduce. In
Eclipse, experienced users know that the Error log exists, so they
can provide stack traces and errors [...] (comment 98)
Guidance through bug reporting is desirable, especially for
less experienced users, e.g., by helping to collect certain
information or by splitting up bug reporting across multiple
pages. However, experienced bug reporters prefer to have
one page where they can provide everything.
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In addition to different levels of knowledge, not all users
know what information is important for developers:
It’s easily forgotten that many peoples’ brains just aren’t wired the

same as ours, and they just don’t understand what we’re asking for
in bug reports, and why! (comment 97)

Recommendation #1. Support different levels of users (novice,
expert) and provide different user interfaces for each level. Give
cues to inexperienced users what information they should
provide and how they can collect it.

Reward reporters. Good quality reports are worthy of
rewards: The “Mozilla Security Bug Bounty Program” [46]
awards US $500 and a Mozilla T-shirt for every critical
security bug reported. In 2006, the Eclipse Foundation had a
“Callisto Simultaneous Release Bug Finding Contest” [25].
In this contest, any developer who saw a great bug report
marked that bug with the “greatbug” keyword. Both the
reporter and triager of this bug then received an “I Helped
Callisto” shirt and participated in a random drawing of
prizes such as iPods and mountain bikes.

Recommendation #2. Do not just fix bugs, also reward
reporters when they do a good job.

Reporter reputation. Several developers pointed out that
reporters who are well known, either personally or through
well-written past bug reports, will get more attention.

Another import thing is that devs know you (because you have

filed bug reports before, you discussed with them on IRC,

conferences, ...) this is the human component of the system which
is often forgotten. (comment 102)

Well known reporters usually get more consideration than
unknown reporters, assuming the reporter has a pretty good
history in bug reporting. So even if a “well-known” reporter
reports a bug which is pretty vague, he will get more attention
than another reporter, and the time spent trying to reproduce the
problem will also be larger. (comment 55)

An improvement to bug tracking systems would be to
introduce reputation into user profiles. This would help
developers to quickly identify the experience of a reporter,
even when they do not know him personally. Hooimeijer
and Weimer measured the reputation of reporters as the
success rate, i.e., the percentage of submitted bug reports
that were fixed [30]. Ideally, reputation would have two
components: a project-independent one that tells the
experience with bug reporting in general and a project-
specific one that tells the experience for a given project.

Recommendation #3. Integrate reputation into user profiles to
mark experienced reporters.

Frustration of users. Seven reporters complained about
not getting feedback on bug reports that they have submitted.

“From a bug submitter perspective, it would be nice to see that
submitted bugs are being looked at (at least being read by
someone). It can be frustrating to submit a bug and not know what
the status is or when somebody last looked at it.” [comment 42]

A related comment received from a developer is:

Also, I don’t think the general user comprehends the sheer volume of
bugs that we must address, and thus, there is some misunderstand-
ing when we can’t address all of them. (comment 30)
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The reason why developers do not always provide
feedback is that they are simply swamped with bug reports.
An improved bug tracking system could take over to send
some feedback, e.g., when developers first looked at a bug
report, when they start working on it. Other feedback could
be just counting the number of page views for a bug report.

Recommendation #4. Always provide feedback on bug reports
to keep users motivated.

4.2 Better Tool Support

Collect information. Several reporters pointed out the need
for tools that help them to collect information that they need
to file bug reports. Ideally, such tools would be integrated
in the software itself or in its bug reporting system.

Sometimes I wish for a special Ul-tracker, which tells me what I
have done to get into this. (comment 64)

[MIaybe somehow it could be made possible to report bugs more
like recording a macro. (comment 65)

Such support is likely to lead to better bug reports. One
example is ECLIPSE bug 113206, which was awarded “Best
of Bugzilla” by Cunningham [23]. In this bug report, the
reporter used a flash movie to demonstrate the rather
complicated steps to reproduce. He stopped the video at
important points where he added annotations to draw the
attention of the developers to the crucial parts.

Recommendation #5. Provide tool support for users to collect
and prepare information that developers need.

Internationalization. Bug reports that are not written in
English are often closed immediately, although the software
is internationalized.

Another frustrating issue with bug reporting sites is insensitivity

to language issues. I've seen bugs immediately closed because they

weren’t filed in English, without even asking or waiting for
someone to translate it into English. (comment 56)

Recommendation #6. Find volunteers to translate bug reports
filed in foreign languages. Ideally, the bug tracking system
should provide support for this.

Better search facility. Most reporters are aware that they
should check first as to whether a bug has already been filed.
However, nine reporters commented on the limited search
functionality in bug tracking systems and requested features
such as regular expressions and a Google-like search.

It’s very hard to find possible duplicates, when filing bugs. The

“search” tool in Bugzilla is very poor—it seems that a search for

“quick brown fox” will return results for “quick OR brown OR

fox,” without prioritizing “quick AND brown AND fox”.

Furthermore, there’s no way to assign or search keywords for a

bug [...]. (comment 71)

let me at a minimum enter ebay style search strings for finding
relevant bugs [,,,] I'd expect reqular expressions. (comment 72)

Traditional bug tracking systems provide mostly key-
word search. However, bug reports are more than just
keywords; they consist of structured information such as
stack traces, patches, and source code. Recently, Ashok et al.
presented the DebugAdvisor tool [8], which is an important
step toward better search in bug tracking: DebugAdvisor
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allows programmers to more effectively search for related
and duplicated bug reports using fat queries, which can be
kilobytes of structured and unstructured data.

Recommendation #7. Provide a powerful, yet simple and easy-
to-use feature to search bug reports.

Complicated steps to reproduce. This problem was
pointed out by several developers:
If the repro steps are so complex that they’ll require more than an

hour or so (max) just to set up would have to be quite serious
before they’ll get attention.

This is one of the greatest reasons that I postpone investigating a
bug ... if I have to install software that I don’t normally run in
order to see the bug.

Recommendation #8. Provide tools that help to reproduce bugs,
e.g., set up a test workspace automatically.

4.3 Other Interesting Comments
In addition to the above, we also received the following
interesting comments from developers:

Violating netiquette. “Another aspect is politeness and
respect. If people open rude or sarcastic bugs, it doesn’t help their
chances of getting their issues addressed.”

Misuse of bug tracking system. “Bugs are often used to
debate the relative importance of various issues. This debate tends
to spam the bugs with various use cases and discussions [...]
making it harder to locate the technical arguments often necessary
for fixing the bugs. Some long-lived high-visibility bugs are
especially prone to this.”

Keen bug reporters. A developer wrote about reporters
who go the extra mile to identify offending code: “I feel that I
should at least put in the amount of effort that they did; it
encourages this behavior.”

Bug severity. “For me it amounts to a consideration of "how
serious is this?” versus ‘how long will it take me to find/fix it?’.
Serious defects get prompt attention but less important or more
obscure defects get attention based on the defect clarity.”

5 VALUE ofF DuPLICATE BuG REPORTS

A common argument against duplicate bug reports is that
they strain bug tracking systems and demand more effort
from quality assurance teams—effort that could instead be
utilized elsewhere to improve the product. In this section, we
provide empirical evidence for the contrary by demonstrat-
ing that duplicate bug reports may actually contain addi-
tional information that may be useful to resolve bugs.
When a bug report is identified as a duplicate, a common
practice is to simply close and discard the information,
which in the long term discourages users from submitting
bug reports. They become reluctant to provide additional
information once they see that a bug report has already
been filed.
Typically bugs I have reported are already reported but by much
less savvy people who make horrible reports that lack important
details. It is frustrating to have spent lots of time making an

exceptionally detailed bug report to only have it marked as a
duplicate [...].” [comment 18a]
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In our survey, developers also suggested that bug dupli-
cates are not always bad, they often add important details.
Duplicates are not really problems. They often add useful

information. That this information was filed under a new report
is not ideal though. (comment 19)

It would be better to somehow mend the reports instead of just
writing off the good report simply because it was posted after the
bad report. This would probably help software engineers much
better. (comment 18b)

Page makes a similar argument and summarizes three
reasons why “worrying about [duplicates] is bad” [48], [49].

1. Often there are negative consequences for users who
enter duplicates. As a result, they might err on the side
of not entering a bug, even though it is not filed yet.

2. Triagers are more skilled in detecting duplicates than
users and they also know the system better. While a
user will need a considerable amount of time to
browse through similar bugs, triagers can often
decide within minutes whether a bug report is a
duplicate.

3. Bug duplicates can provide valuable information that
helps diagnose the actual problem.

These comments about duplicate bug reports motivated
us to conduct an in-depth empirical study to investigate the
value of information that bug duplicates contain (the third
of Page’s reasons [48]).

We use the term master report to refer to a original report
that has associated duplicate bug reports in the bug tracking
system and extended reports to refer to the original bug
report and it’s duplicates combined.

