
The Landscape of Concurrent Development

Thomas Zimmermann
tz@acm.org

Department of Computer Science, Saarland University, Saarbrücken, Germany

Abstract

The version control archiveCVS records not only all
changes in a project but also activity data such as when de-
velopers create or update their workspaces. Furthermore,
CVS records when it has to integrate changes because of
parallel development. In this paper, we analyze theCVSac-
tivity data of for large open-source projectsGCC, JBOSS,
JEDIT, and PYTHON to investigate parallel development:
How frequently do developers update their workspaces?
What is the degree of parallel development? How many
workspaces do developers have? How frequently do con-
flicts occur during updates and how are they resolved? How
do we identify changes that contain integrations?

1. Introduction

The version control systemCVS allows concurrent devel-
opment and is widely adopted in the open-source commu-
nity, especially for large projects likeECLIPSE, GCC, or
MOZILLA . Therefore, recent research usedCVS to inves-
tigatechange data, that is, who changed what, why, when,
and how. Such data points out software evolution, guides
developers, and identifies instabilities in source code.

Beside change data,CVS also recordsactivity datathat
contains additional events: When did developers update
their workspaces and did this update happen smoothly with-
out any incidents? In particular, has another developer
meanwhile changed the same file? And if so, couldCVS
integrate1 the changes automatically or did the developer
have to resolve the conflicts manually?

Such events are interesting as they point out parallel
development: How frequently do developers update their
workspaces? What is the degree of parallel development?
How many workspaces do developers have? How fre-
quently do conflicts occur during updates and how are they
resolved? How do we identify changes that contain integra-
tions?

1We prefer the termintegrate over theCVS terminology merge to
avoid confusion with the merge of branches.

We introduce in Section 2 theCVS historycommand on
which we base our case studies of four large open-source
projects: the Compiler CollectionGCC, the application
serverJBOSS, the editorJEDIT, and thePYTHON interpreter.
In Sections 3, 4, and 4 we address the above questions. Sec-
tion 6 visualizes the relationships that are created by parallel
development between developers. In Section 7 we discuss
the limitations of activity data; Section 8 presents related
work and Section 9 concludes the paper with future work.

2. CVS History in a Nutshell

In addition to change data,CVS recordsactivity datathat
is when did developers use which commands with what pa-
rameters. Currently,CVS tracks the activities of the follow-
ing commands in a special file, called thehistoryfile:

• The checkoutcommand (O)2 creates a workspace in
which developers can make their changes to a module.

• The releasecommand (F) removes a workspace and
issues a warning in case a change is not yet committed.
Note that it is possible to remove workspaces without
CVS interaction.

• The updatecommand synchronizes a workspace. It
retrieves all changes since the last checkout or update
and creates new files (U), replaces outdated files (both
U and P)3, and removes files that have been deleted in
the repository (W). If a file has been changed in both
the workspace and the repository,CVS tries to integrate
the changes automatically (G for smooth integration, C
for integration with conflicts).

• Thecommitcommand submits changes made by a de-
veloper to the repository. Changes can modify (M),
add (A), or remove (R) files.

2The history ofCVSdistinguishes the commands with a single capital
letter. For convenience we will reuse them throughout the paper.

3The U update transfers the complete new revision; in contrast, the P
update only transfers the differences to the new revision, i.e., apatchthat
is applied to the revision in the workspace.CVS chooses automatically
between U and P updates based on the size of files and differences.

1

• Thertag command (T) assigns symbolic names, called
tags, to revisions in the repository. Thetag command
that works on the revisions in the workspace rather
than on the repository, isnot tracked in the history.

• The export command (E) creates a copy of a
workspace without the administrativeCVS files. This
is useful for preparing releases.

While the first four commands are used by all developers,
the last two commands,rtag andexport, are used mainly by
developers to prepare releases.

We access the history file with theCVS history com-
mand. Figure 1 shows a sample output. For each record
CVS returns a line that tells us that thedevelopercalled at
timestampthe command that is indicated by the single capi-
tal lettertype. Additionally, we get the location of the devel-
oper’sworkspaceand the affectedmodule, file, andrepos-
itory. The specific syntax depends on the commands and
further information may be included:

For rtag. A tagcan be added (A), deleted (D), or modified
(then the previous tag is given asmodifiedtag).
type date user module|file [tag:A|D|modifiedtag]
workspace?

For checkout, release, and export.
A developer optionally can provide atagor adate.
type date user ([tag|date])? repository? =module=
workspace

For update and commit.
type date user revision? file repository =module=
workspace

In Figure 1, the history snippet tells us that Mary first cre-
ated a workspace (O), then synchronizedBar.java two times
(U and P), and finally submitted changes onBar.java to
the repository (M). Meanwhile, Kate and John also have
changedBar.java; thus, during their next updateCVS inte-
grated their changes with the changes of Mary. For Kate’s
changes, the automatic integration worked fine (G), but the
changes of John interfered with the changes of Mary and
resulted in conflicts (C).

In the following we will investigate the records forcom-
mit andupdateto measure the degree of concurrency.