5.1 How Much Information Duplicates Add

In order to detect and quantify information items from bug
reports for comparison, we used a tool called infoZilla [15].
infoZilla can reliably detect and extract information such as
patches, screenshots, and stack traces from bug reports. Using
the information from infoZilla and bug reports” predefined
fields, we investigate whether duplicate bug reports
contribute any additional information that may help resolve
bugs. Table 4 summarizes our findings for ECLIPSE and
MOZILLA using the following columns:

e  The first column presents all information items that
we extracted using infoZilla. The items fall in four
categories: predefined fields such as product and
component, patches, screenshots, and stack traces.
Patches and stack traces are often found in the
description field or as separate attachments.

e The second column “Master” lists the average count
of each information item in the original master
reports, i.e.,, when bug duplicates are ignored. This
count corresponds to a practice that is found in
many projects: Once duplicates are detected, they
are simply closed and all information that they
provided is discarded.

e The third column “Extended” lists the average count
of each information item in the extended bug reports.
This count would correspond to a practice where
duplicates are merged with master reports and all
information is retained.
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TABLE 4
Average Amount of Information Added by Duplicates per Master Report

ECLIPSE(«) Average per master report

Master Extended Change<b)

Information item

PREDEFINED FIELDS

— product 1.000 1.127 +0.127
— component 1.000 1.287 +0.287
— operating system 1.000 1.631 +0.631
— reported platform 1.000 1.241 +0.241
— version 0.927 1.413 +0.486
— reporter 1.000 2412 +1.412
— priority 1.000 1.291 +0.291
— target milestone 0.654 0.794 +0.140
PATCHES

— total 1.828 1.942 +0.113
— unique: patched files 1.061 1.124 +0.062
SCREENSHOTS

— total 0.139 0.285 +0.145
— unique: filename, filesize 0.138 0.281 +0.143
STACKTRACES

— total 0.504 1.422 +0.918
— unique: exception 0.195 0.314 +0.118
— unique: exception, top frame 0.223 0.431 +0.207
— unique: exception, top 2 frames 0.229 0.458 +0.229
—unique: exception, top 3 frames  0.234 0.483 +0.248
— unique: exception, top 4 frames  0.239 0.504 +0.265
— unique: exception, top 5 frames  0.244 0.525 +0.281

(@) Dataset from the MSR Mining Challenge 2008 [37].
(%) For all information items the increase is significant at p < .001.

e The fourth column “Change” is the difference
between “Extended” and “Master” and represents
the average number of information items that bug
duplicates would add per master report.

In order to quantify the amount of additional “new” data for
master reports, we counted unique items whenever possible.
For predefined fields, we counted the unique values; for
patches, the unique files that were patched; for screenshots,
the number of unique filenames and file sizes. For stack
traces, we counted the number of unique exceptions and
unique top n stack frames (n=1,...,5). To test for the
statistical significance of our results, we conducted a one-
sided paired t-test [56], [61]. For all information items, the
increase in information items caused by duplicates was
significant at p < 0.001.

Coming back to Table 4 and the results for ECLIPSE,
every master report contains exactly one operating system
(as indicated by the 1.000 in “Master”). When merged with
their duplicates, the average number of unique operating
systems in extended bug reports increases to 1.631 (“Ex-
tended”). This means that duplicates could add, on average,
0.631 operating systems to existing bugs as long as
duplicates are not just discarded. The numbers are similar
for MOZILLA, where bug duplicates could add 1.102
operating systems on average.

Most duplicates are filed by users who are different from
the ones who filed the original master report” which
explains the large increase in the number of unique
reporters in Table 4. A reporter’s reputation can go a long
way in influencing the future course of a bug report
(Recommendation #3, Section 4.1). This suggests that a

5. However, this is not always the case, as discussed in Section 5.2.

MOZILLA(®) Average per master report

Master Extended Change(b)

Information item

PREDEFINED FIELDS

— product 1.000 1.400 +0.400
— component 1.000 1.953 +0.953
— operating system 1.000 2.102 +1.102
—reported platform 1.000 1.544 +0.544
— version 0.814 0.979 +0.165
— reporter 1.000 3.705 +2.705
— priority 0.377 0.499 +0.122
— target milestone 0.433 0.558 +0.125
PATCHES

— total 5.038 5.184 +0.146
— unique: patched files 2.003 2.067 +0.064
SCREENSHOTS

— total 0.200 0.391 +0.191
—unique: filename, filesize 0.197 0.385 +0.187
STACKTRACES

— total 0.100 0.185 +0.085
— unique: exception 0.033 0.047 +0.014
— unique: exception, top frame 0.069 0.130 +0.061
— unique: exception, top 2 frames 0.072 0.136 +0.064
— unique: exception, top 3 frames  0.073 0.139 +0.066
— unique: exception, top 4 frames  0.074 0.141 +0.067
— unique: exception, top 5 frames  0.075 0.143 +0.068

(@) Dataset contains all bug reports submitted until April 21, 2008.
(%) For all information items the increase is significant at p < .001.

master report may get more attention if a duplicate filed by
a known reporter gets noticed.

Besides reporters, duplicates also provide substantial
additional information for operating system, version,
priority, and component. We also found that duplicates
add, on average, 0.113-0.146 patches and 0.062-0.064
patched files per master report. This is a rather small
relative increase of less than 10 percent and suggests that
most patches are filed against the master report. Bug
duplicates add, on average, 0.143-0.187 screenshots (relative
increase of roughly 100 percent).

We compared stack traces by considering the exception
and the first five stack frames. For ECLIPSE, on average,
0.918 additional stack traces were found in the duplicate
bug reports (increase of about 180 percent). Within these,
we found, on average, 0.118 occurrences of additional
exceptions in duplicates and 0.281 stack traces that
contained code locations (in the top five frames) that have
not been reported before.

For MOZILLA, stack traces in bug reports are less
frequent (only in every 10th bug report), but the relative
increases are similar to ECLIPSE. The reason for the low
amount of stack traces in MOZILLA bug reports is that stack
traces for crashes are submitted to a separate repository,
called TALKBACK, where they can be displayed. Reporters
often provide a link to the TALKBACK ID instead of pasting
the complete stack trace.

Our findings show that duplicates are likely to provide
different perspectives and additional pointers to the origin
of bugs, and thus can help developers to correct bugs. For
example, having more stack traces reveals more active
methods during a crash, which helps to narrow down the
suspects. Overall, these findings suggest that duplicate bug
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Visualizer and inPath weaving
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Fig. 4. Screenshot of interface for rating bug reports.

reports provide developers with information that was not
present in the original report and make a case for
reevaluation of the treatment and presentation of duplicates
in bug tracking systems.

Recommendation #9. Encourage users to submit additional
details, ideally to an already existing bug report. Provide tool
support for merging bugs.

5.2 Reasons for Bug Duplicates

We performed a more detailed analysis on why duplicates
are submitted in the first place. Here are the reasons that we
could identify:

e  Lazyand inexperienced users. Some users simply are not
willing to spend time searching for duplicates. Others
are not yet experienced enough with bug tracking.

e  Poor search feature. Many survey participants recom-
mended improvements for the search feature of
BUGZILLA. One example of a bug where the search
feature likely failed is bug #24448 from ECLIPSE “Ant
causing Out of Memory.” It was reported by
33 different users over a period of almost 900 days.

e  Multiple failures, one defect. Sometimes, it is not
obvious that two failures (error in the program
execution) belong to the same defect (error in the
program code). For example, for bug #3361, a total of
39 duplicates have been reported by the same user,
likely a tester. In the case of #3361, the reports have
been created automatically because it took the tester
only 1 minute to submit 40 bug reports.

e Intentional resubmission. Some users intentionally
resubmit a bug, often out of frustration that it has
not been fixed so far. For example, the duplicate
#54603 was submitted more than eight months after
the creation of the corresponding master bug #39064.
The duplicate started with “I raised this issue several
times, but it is still a problem.”

e  Accidental resubmission. A substantial number of
duplicate reports are created by users who acciden-
tally clicked the submit button multiple times. For

example, bugs #28538 and #96565 each have four
confirmed duplicates, which have been submitted by
the same users at exactly the same time. For ECLIPSE,
we found 521 confirmed duplicates that were likely
caused by an accidental resubmission, i.e., duplicate
reports which had the same title, same description,
same product, and same component as a bug report,
which was submitted less than 10 minutes before by
the same user.

Some of the above reasons for bug duplicates could be
easily addressed by better tool support, e.g., by an
improved search feature for bugs (Recommendation #7,
DebugAdvisor [8]) and a warning when a user is submit-
ting the same bug again.

6 RATING BuG REPORTS

After completing the questionnaire, participants were asked
to continue with a voluntary part of our survey. We
presented randomly selected bug reports from their projects
and asked them to rate the quality of these reports. Being
voluntary, we did not mention this part in the invitation
e-mail. While we asked both developers and reporters to
rate bug reports, we will use only the ratings by developers in
this paper, as they are more qualified to judge what is a good
bug report.

6.1 Rating Infrastructure

The rating system was inspired by Internet sites such as
RateMyFace [53] and HotOrNot [31]. We drew a random
sample of 100 bugs from the projects” bug database, which
were presented one by one to the participants in a random
order. They were required to read through the bug report
and rate it on a five-point Likert scale ranging from very
poor (1) to very good (5) (see Fig. 4 for a screenshot). We did
not show whether a bug report is a duplicate because we
wanted participants to focus exclusively on the bug report’s
quality. Once they rated a bug report, the screen showed the
next random report and the average quality rating of
the previously rated report on the left. On the right, we
provided a skip button, which as the name suggests, skips
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Fig. 5. Empirical cumulative distribution plots of the votes by developers. (a) Apache (229 votes). (b) Eclipse (455 votes). (c) Mozilla (560 votes).

the current report, and navigates to the next one. This
feature seemed preferable to guesswork on the part of the
participants in cases where they lacked the knowledge to
rate a report. Participants could stop the session at any time
or choose to continue until all 100 bugs had been rated.
These quality ratings by developers served two purposes:

1. They allowed us to verify the results of the
questionnaire on concrete examples, i.e., whether
reports with highly desired elements are rated
higher for their quality and vice versa.

These scores were later used to evaluate our
CUEZILLA tool that measures bug report quality

(Section 7).

6.2 Rating Results

The following number of developer votes for bug reports
was received for the samples of 100 bugs from each project:
229 for APACHE, 455 for ECLIPSE, and 560 for MOZILLA.

Fig. 5 plots the empirical cumulative distribution (ECDF)
of the votes by developers. In an ECDF plot, the x-axis is the
data under investigation; in our case, the ratings by
developers on a Likert scale from very bad (numeric value
of 1) to very good (5). The y-axis is the percentage of data
points for which the rating is less than or equal to the rating
on the x-axis. Thus, any coordinate (z,y) on the ECDF plot
shows percentage of data (y percent) that lies within the
range (—oo, z].

In Fig. 5, we see that very few developers rated bugs as
very bad across all three projects. A slightly higher
proportion of bugs were rated as bad by APACHE
developers in comparison to the other projects. However,
neutral and good were the most common ratings by
developers from all three projects. Last, very few bug
reports from the APACHE project were rated very good,
while a larger percentage of bugs were rated the same by
ECLIPSE and MOZILLA developers.

Table 5 lists the bug reports that were rated highest and
lowest by ECLIPSE developers. Some bug reports were found
to be of exceptional quality, such as bug report #31021 for
which all three responders awarded a score of very good (5).
This report presents a code example and adequately guides
the developer on its usage and observed behavior.

120030205
Run the following example. Double click on a tree item and notice
that it does not expand.
Comment out the Selection listener and now double click on any
tree item and notice that it expands.
public static void main(String[] args) {

Display display = new Display();

Shell shell = new Shell(display);

[...] (21 lines of code removed)

display.dispose();

(ECLIPSE bug report #31021)
On the other hand, bug report #175222 with an average

score of 1.57 is of fairly poor quality. Actually, this is simply
not a bug report and has been incorrectly filed in the bug
database. Still, misfiled bug reports take away valuable time
from developers.

I wand to create a new plugin in Eclipse using CDT. Shall it
possible. I had made a R&D in eclipse documentation. I had get an
idea about create a plugin using Java. But i wand to create a new
plugin (user defined plugin) using CDT. After that I wand to
impliment it in my programe. If it possible?. Any one can help me
please . ..

(ECLIPSE bug report #175222)

TABLE 5
Developers Rated the Quality of ECLIPSE Bug Reports

Bug Report Votes Rating
Tree - Selection listener stops default expansion (#31021) 3 5.00
JControlModel "eats up" exceptions (#38087) 5 4.8
Search - Type names are lost [search] (#42481) 4 450
150M1 withincode type pattern exception (#83875) 5 440
Toolltem leaks Images (#28361) 6 433
Selection count not updated (#95279) 4 225
Outline view should [...] show all project symbols (#108759) 2  2.00
Pref Page [...] Restore Defaults button does nothing (#51558) 6 1.83
[...]<Incorrect /missing screen capture> (#99885) 4 1.75
Create a new plugin using CDT. (#175222) 7 157
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6.3 Concordance between Developers

We also investigated the concordance between developers
on their evaluation of the quality of bug reports. It seems
reasonable to assume that developers with comparable
experiences have compatible views on the quality of bug
reports. However, there may be exceptions to our belief or it
may simply be untrue. We statistically verified concordance
between developers by examining the standard deviations
of quality ratings by developers (0yating) for the bug reports.
Larger values of 044, indicate higher differences between
developers’ view of quality for a bug report. Of the 289 bug
reports rated across all three projects, only 23 (which
corresponds to 8 percent) had oyating > 1.5.

These results show that developers generally agree on
the quality of bug reports. Thus, it is feasible to use their
ratings to build a tool that learns from bug reports to
measure the quality of new bug reports. We present a
prototype of such a tool in the next section.

6.4 Preferred Information ltems

The responses from the survey indicated which information
items are desired by developers and reporters (Section 3). In
this section, we now validate if the bug reports ratings were
coherent with the responses from the survey. This analysis
was conducted on the top five bug reports with the highest
average ratings by developers and reporters separately for
each project. After identifying these reports, we examined
them to check for any patterns in their information contents.
We found that developers favored bug reports with code
snippets and/or stack traces. In addition, they also
preferred reports that provide a description of the environ-
ment (or the context) when the error occurred. Surprisingly
reports with requests for features or documentation
updates were not rated very high. However, this does not
imply that developers do not welcome requests for new
features; it may very well be an artifact of our sampling.
Reporters, on the other hand, appeared to only mildly
favor bug reports with code snippets and demonstration of
domain knowledge. Instead, they were more drawn toward
reports with clear steps to reproduce, and observed and
expected behavior. Also, bug reports that were either very
long, haphazardly written, or missing information were less
preferred by the reporters. Some bug reports appeared to
have harsh tones; these were rated low by reporters but the
developers seemed to be more tolerant to them.

6.5 Disagreements over Bug Report Quality
Developers and reporters may not share the same opinion
about the quality of a bug report because of their different
perspectives and levels of expertise. We performed a
qualitative analysis to investigate disagreements in bug
rating between developers and reporters. The degree of
disagreement for a bug report was computed as the absolute
differences between the average ratings from developers and
reporters. Note that for this analysis, we only considered
those reports that received atleast two votes from each group.

We performed this analysis for each project separately
because of a few project-specific preferences of information
by developers and reporters (see Appendix B.3). From each
project, we investigated the top-five bugs with the largest
disagreements.
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APACHE. Of the five bugs identified from the APACHE
project, four were rated higher by the developers. The
disagreement over the reports ranged from 1 to 1.75 points
on the Likert scale.

Overall, all five bug reports exhibited good familiarity
with the underlying system because of the use of domain-
specific terminology such as “Now when I try to iterate over
the list of primary investigators in a J[SP with the logic-tag” in
bug STR-2564 (favored by reporters) or “[...] in this test case
Xalan throws a NullPointerException I don’t think it should
throw. libslt can process this case.” in bug XALAN]-1837
(favored by developers).

One common pattern we observed in the bug reports
favored by developers is that the reports provide additional
analysis (e.g., of the problematic file in bug #13359) or
provide solutions (e.g., the patch in bug WICKET-95).
Although the bug report favored by the reporters includes
code snippets as well, it merely provides input data to
exhibit an exception.

ECLIPSE. All five bug reports from ECLIPSE were favored
by the developers. The disagreement over the reports
ranged from 1.13 to 1.5 points on the Likert scale.

Each report focused on specific and narrow issues, for
example, “ui.views.navigator.ResourceSorter still uses java.u-
til.Collator” in bug #158156. Such precise information was
often coupled with domain-specific language such as “test
case using Sleak” in bug #28361. This indicates that the bugs
have been submitted by people with an understanding of
ECLIPSE (actually, three of the five reports were submitted
by IBM employees).

MOZILLA. Four of the top five bugs with disagreements
were favored by developers. The disagreements ranged
from 1.3 to 1.62 points on the Likert scale.

Again, developers showed a preference toward bug
reports that used domain-specific language indicating
familiarity with the project. One example is bug #243723
with “Some methods on this interface (e.g., GetWidgetForView())
should really not be using COM-like signatures.” The remain-
der of the report describes the desired solution: “it would be
great if [the] Ixr identifier searchers also worked for symbols
which were #defined.”

The report favored by reporters gives a good description
of the problem that a certain plug-in was not ported to the
next version of the browser. However, porting the plug-in is
not the responsibility of the MOZILLA developers, which
may explain why the developers did not rate the bug high.

Generally, developers tend to favor reports that exhibit
an understanding of the problem and the underlying
program. The extent of this knowledge may vary from
one project to another. In the cases of APACHE and ECLIPSE,
whose users are more technically inclined, expectations
may be higher in comparison to MOZILLA, which has a
wider audience of users.

7 MEASURING BUG REPORT QUALITY WITH
CUEZILLA
In Section 3.3, we showed that the majority of reporters know

what is important in bug reports. However, we also found
evidence for an information mismatch: The importance of
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some items, e.g., screenshots, is not recognized by users.
There are also black sheep among users who do not know yet
how to write good bug reports. In general, humans can
benefit from cues while undertaking tasks, which was
demonstrated in software engineering by Passing and
Shepperd [51]. They examined how subjects revised their
initial cost estimates of projects upon being presented
checklists relevant to estimation.

Our conjecture is that bug reporters can provide better
reports with similar assistance. As a first step toward
assistance, we developed a prototype tool called CUEZILLA
that measures the quality of bug reports. CUEZILLA also
provides suggestions on how to enhance the quality of a
bug report, for example, “Have you thought about adding a
screenshot to your bug report?” To encourage reporters to
actually provide additional information, CUEZILLA can
show did you know facts mined from bug databases; for
example, “Bug reports with stack traces are fixed N-times
faster.” Possible usage scenarios for CUEZILLA are to
provide immediate feedback while new bug reports are
entered, to solicit information for bug reports that are
already in the bug database, or to prioritize bug reports
during bug triage.

This section presents details on how CUEZILLA works and
reports results of its evaluation at measuring quality of bug
reports. To create recommendations, CUEZILLA first repre-
sents each bug report as a feature vector (Section 7.1). Then, it
uses supervised learning to train models (Section 7.3) that
measure the quality of bug reports (Sections 7.4 and 7.6). Our
models can also quantify the increase in quality when
elements are added to bug reports (Section 7.7). In contrast to
other quality measures for bug reports such as lifetime [30],
we use the ratings that we received by developers. Last, we
describe the process of mining did you know facts from bug
databases (Section 8).

7.1 Input Features

Our CUEZILLA tool measures the quality of bug reports on
the basis of their contents. From the survey, we know the
most desired features in bug reports by developers.
Endowed with this knowledge, CUEZILLA first detects the
features listed below. For each feature, a score is awarded to
the bug report, which is either binary (e.g., attachment
present or not) or continuous (e.g., readability).

Itemizations. In order to recognize itemizations in bug
reports, we checked whether several subsequent lines started
with anitemization character (suchas—, *, or +). Torecognize
enumerations, we searched for lines starting with numbers or
single characters that were enclosed by parentheses or
brackets or followed by a single punctuation character.

Keyword completeness. We reused the data set pro-
vided by Ko et al. [40] to define a quality score of bug
reports based on their content. In a first step, we removed
stop words, reduced the words to their stem, and selected
words occurring in at least 1 percent of bug reports. Next,
we categorized the words into the following groups:

e action items (e.g., open, select, and click),

e expected and observed behavior (e.g., error and
missing),

e steps to reproduce (e.g., steps and repro),

e Dbuild-related (e.g., build), and

e user interface elements (e.g., toolbar, menu, and
dialog).
In order to assess the completeness of a bug report, we
computed for each group a score based on the keywords
present in the bug report. The maximum score of 1 for a
group is reached when a keyword is found.

In order to obtain the final score (which is between 0 and
1), we averaged the scores of the individual groups.

In addition to the description of the bug report, we
analyze the attachments that were submitted by the
reporter within 15 minutes after the creation of the bug
report. In the initial description and attachments, we
recognize the following features:

Code samples. We identify C++ and JAVA code
examples using techniques from island parsing [45].
Currently, our tools can recognize declarations (for classes,
methods, functions, and variables), comments, conditional
statements (such as if and switch), and loops (such as
for and while).

Stack traces. We currently can recognize JAVA stack
traces, GDB stack traces, and MOZILLA talkback data. Stack
traces are easy to recognize with regular expressions: They
consist of a start line (that sometimes also contains the top
of the stack) and trace lines.

Patches. In order to identify patches in bug reports and
attachments, we again used regular expressions. They
consist of several start lines (which file to patch) and blocks
(which are the changes to make) [43].

Screenshots. We identify the type of an attachment using
the file tool in UNIX. If an attachment is an image, we
recognize it as a screenshot. If the file is recognized as text,
we process the file and search for code examples, stack
traces, and patches (see above).

For more details about extraction of structural elements
from bug reports, we refer to our previous work [16] in
which we showed that we can identify the above features
with close to perfect precision.

After cleaning the description of a bug report from
source code, stack traces, and patches, we compute its
readability.

Readability. To compute readability, we use the style
tool, which “analyzes the surface characteristics of the
writing style of a document” [21]. It is important to not
confuse readability with grammatical correctness. The
readability of a text is measured by the number of syllables
per word and the length of sentences. Readability measures
are used by Amazon.com to inform customers about the
difficulty of books and by the US Navy to ensure readability
of technical documents [38].

In general, the higher a readability score, the more
complex a text is to read. Several readability measures
return values that correspond to school grades. These
grades tell how many years of education a reader should
have before reading the text without difficulties. For our
experiments, we used the following seven readability
measures: Kincaid, Automated Readability Index (ARI),
Coleman-Liau, Flesh, Fog, Lix, and SMOG Grade.®

6. This paper has an SMOG-Grade of 13, which requires the reader to
have some college education. Publications with a similar SMOG-grade are
often found in the New York Times.
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Fig. 6. Empirical cumulative distribution plots of the average quality of bug reports. (a) Apache. (b) Eclipse. (c) Mozilla.

We did not use the information whether a bug report is a
duplicate as input feature because this was not available to
participants when they rated bug reports. Furthermore, bug
duplicates and bug report quality are different concepts,
e.g., there are well-written bug duplicates that actually do
add new information (see Section 5).

7.2 Output Feature

The output feature to train our supervised learning models
is the average quality (awarded by developers) for each
rated bug report. Recall that developers could rate bug
reports on a quality scale from level 1 (very bad) to level 5
(very good). However, very few reports were classified as
very bad or very good, resulting in an imbalance in their
distribution across the quality levels. Supervised learning
models can be very sensitive to such imbalances that may
cause them to underperform. In order to avoid this, we
balanced the data: We computed the ECDFs of the average
ratings for each project and distributed the bug reports
evenly across three different quality levels—bad, neutral,
and good.

Fig. 6 shows the ECDF plots of the average bug report
ratings from each project. Recall that any coordinate (z,y)
on the ECDF plot shows the percentage of data (y percent)
that lies within the range from — (oo, z]. We used the ECDF
plots to label the bug reports with the lowest 33 percent
average ratings as bad bug reports. The next 33 percent of
bug reports were labeled as neutral bug reports, while the
remaining bug reports were rated as good bug reports.
These three classes—bad, neutral, and good bug reports—
were then used as the output feature to train our models.
The intervals used to balance the data and the resulting
class sizes are listed below the ECDF plots in Fig. 6. Note
that a perfect balance is not always possible because ECDFs
are stepwise functions. For example, the APACHE project
has a big step at z =3.50 from y =0.58 to 0.71 (12 bug
reports), which we labeled as neutral; as a result we have
more neutral bug reports in APACHE.

7.3 Evaluation Setup

Out of the 300 bug reports in the sample, developers rated
289 bug reports at least once. These reports were used to
train and evaluate CUEZILLA by building supervised
learning models. We used the following models: support
vector machines (SVMs), decision trees, random forests,
linear regression, and stepwise linear regression [61], [64]

Each model used the scores from the features described
in Section 7.1 as input variables and predicted the quality
level as described in Section 7.2. For classification models,
we predicted the quality level directly; for regression
models, we first predicted a number, which was then
mapped to one of the three classes poor, neutral, or good.
We evaluated CUEZILLA using two setups:

Within-project. To test how well models predict within a
project, we used the leave-one-out validation setup—for a
given project, the quality of each bug report is predicted by
learning a model from all other bug reports. Since we have
limited data, we chose this setup to maximize the training
data to build the prediction models.

Cross project. We also tested whether trained models
from one project can be transferred to others. To exemplify,
we built a model from all rated bug reports of project A and
applied it to predict the quality of all rated bugs in project B.

TABLE 6
The Results of the Classification by CueziLLA (Using Support
Vector Machines Classification, SVMC, with Linear Kernel)
Compared to the Developer Ratings for ECLIPSE Bug Reports

Observed (Developers)
Predicted Bad  Neutral Good
Bad 20 15 6
Neutral 9 10 13
Good 4 8 15

Correctly assessed bug reports are in the cells with a dark background.
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TABLE 7
Percentage Accuracy of CUEzILLA Using the Within-Project Evaluation Setup

Model APACHE (%) ECLIPSE (%) MOZILLA (%)
SVMC:* linear kernel 41 45 41
SVMC: polynomial kernel 39 37 27
SVMC: radial kernel 39 42 43
SVMC: sigmoid kernel 48 36 42
Decision trees 28 45 34
Random forest 44 43 32
SVMR:** linear kernel 50 37 37
SVMR: polynomial kernel 37 32 30
SVMR: radial kernel 47 36 26
SVMR: sigmoid kernel 40 30 27
Linear regression 46 38 35
Stepwise linear regression 38 35 33

* SVMC = Support vector machines classification
** SVMR = Support vector machines regression

7.4 Within-Project Evaluation

Table 6 illustrates the results from evaluating CUEZILLA on
ECLIPSE bug reports using SVM classification. The column
names in the table indicate the average rating of the bug smog <= 0.285235: BAD (30.0/11.0)
report by developers (Observed). The row names denote ngszegiﬁiiiemize - ranse

the quality as classified by CUEZILLA (Predicted). The

counts in the diagonal cells of the table indicate the number
of bug reports for which there was complete agreement
between CUEZILLA and developers. Forty-five of the
100 ECLIPSE bug reports were classified by CUEZILLA in
agreement with the developers, which gives us an accuracy
of 45 percent. (@)

Similarly, the prediction accuracy of other models was
computed likewise and the results are presented in Table 7. igxgiizjigii §=0%2§5: BAD(8:0)
The numbers in the columns represent the accuracy of each ! TtePiziizigejizg.zo?gng
model. The performance of each of the 12 models differs
between projects, with none emerging as a clear winner. In
the case of APACHE, SVM regression with a linear kernel
delivered the top results with 50 percent accuracy. For
MOZILLA, SVM classification with a radial kernel worked
best with 43 percent accuracy. For ECLIPSE, decision trees
classified 45 percent of bug reports correctly and tied with
SVM classification on a linear kernel.

On the whole, classification-based models performed
comparably well with regression-based models. These
results suggest that CUEZILLA can, to some extent, mimic
the reasoning of developers to rate the quality of bug
reports; however, we must further investigate means and steps_hasitemize = FALSE

. . coleman_liau <= 0.670051
methods to arrive at higher accuracy. To encourage further | keywords score <= 0.5: BAD (38.0/13.0)
research in this area, we make our data set and R scripts | keywords_score > 0.3
publicly available (see Appendix A).

kincaid <= 0.085161: NEUTRAL (5.0)
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steps_hasitemize = TRUE
7.5 Importance of Input Features [ Fleach < B 63757: BAD (B.0/%.0)

|

|

|

Next, we investigated which input features are most flesch > 0.637947
| smog <= 0.536585: GOOD (28.0/11.0)

important for each project. For this analysis, we computed | smog > 0.536585: NEUTRAL (6.0/2.0)
C4.5 decision trees with the Weka implementation J48 [64] (c)

on all bug reports of a project. Rather than for prediction,
we use the decision trees in this section to describe our data  Fig. 7. Decision trees from the projects. (a) Apache. (b) Eclipse.
and important input features. (c) Mozilla.
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TABLE 8
Percentage Accuracy of cueziLLA Using the Cross-Project Evaluation Setup

Cross-project: Testing on

Within-project

Training on  Model APACHE ECLIPSE MOZILLA (leave-one-out)
Linear regression 38 37 46
APACHE Random forest - 45 32 44
SVMC:* linear kernel 49 36 41
Linear regression 31 34 38
ECLIPSE Random forest 30 - 42 43
SVMC: linear kernel 33 42 45
Linear regression 33 34 35
MOZILLA Random forest 39 40 - 32
SVMC: linear kernel 35 34 41

* SVMC = Support vector machines classification

Fig. 7 shows the decision trees for each project; the most
important features are placed at the top levels. Decision
nodes are inner nodes in the tree and are aligned with
vertical lines; for example, in APACHE, the topmost decision
node splits the data into two separate paths based on
whether the (normalized) Smog score is greater than
0.285235. Leaf nodes mark the end of a path in the tree and
are classified into our quality levels, BAD, NEUTRAL, or
GOOD. Leaf nodes are followed by two numbers enclosed
in parentheses. The first is the total number of bug reports
summarized by this leaf (path), while the second is the
number of reports misclassified (omitted if zero).

In the case of APACHE, the most important variable is the
readability score Smog, followed by whether a bug report
has any itemizations, and the Kincaid score. The three most
important features in ECLIPSE are the measure of keyword
completeness, whether a bug report contains any itemization,
and the Kincaid score. Other readability scores such as Fog,
Coleman-Liau, and Lix also appear to play an important role
in the quality ratings of ECLIPSE bug reports. Last, in the
case of MOZILLA, the presence of itemizations and the
Coleman-Liau and Flesch scores are the most important
features.

It is noteworthy that in all projects, the top three
important features comprise at least one readability score.
Further itemizations also belonged to the top features in all
three projects; we suspect that they too contribute toward
good organization of information. These results further
emphasize the importance of well-written bug reports that
are easy to understand.

7.6 Cross-Project Evaluation

In Table 8, we present the prediction accuracies from the
cross-project evaluation setup. For the sake of brevity, we
only present the results from three models in the table:
linear regression, random forests, and SVM classification
(linear kernel). In the table, the training projects for the
models are presented as rows, while testing projects are
presented as columns. For easier comparison, we provide in
the last column the results from the within-project evalua-
tion, which was discussed earlier in this section.

Overall, the prediction performance from the cross-project
evaluation setup was lower than the within-project evalua-
tion setup. However, it is noteworthy that models trained on

data from APACHE are good at classifying ECLIPSE reports,
and ECLIPSE models can reasonably well classify MOZILLA
bug reports. One can infer from these results that CUEZILLA's
models are largely portable across projects to predict quality,
but they are best applied within projects.

7.7 Recommendations by CUEZILLA

The core motivation behind CUEZILLA is to help reporters
file better quality bug reports. For this, its ability to detect
the presence of information features can be exploited to tip
reporters obout what information to add. This can be
achieved simply by recommending additions from the set
of absent information, starting with the feature that
contributes to the quality further by the largest margin.
These recommendations are intended to serve as cues or
reminders to reporters of the possibility of adding certain
types of information likely to improve bug report quality.

Fig. 8a illustrates the concept. The text in the panel is
determined by investigating the current contents of the
report, and then determining that it would be best, for
instance, to add a code sample to the report. As and when
new information is added to the bug report, the quality
meter revises its score.

Our evaluation of CUEZILLA shows much potential for
incorporating such a tool in bug tracking systems. CUEZIL-
LA is able to measure quality of bug reports within
reasonable accuracy. However, the presented version of
CUEZILLA is an early prototype and we plan to further

Improve your Bug Report:

Enhance the quality of your bug
report by 20%, by adding a

stacktrace, a screenshot, or a
patch.

Bug reports that contain
stacktraces get fixed
sooner.

)Quality—Meterk

() (b)
Fig. 8. Mockup of CUEZILLA’s user interface. (a) It recommends
improvements to the report. (b) To encourage the user to follow the
advice, CUEZILLA provides facts that are mined from history.
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enhance the accuracy before we will conduct user studies to
show CUEZILLA’s usefulness. We briefly discuss our plans
in Section 11.

8 INCENTIVE FOR REPORTERS

If CUEZILLA tips reporters on how to enhance the quality of
their bug reports, one question comes to mind: “What are the
incentives for reporters to do so?” Of course, well-described
bug reports help in comprehending the problem better,
consequently increasing the likelihood of the bug getting
fixed. But to explicitly show evidence of the same to
reporters, CUEZILLA randomly presents relevant facts that
are statistically mined from bug databases. In this section,
we elaborate upon how this is executed, and close with
some facts found in the bug databases of the three projects.

To reduce the complexity of mining the several
thousand bug reports filed in bug databases, we sampled
50,000 bugs from each project. These bugs had various
resolutions, such as FIXED, DUPLICATE, MOVED, WONTEFIX,
and WORKSFORME. Then, we computed the scores for all
items listed in Section 7.1 for each of the 150,000 bugs. To
recall, the scores for some of the items are continuous
values, while others are binary.

8.1 Relation to Resolution of Bug Reports

A bug being fixed is a mark of success for both developers
and reporters. But what items in bug reports increase the
chances of the bug getting fixed? We investigate this on the
sample of bugs described above for each project.

First, we grouped bug reports by their resolutions as:
FIXED, DUPLICATE, and OTHERS. The FIXED resolution is
most desired and the OTHERS resolution—which includes
MOVED, WONTEFIX, and the likes—are largely undesired.
We chose to examine DUPLICATE as a separate group
because this may potentially reveal certain traits of such
bug reports. Additionally, as pointed out above, duplicates
may provide more information about the bug to developers.

For binary-valued features, we performed Chi-Square
tests [56] (p < 0.05) on the contingency tables of the three
resolution groups and the individual features for each
project separately. The tests’ results indicate whether the
presence of the features in bug reports significantly
determine the resolution category of the bug. For example,
the presence of stack traces significantly increases the
likelihood of a FIXED desirable resolution.

In the case of features with continuous-valued scores, we
performed a Kruskal-Wallis test [56] (p < 0.05) on the
distribution of scores across the three resolution groups to
check whether the distribution significantly differs from
one group to another. For example, bug reports with FIXED
resolutions have significantly lower SMOG-grades than
reports with OTHERS resolutions, indicating that reports are
best written using simple language constructs.

8.2 Relation to Lifetime of Bug Reports

Another motivation for reporters is to see what items in bug
reports help making the bugs’ lifetimes shorter. Such
motivations are likely to incline reporters to furnish more
helpful information. We mined for such patterns on a subset
of the above 150,000 bugs with resolution FIXED only.

For items with binary scores, we grouped bug reports by
their binary scores, for example, bugs containing stack
traces and bugs not containing stack traces. We compared
the distribution of the lifetimes of the bugs and, again,
performed a Kruskal-Wallis test [56] (p < 0.05) to check for
statistically significant differences in distributions. This
information would help encourage reporters to include
items that can reduce lifetimes of the bugs.

In the case of items with continuous-valued scores, we
first dichotomized the lifetime into two categories: bugs
resolved quickly versus bugs resolved slowly. We then
compared the distribution of the scores across the two
categories using the Kruskal-Wallis test [56] (p < 0.05) to
reveal statistically significant patterns. Differences in dis-
tributions could again be used to motivate users to aim at
achieving scores for their reports that are likely to have
lower lifetimes. In our experiments, we used one hour, one
day, and one week as boundaries for dichotomization.

8.3 Results

This section lists some of the key statistically significant
patterns found in the sample of 150,000 bug reports. These
findings can be presented in interfaces of bug tracking
systems (see Fig. 8b). A sample of our key findings is
listed below:

e Bug reports containing stack traces get fixed sooner.
(APACHE/ECLIPSE/MOZILLA)

e Bug reports that are easier to read have lower
lifetimes. (APACHE/ECLIPSE/MOZILLA)

e Including code samples in your bug report increases
the chances of it getting fixed. (MOZILLA)

We are not the first to find factors that influence the lifetime
of bug reports. Independently from us, Hooimeijer and
Weimer [30] observed for FIREFOX that bug reports with
attachments get fixed later, while bug reports with many
comments get fixed sooner. They also confirmed our results
that easy-to-read reports are fixed faster. Panjer observed
for ECLIPSE that comment count and activity, as well as
severity, affect the lifetime the most [50].

In contrast, our findings are for factors that can be
determined while a user is reporting a bug. Each finding
suggests a way to increase the likelihood of their bugs either
getting fixed at all or getting fixed faster. Keen users are
likely to pick up on such cues since this can lessen the
amount of time they have to deal with the bug.

9 THREATS TO VALIDITY

For our survey, we identified the following threats to validity.

Our selection of developers was constrained to only
experienced developers; in our context, developers who
had at least 50 bugs assigned to them. While this skews our
results toward developers who frequently fix bugs, they are
also the ones who will benefit most by an improved quality
of bug reports. The same discussion applies to the selection
of reporters.

A related threat is that to some extent, our survey
operated on a self-selection principle: Participation in the
survey was voluntary. As a consequence, results might be
skewed toward people who are likely to answer the survey,
such as developers and users with extra spare time—or who
care about the quality of bug reports.
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Avoiding the self-selection principle is almost impossible
in an open-source context. While a sponsorship from the
Foundations of APACHE, ECLIPSE, and MOZILLA might
have reduced the amount of self-selection, it would not
have eliminated skew. As pointed out by Singer and
Vinson, the decision of responders to participate “could
be unduly influenced by the perception of possible benefits
or reprisals ensuing from the decision” [57].

In order to take as little of the participants’ time as
possible, we constrained the selection of items in our survey.
While we tried to achieve completeness, we were aware that
our selection was not exhaustive of all information used and
problems faced by developers. Therefore, we encouraged
participants to provide us with additional comments, to
which we received 175 responses. We could not include the
comments into the statistical analysis; however, we studied
and discussed the comments by developers in Section 3.

As with any empirical study, it is difficult to draw
general conclusions because any process depends on a large
number of context variables [10]. In our case, we contacted
developers and users of three large open-source initiatives,
namely, APACHE, ECLIPSE, and MOZILLA. We are con-
fident that our findings also apply to smaller open-source
projects. However, we do not contend that they are
transferable to closed-software projects (which have no
patches and rarely stack traces). In future work, we will
search for evidence for this hypothesis and point out the
differences in the quality of bug reports between open-
source and closed-source development.

A common misinterpretation of empirical studies is that
nothing new is learned (“I already knew this result”).
Unfortunately, some readers miss the fact that this wisdom
has rarely been shown to be true and is often quoted
without scientific evidence. This paper provides such
evidence: Most common wisdom is confirmed (e.g., “steps
to reproduce are important”), while other is challenged
(“bug duplicates considered harmful”).

10 RELATED WORK

So far, mostly anecdotal evidence has been reported on what
makes a good bug report. For instance, Spolsky described
how to achieve painless bug tracking [58] and numerous
articles and guidelines on effective bug reporting float
around the Internet (e.g., [27]). Still, the results from our
survey suggest that bug reporting is far from being painless.

The work closest to ours is by Hooimeijer and Weimer
who built a descriptive model for the lifetime of a bug
report [30]. They assumed that the “time until resolved” is a
good indicator for the quality of a bug report. In contrast,
our notion of quality is based on feedback from developers
(1,244 votes). When we compared the ratings of the bug
reports with lifetime, the Spearman correlation values were
between 0.002 and 0.068, indicating that lifetime as
measured by Hooimeijer and Weimer [30] and quality are
independent measures. Often a bug report that gets
addressed quicker can be of poor quality, but describes an
urgent problem. Also, a well-written bug report can be
complicated to deal with and take more time to resolve.
Still, knowing what contributes to the lifetime of bug
reports [1], [30], [50] can encourage users to submit better
reports, as discussed in Section 8.
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Bird et al. investigated the effects of bias in bug data sets
for open-source projects [17]. Their work focuses on the
quality of an entire data set for defect prediction. In
contrast, our work concentrates on the quality of individual
bug reports, mostly to support developers in fixing bugs
and not to develop prediction techniques.

More recently, Aranda and Venolia examined the
communication between developers about bug reports at
Microsoft [6]. They observed that many bugs are discussed
even before a bug report is created and that not all
information is recorded in bug tracking systems. We
believe that this observation is specific to Microsoft or
industry in general (where developers share a common
office). In open-source software, most bugs are discussed in
bug tracking systems (or special mailing lists) to ensure
transparency and accommodate developers who are geo-
graphically distributed.

In a workshop paper, we presented preliminary results
from the developer survey on the ECLIPSE project using a
handcrafted prediction model [12]. In other work, we
quantified the amount of additional information in bug
duplicates [14] and gave recommendations on how to
improve existing bug tracking systems [35], [66]. This paper
is an extended version of this previous work [13].

Several studies used bug reports to automatically assign
developers to bug reports [4], [5], [20], assign locations to
bug reports [19], track features over time [26], recognize bug
duplicates [22], [29], [32], [54], [60], assess the severity [44],
predict effort for bug reports [63], identify bug tossing [33],
and characterize fixed bug reports [28]. All of these
approaches should benefit from our quality measure for
bug reports since training only with high-quality bug
reports will likely improve their predictions.

In a separate study, Schroter et al. [55] showed the value
of stack traces for developers when fixing bugs. Breu et al.
[18] identified information needs in bug reports. Several
researchers studied the social and collaborative aspects of
bug tracking systems: Bertram et al. [11] studied small,
collocated teams, van Liere [59] analyzed how information
provided by open-source community members influences
the repair time of software defects, and Ko and Chilana [39]
studied how power users help and hinder bug reporting in
the Mozilla project.

In 2004, Antoniol et al. [3] pointed out the lack of
integration between version archives and bug databases,
which make it hard to locate the most faulty methods in a
system. In the meantime, things have changed: The Mylyn
tool by Kersten and Murphy [36] allows attaching a task
context to bug reports so that changes can be tracked on a
very fine-grained level. Antoniol et al. [2] also pointed out
that not all bug reports are related to software problems; in
some cases, bug reports correspond to feature requests
(which is indicated by a special property).

In order to inform the design of new bug reporting tools,
Ko et al. [40] conducted a linguistic analysis of the titles of
bug reports. They observed a large degree of regularity and
a substantial number of references to visible software
entities, physical devices, or user actions. Their results
suggest that future bug tracking systems should collect data
in a more structured way.

According to the results of our survey, errors in steps to
reproduce are one of the biggest problems faced by
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developers. This demonstrates the need for tools that can
capture the execution of a program on the user side and
replay it on the developer side. While there exist several
capture/replay techniques (such as [34], [47], [65]), their
user orientation and scalability can still be improved. Dit
and Marcus suggested an approach to improve the read-
ability of discussions in bug reports which is based on
making connections between comments explicit [24].

Not all bug reports are generated by humans. Some bug-
finding tools can report violations of safety policies and
annotate them with backtraces or counterexamples. Weimer
presented an algorithm to construct such patches auto-
matically. He also found that automatically generated
“reports also accompanied by patches were three times as
likely to be addressed as standard bug reports” [62].

Furthermore, users can help developers to fix bugs
without filing bug reports. For example, many products
ship with automated crash reporting tools that collect and
send back crash information, e.g., Apple CrashReporter,
Windows Error Reporting, Gnome BugBuddy, and Mozilla
Talkback. Liblit et al. introduced statistical debugging [41].
They distribute specially modified versions of software
which monitor their own behavior while they run and
report back how they work. This information is then used to
isolate bugs using statistical techniques. Still, since it is
unclear how to extract sufficient information for rarely
occurring and noncrashing bugs, there will always be the
need for manual bug reporting.

11 CONCLUSION AND CONSEQUENCES

Well-written bug reports are likely to get more attention
among developers than poorly written ones. We conducted
a survey among developers and users of APACHE, ECLIPSE,
and MOZILLA to find out what makes a good bug report.
The results suggest that across all three projects, steps to
reproduce and stack traces are most useful in bug reports.
The most severe problems encountered by developers are
errors in steps to reproduce, incomplete information, and
wrong observed behavior. Surprisingly, bug duplicates are
encountered often but not considered as harmful by
developers. In addition, we found evidence for a mismatch
between what information developers consider as impor-
tant and what users provide. To a large extent, lacking tool
support causes this mismatch.

We also asked developers to rate the quality of bug reports
on a scale from one (poor quality) to five (excellent quality).
Based on these ratings, we developed a prototype called
CUEZILLA that measures the quality of bug reports. Addi-
tionally, it recommends what additions can be made to bug
reports to make their quality better. To provide incentive for
doing so, CUEZILLA automatically mines patterns that are
relevant to fixing bugs and presents them to users. In the long
term, an automatic measure of bug report quality in bug
tracking systems can ensure that new bug reports meet a
certain quality level. Our future work is as follows.

Problematic contents in reports. Currently, we award
scores for the presence of desired contents, such as
itemizations and stack traces. We plan to extend CUEZILLA
to identify problematic contents such as errors in steps to
reproduce and code samples in order to warn the reporter
in these situations.

Impact on other research. In Section 10, we discussed
several approaches that rely on bug reports as input to
support developers in various tasks such as bug triaging,
bug localization, and effort estimation. Do these approaches
improve when trained only with high-quality bug reports?
To facilitate further research in this area, we made our data
and scripts publicly available (see Appendix A).

Usability studies for new bug reporting tools. We listed
several comments by developers about problems with
existing bug reporting tools in Section 3. To address these
problems, we plan to develop prototypes for new, improved
reporting tools which we will test with usability studies.

Additionally, aiding reporters in providing better bug
reports can go a long way in structuring bug reports. Such
structured text may also be beneficial to researchers who
use them for experiments. In effect, in the short to medium
term, data quality in bug databases would generally
increase, in turn providing more reliable and consistent
data to work with and feedback to practitioners. We
encourage readers to replicate and extend our research;
our data set and R scripts accompany this paper and are
explained in Appendix A.

To learn more about our work in mining software
archives, visit http:/ /www.softevo.org/.

APPENDIX A
How 1O EXTEND THIS STUDY

To encourage readers to replicate and extend our study, we
share our data set and R scripts. In this section, we present
two small case studies to demonstrate potential extensions
of our work.

e  How does the length of a bug report (in characters) affect
its quality? Longer bug reports will likely contain
more information, and thus be perceived as better by
developers; however, some bug reports could be too
long and contain excessive details.

e Do reporters with more experience and higher reputation
submit better bug reports? Reporters who submitted
many bugs will likely know how to write good
reports. Hooimeijer and Weimer [30] observed that
bugs submitted by reporters with high reputation are
fixed sooner; do they also write better bug reports?

A.1 The Data Set

The data set and R scripts that we used for this paper are
attached as Supplemental Material, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TSE.2010.63.

We provide two files: bugreports.zip contains the raw bug
reports (with attachments) which were rated by developers
and reporters as part of our survey (Section 6). From these
reports, we built the data that we used in our experiments
(Section 7). This data and the corresponding R scripts are
contained in experiments.zip. In most cases, for example, to
replicate the experiments in this paper and section, you will
simply need experiments.zip.

To save typing the R commands in this section, load file
appendix.R. The file contains the commands for APACHE,
ECLIPSE, and MOZILLA; however, for brevity, we discuss
only ECLIPSE in this section.
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Fig. 9. The influence of various factors on bug report quality. (a) Length of bug report. (b) Experience of bug reporter. (c) Reputation of bug reporter.

A.2 Initialize the Workspace

First, we need to prepare the workspace for the experiments.
Load the original data set (dataset.eclipse.csv) and the new
data, in our case, the length of bug reports (length.eclipse.csv)
and the experience and reputation of bug submitters
(reputation.eclipse.csv). Finally, combine the data sets with
the merge() function (similar to a SQL join) and check that the
data loaded properly with the summary() function.

data.eclipse <- read.csv
("dataset.eclipse.csv”)

bug.length.eclipse <- read.csv
("length.eclipse.csv”)

reputation.eclipse <- read.csv
("reputation.eclipse.csv”)

data.eclipse <- merge(data.eclipse,
bug.length.eclipse, all.x=T, by.x = “bug_id”,
by.y = “bug_id”")

data.eclipse <- merge (data.eclipse,
reputation.eclipse, all.x=T, by.x = “bug_id”",
by.y = “bug_id”)

summary (data.eclipse)

A.3 Check Hypothesis: Length of a Bug Report

We first check whether the length of a bug report (in
characters) affects its quality. We create a scatter plot
between the length and average rating of bug reports with
the plot() function. In addition, we compute the Spearman
correlation with the function cor() and add it as a subtitle to
the plot with the function title().

plot (log(data.eclipseS$Slength),
data.eclipseSvotes_mean,
xlab="Length of bug report (log)”,
ylab=*Average rating”)

title(main=“Eclipse”)

cor.value <- cor (data.eclipseSlength,
data.eclipseSvotes_mean,

method=“spearman”)
title (sub=paste(“correlation”, cor.value))

Fig. 9a shows the results of the above R commands. In
the plot, we observe that the quality of bug reports seems to
be increasing with their length. This observation is
supported by the positive and moderate Spearman correla-
tion of 0.371. This finding is no surprise because longer bug
reports are more likely to have more information, such as
stack traces and patches, and thus are perceived to be of
higher quality by developers.

A.4 Check Hypothesis: Experience and Reputation

Next, we check the influence of experience and reputation
of the reporter on bug reports. We define them as follows:

1. Experience is the number of bug reports that a
reporter opened before the current bug report.

2. Reputation is based on Hooimeijer and Weimer [30]
and corresponds roughly to the percentage of
successfully fixed bug reports opened by the
reporter before the current bug report; in addition,
it includes a correction factor of +1 to prevent
division by zero and increase the reputation of
frequent bug reporters:

|SN R
S| +1°

Reputation =

In the equation, S is the set of all reports opened
by the reporter before the current bug report and R
is the set of all bug reports that were marked as
FIXED in the bug database.

The R commands for this experiment are similar to ones
in the previous section. Again, we use the functions plot()
and cor() to produce a scatter plot and compute the
Spearman correlation. Instead of the length of bug reports,
we now analyze the variables opened and reputation.

plot (data.eclipse$ opened,
data.eclipse$Svotes_mean,
xlab="Experience of bug reporter”,
ylab=“Average rating”)

title (main="Eclipse”)
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cor.value <- cor (data.eclipse$opened,
data.eclipseSvotes_mean,
method=“spearman”)

title(sub=paste(“correlation”, cor.value))

plot (data.eclipse$ reputation,
data.eclipse$Svotes_mean,
xlab=“Reputation of bug reporter”,
ylab="Average rating”)

title(main=“Eclipse”)

cor.value <- cor (data.eclipseSreputation,
data.eclipseSvotes_mean,
method=“spearman”)

title(sub=paste(“correlation”, cor.value))

Fig. 9b shows the results for the experience of bug
reporters. In general, reporters who opened many bugs in
the past are more likely to submit better bug reports, which
suggests the presence of a learning effect. This observation
is supported by the Spearman correlation of 0.204, which is
weak but positive. Reporters with no past experience
(opened = 0) submit very poor but also very good bug
reports, which means that newcomers to bug tracking start
at different levels.

Fig. 9c shows the results for the reputation of bug reporters.
Here, itis impossible to identify a trend: The range of average
ratings for bug reports is about the same for reporters with
low reputation and reporters with high reputation; in
addition, the Spearman correlation of 0.132 is very low. This
suggests that the reputation of a reporter, i.e., the success rate
of getting bugs fixed in the past, has little impact on
the quality of newly submitted bug reports. Instead, the
experience of the reporter, as measured by the number of bug
reports opened in the past, seems to be a better indicator.
(Note that these findings only hold for ECLIPSE.)

A.5 Run the Prediction Experiments

Finally, we check whether the length of bug reports and the
experience and reputation of reporters can improve the
modeling of bug report quality. We define a function
evaluate.rpart(), which takes a formula and a data set as
inputs and runs leave-one-out validation for a decision tree
model. For each bug report i in thedata, the function builds a
model using the function rpart(), which takes all bug reports
except i as training set, i.e., thedata[-i,]. The model is then used
to rate the bug report i, i.e., thedata[i,]. Finally, a classification
table is assembled with function table() and returned.

library (rpart)

evaluate.rpart <- function(formula, thedata) {
vhat <- rep(factor (levels=1levels
(thedataSvotes_mean_classes)),
nrow (thedata))

for (i in 1l:nrow(thedata)) {
model <- rpart (as.formula(formula),
data=thedatal-i,1)
vhat [1] <- predict (model,
newdata=thedata[i, ], type="class”)
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t <- table(yhat,
thedata$votes_mean_classes)
return(t)

Formulas in R are written in the format lhs~rhs, where [hs
is the output variable, in our case, votes_mean_classes, and
rhs a list of input features, typically separated by plus signs.
We call function evaluate.rpart() with two formulas: for-
mula.old is the one that was used in this paper to rate bug
reports and takes the features defined in Section 7.1 as
input, formula.new adds the variables length, opened, and
reputation as additional input features (the paste() function is
string concatenation).

formula.old <- “votes_mean_classes ~ code
+ stacktrace + att_other + att_screenshot
+ kincaid + ari + coleman_liau + fog + smog
+ flesch + 1ix + keywords_score
+ steps_hasitemize”

formula.new <- paste(formula.old,
“+ length + opened + reputation”)

evaluate.rpart (formula.old, data.eclipse)
evaluate.rpart (formula.new, data.eclipse)

The output of the evaluation is below. For decision trees
and formula.old, 45 bug reports were classified correctly as
indicated by the sum of the downward sloping diagonal; for
formula.new, this number improves to 49.

> evaluate.rpart (formula.old , data.eclipse)

vhat BAD GOOD NEUTRAL
BAD 17 8 8
GOOD 9 18 15
NEUTRAL 7 8 10
> evaluate.rpart (formula.new , data.eclipse)
vhat BAD GOOD NEUTRAL
BAD 16 2 9
GOOD 4 19 10
NEUTRAL 13 13 14

However, the number of correctly classified bug reports
does not increase across all models when adding length,
opened, and reputation, as the following example for support
vector machines shows. Here, the number of correctly
classified bug reports decreases from 42 to 35.

> evaluate.svm (formula.old , data.eclipse)

vhat BAD GOOD NEUTRAL
BAD 14 5 12
GOOD 6 18 11
NEUTRAL 13 11 10
> evaluate.svm (formula.new , data.eclipse)
vhat BAD GOOD NEUTRAL
BAD 16 8 16
GOOD 7 15 13
NEUTRAL 10 11 4

To run the experiments in this paper, we used slightly
more complex evaluation functions because we had to test
many models and data sets in different settings (within
project, across project). Our functions are in file experiments.R
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Contents of bug reports (D1/D2).
E product
( 5%, 0%, 7% )
component

( 6%, 0%, 5%)

version
(30%, 3%, 10% )

severity
( 0%, 0%, 0% )

hardware

( 0%, 0%, 0% )
operating system

( 0%, 0%, 7%)

summary
( 5%, 6%, 21% )

build information
( 0%, 7%, 11%)

observed behavior
(29%, 25%, 41% )

expected behavior
(29%, 5%, 29% )
steps to reproduce
(56%, 90%, 90% )

stack traces
(59%, 80%, 37% )

In parentheses: importance of item.

screenshots

(17%, 42%, 16% )
code examples
(23%, 19%, 3% )

eITOr Ieports
( 6%, 14%, 14% )

test cases
(67%, 30%, 57% )

Problems with bug reports (D3/D4).

You were given wrong:

product name
( 0%, 0%, 11% )

component name
( 0%, 12%, 20% )

version number
(23%, 38%, 8% )

hardware

There were errors in:

code examples
(33%, 11%, 0% )

steps to reproduce
(69%, 83%, 81% )

test cases
(22%, 36%, 44% )

stack traces

The reporter used:

bad grammar
(20%, 20%, 11% )

unstructured text
(45%, 25%, 34% )

prose text
( 0%, 10%, 26% )

too long text

In parentheses: severeness of problem.
Others:

duplicates

( 7%, 8%, 12% )
spam

( 0%, 0%, 0% )

incomplete information
(76%, 85%, 65% )

viruses/worms

(100%, 0%, 0% )
operating system
(50%, 25%, 13% )
observed behavior
(40%, 57%, 46% )
expected behavior
(40%, 22%, 23% )

(50%, 0%, 20% )

nmmmnm

(11%, 25%, 31% )

non-technical language
(17%, 17%, 21% )

no spell check
( 0%, 0%, 0% )

( 0%, 0%, 0% )

The topmost bar refers to the 28 responses by APACHE developers, the middle bar to the 41 responses by ECLIPSE developers, and the lowest bar to

the 61 responses by MOZILLA developers.

and we encourage you to extend our code and try your own
experiments. Good luck.

APPENDIX B

SURVEY RESULTS BY PROJECT

B.1 Comparison of Responses by Developers Across
Projects

In Table 9, we compare the responses to the survey from
developers grouping them by their respective projects. The
format of the table is similar to that of Table 2. To recap, the
colored part (mm+==) denotes the count of responses for an
item in question D1 and the black part (wm) of the bar
denotes the count of responses for the item in both question
D1 and D2. The larger the black bar is in proportion to the
gray bar, the higher is the corresponding item’s importance
in the developers’ perspective. The importance of every
item is listed in parentheses. The topmost bar refers to the
28 responses by APACHE developers, the middle bar to the
41 responses by ECLIPSE developers, and the lowest bar to
the 61 responses by MOZILLA developers.

Overall, the responses between the ECLIPSE and MOZILLA
project appear to be more similar to each other in
comparison to APACHE. Nearly all participants from the
former two projects have previously used steps to reproduce
and observed behavior to resolve bugs, while relatively fewer
developers from APACHE have used the same. In contrast,
many APACHE developers have used test cases, which is not
ranked very high for the other projects. Another marked

dissimilarity is the usage of screenshots. They have been
used by many ECLIPSE and MOZILLA developers, but only
by a few from the APACHE project. Another example is the
use of code examples, which is very low in MOZILLA.

There also seem to be some notable differences in the
most desirable information between developers across
the projects. Steps to reproduce are high on the list of ECLIPSE
and MOZILLA developers, but few developers from
APACHE consider it important. Both APACHE and MOZILLA
developers favor test cases more than ECLIPSE developers.
On the contrary, a greater number of ECLIPSE developers
prefer screenshots, while this is true for only a few APACHE
and MOZILLA developers. Other items with marked
dissimilarities include code examples (very low in MOZILLA),
version (high in APACHE), summary (preferred in MOZILLA),
and expected behavior (low in ECLIPSE).

These comparisons reflect that there are a few differences
in the preferences of developers for information that helps
them resolve bugs. However, there is also consensus on many
types of information that developers prefer across all projects.

In the case of problems experienced in bug reports, the
experiences of developers across the three projects are more
comparable except for a few differences. Similar percen-
tages of developers from the projects have experienced
errors in observed and expected behavior, steps to reproduce,
incomplete information, and issues with language in the
descriptions. Of these, errors in steps to reproduce and
incomplete information are considered to be the most serious
of all problems.
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TABLE 10
Results from the Survey among Reporters

Contents of bug reports (R1/R2).

In parentheses: difficulty of item.

product hardware observed behavior screenshots

( 0%, 0%, 0% ) E ( 0%, 0%, 1%) E ( 0%, 3%, 3%) ( 0%, 16%, 7% )

component E operating system E expected behavior code examples

( 4%, 30%, 23% ) ( 0%, 0%, 1% ) ( 4%, 6%, 3%) (52%, 37%, 41% )

version summary steps to reproduce error reports

( 0%, 3%, 1%) g ( 4%, 0%, 4% ) E (35%, 57%, 52% ) ( 0%, 0%, 2%)

severity build information stack traces test cases

(10%, 0%, 6% ) E (23%, 0%, 1%) E ( 9%, 10%, 35% ) (64%, 33%, 82% )
Contents considered to be relevant for developers (R3). In parentheses: frequency of item in R3.

product hardware g observed behavior screenshots

( 0%, 14%, 7% ) ( 0%, 0%, 0% ) (22%, 34%, 35% ) ( 0%, 11%, 4%)

component operating system E expected behavior code examples

( 7%, 3%, 4%) ( 7%, 0%, 5% ) (22%, 31%, 20% ) (19%, 9%, 8% )

version summary E steps to reproduce error reports

(11%, 14%, 11% ) ( 4%, 0%, 7% ) (59%, 91%, 78% ) ( 0%, 3%, 12%)

severity build information stack traces test cases

( 4%, 0%, 2%) ( 7%, 6%, 8% ) E (33%, 46%, 30% ) (56%, 14%, 48% )

The topmost bar refers to the 27 responses by APACHE reporters, the middle bar to the 35 responses by ECLIPSE reporters, and the lowest bar to the

153 responses by MOZILLA reporters.

Developers Reporters Developers

stack traces (96%) steps to reproduce (96%) test cases (67%)

test cases (96%) summary (93%) stack traces (59%)

Reporters Developers Reporters

steps to reproduce (96%) test cases (67%) steps to reproduce (59%)

summary (93%) stack traces (59%) test cases (56%)

steps to reproduce (89%)

observed behavior (86%)

component (89%)

steps to reproduce (56%) component (89%)

expected behavior (89%)

steps to reproduce (56%)

—

stack traces (33%)

version (30%) expected behavior (89%)

version (30%)

expected behavior (22%)

version (82%) observed behavior (85%) observed behavior (29%)

code examples (79%) stack traces (85%) expected behavior (29%)

expected behavior (75%) product (81%) code examples (23%)

summary (75%) test cases (81%) screenshots (17%)

product (71%) code examples (78%) component (6%)

component (64%) operating system (78%) error reports (6%)

error reports (64%) severity (74%) product (5%)

severity (57%) version (70%) summary (5%)

build information (43%) error reports (63%) build information (0%)

screenshots (43%) build information (48%) hardware (0%)

operating system (39%) screenshots (41%) operating system (0%)

hardware (25%) hardware (37%) severity (0%)

(@)

(b)

observed behavior (85%) observed behavior (29%) observed behavior (22%)

stack traces (85%) expected behavior (29%) code examples (19%)

product (81%) code examples (23%) version (11%)

test cases (81%) screenshots (17%) build information (7%)

code examples (78%) (6%) (7%)

operating system (78%) error reports (6%) operating system (7%)

severity (74%) product (5%) severity (4%)

version (70%) summary (5%) summary (4%)

error reports (63%) build information (0%) error reports (0%)

build information (48%) hardware (0%) hardware (0%)

screenshots (41%) operating system (0%) product (0%)

screenshots (0%)

hardware (37%) severity (0%)
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Fig. 10. Mismatch between APACHE developers and reporters. (a) Information used by developers versus provided by reporters. (b) Most helpful for
developers versus provided by reporters. (c) Most helpful for developers versus reporters expected to be helpful.

B.2 Comparison of Responses by Reporters across
Projects

We now compare the responses by reporters across the
different projects in Table 10. The reporters’ responses are
relatively more uniform across the board as compared to
developers. Nearly all reporters have previously submitted
information such as steps to reproduce, observed and expected
behavior, product, and operating system. But a higher proportion
of reporters from the APACHE project submitted stack traces,
code examples, and test cases. A higher proportion of APACHE
reporters considered submitting the same information as
difficult to provide. Marked differences are observed for
version, which is submitted by a lower fraction of APACHE
reporters as compared to the other projects, although version
is one of the most desirable information by APACHE
developers (Table 9). Most noteworthy is that a fraction of

reporters from each project have never submitted a summary
in a bug report.

Next, we compare the ranks of information items
considered most helpful by reporters for the purpose of
resolving bugs. Reporters across all three projects consider
steps to reproduce to be most helpful. There also appears to be
agreement on the importance of other items such as stack
traces, observed, and expected behavior. Test cases are rated high
by both APACHE and MOZILLA developers, but not many
ECLIPSE reporters rate it as important. But ECLIPSE reporters
stand out by placing product relatively high on the list; the
same is true for error reports in the case of MOZILLA reporters.

In general, similarly to the developers, there is a general
consensus between reporters on which items are most
important to fix. Unfortunately, as shown earlier in our
paper, although there is an overall agreement between
developers and reporters on which information is important,
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Reporters

Developers

steps to

(100%)

observed behavior (98%)

stack traces (98%)

expected behavior (90%)

screenshots (88%)

test cases (80%)

code examples (78%)

version (78%)

summary (76%)

build information (73%)

steps to reproduce (100%)

steps to reproduce (90%)

Reporters

Developers

version (97%)

stack traces (80%)

steps to reproduce (100%)

Reporters

steps to (90%)

expected behavior (91%)

screenshots (42%)

version (97%

stack traces (80%)

steps to reproduce (91%)

observed behavior (91%)

test cases (30%)

screenshots (42%)

product (89%)

observed behavior (25%)

)
expected behavior (91%)
(

observed behavior (91%)

test cases (30%)

component (86%)

code examples (19%)
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Fig. 11. Mismatch between ECLIPSE developers and reporters. (a) Information used by developers versus provided by reporters. (b) Most helpful for
developers versus provided by reporters. (c) Most helpful for developers versus reporters expected to be helpful.

Fig. 12. Mismatch between MOZILLA developers and reporters. (a) Information used by developers versus provided by reporters. (b) Most helpful for
developers versus provided by reporters. (c) Most helpful for developers versus reporters expected to be helpful.

reporters do not provide the information as often. Thus, it is
important to address this gap by aiding reporters in
providing information that may help in the quick resolution
of bugs.

B.3 Mismatch between Developers and Reporters by
Project

Previously, in Section 3.3, we showed that reporters have
the knowledge of which information is most useful to
developers, but they still do not provide this information in
the bug reports. These findings were arrived at by
combining the data across all three projects.

We now present results by performing the same
comparison on project-specific data. The results from the
APACHE, ECLIPSE, and MOZILLA projects are presented in
Figs. 10, 11, and 12, respectively. These plots are in the same
format as Fig. 2.

The mismatch in the project-specific responses appears
to be very similar to the mismatch observed earlier for all
projects combined in Fig. 2. In each case, we observe that
reporters have some knowledge about which information
developers most desire. In fact, in the case of MOZILLA,

reporters have very good knowledge about which informa-
tion is most helpful to the developer. However, for all three
projects, we observe marked differences between what
information is most commonly considered important and
what information is most commonly reported.
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