3. A First Investigation of Concurrency

We investigated theCVShistories for four large open source
projects:GCC, JBOSS, JEDIT, andPYTHON. Unfortunately,
the implementation ofCVS did not record updates correctly
until version 1.11.7 which has been released on September

Project Recorded since Investigated Period

GCC 2004-09-16 2004-09-16 to 2005-02-02
JEDIT 2000-01-13 2004-01-12 to 2005-02-03
JBOSS 1999-10-13 2004-01-12 to 2005-02-09
PYTHON 2000-05-12 2004-01-12 to 2005-02-05

Table 1. Investigated Projects

29, 2003.4 For this reason, we started our investigation for
a project with the first recorded update (see Table 1).

3.1. Distribution of Commands

Table 2 shows the frequency ofCVS commands. For all
investigated projects theupdatecommand is the most fre-
quent, followed by thecommitcommand. ForJBOSSthe
high number ofcheckoutrecords sticks out becauseJBOSS
is distributed across many modules in theCVS repository;
for each module one checkout operation is performed. We
also observe that thereleasecommand is rarely used. This
suggests that most developers remove workspaces without
the help ofCVS. The low frequency ofexportandrtag is no
surprise since these two commands are related to product
releases.

3.2. Degree of Parallel Development

Table 2 also contains a breakdown of thecommitandup-
datecommands. We use the latter to measure the parallel
development within files:

Integration Rate=
G + C

W + U + P + G + C
(1)

Conflict Rate=
C

G + C
(2)

The integration ratemeasures the percentage of updates
which were integrated with local user changes. It is very
low for all projects (between 0.15% and 0.54%, see Ta-
ble 2). This indicates that parallel changes within single
files are rare and have only little impact on the develop-
ment process. However, theconflict ratethat measures the
frequency of conflicts is between 22.75% (forGCC) and
46.62% (forJBOSS). These rather high values indicate that
parallel changes frequently affect the same locations within
a file or cannot be integrated byCVS.

Additionally, we measured how many commits led to an
integration (see Table 2).5 The value is lowest forJBOSS; in

4The release 1.11.7 ofCVS fixed “a long-standing bug that prevented
most client/server updates from being logged in the history file”; it also
introduced the logging of updates that are done via a patch (P).

5This number is smaller than the sum of G and C because one commit
can lead to several integrations.

2

Mary

Kate

John

checkout update
1.14

update
1.15

commit
1.16

smooth integration
 update 1.16

integration with conflicts
 update 1.16

time

O 2004-06-13 05:45 +0000 mary foo =foo= <remote>/*
U 2004-06-15 06:56 +0000 mary 1.14 Bar.java foo == <remote>
P 2004-06-17 07:22 +0000 mary 1.15 Bar.java foo == <remote>
M 2004-06-19 07:50 +0000 mary 1.16 Bar.java foo == <remote>
C 2004-06-21 07:48 +0000 john 1.16 Bar.java foo == <remote>
G 2004-06-22 08:48 +0000 kate 1.16 Bar.java foo == /home/kate/foo

Figure 1. A Sample Output for CVS history

GCCandJEDIT approximately every 11th commit led to an
integration, forPYTHON even every 5th commit. If we fo-
cus on conflicts, the order of projects remains unchanged.
This suggests that the degree of parallel development is
highest inPYTHON.

3.3. The Most Frequently Integrated Files

Table 3 shows for each project the files with the highest
number of integrations. In all investigated projects, there
are source files with many integrations, as well as build files
like Makefile.in, build.xml, build.properties, and configure.
The fileaxis-ws4ee.jar in JBOSShas only conflicts because
CVS does not integrate binary files. However, it is interest-
ing to observe thatChangeLog has four times more conflicts
as smooth integrations.

In Table 4 we break down the number of integrations to
the file extension. In all projects more than 50% of integra-
tions happened for source files. ForGCC, conflicts were
more frequent forChangeLog files than for source files.
For JBOSSandPYTHON, conflicts were more frequent for
source files than forXML or TEX files.

4. Concurrency and Single Developers

Concurrent development is not always a matter of multiple
developers. Single developers also cause concurrency, e.g.,
by working at different places or on different branches. In
this section, we search for traces of such concurrency.

4.1. Scope of Developers

We measured the number ofcheckoutoperations6 per devel-
oper and the number of modules and branches a developer

is working on (as indicated by a checkout of a module and
branch respectively). In Tables 5, 6, and 7 we show the dis-
tribution of the results.

• For GCC, JEDIT, andPYTHON

– more than 50% of all developers checkout the
project less than six times (see Table 5).

– most developers work only on few modules and
on few branches (see Tables 6 and 7).

• JBOSSonce again sticks out because of its high number
of modules. This results in a high number of checkouts
per user. However, mostJBOSSdevelopers work on
few branches.

• BothGCCandJBOSShave users with several thousand
checkouts (gccadminand jboss-build). Such users
have special tasks, for instance to create nightly builds
of a project and frequently work with or even are auto-
matic scripts.

The above numbers only state that developers work on sev-
eral workspaces and branches, but the numbers do not con-
sider if this happened simultaneously. We will address this
in the next two sections.

4.2. Self-integrations and Self-conflicts

In order to get evidence for simultaneous workspaces, we
measured how frequentlyCVS integrates local changes of a
developer with a commit that has been made by the same
developer. We refer to such updates asself-integrations

6We combined checkouts having the same timestamp into one single
checkout operation.

3

GCC JBOSS JEDIT PYTHON

General Statistics
Number of developers 166 91 56 57

Number of recorded events 7,776,010 2,326,323 95,800 662,002
– ignored(anonymous) 3,010,563 82,846 2,324 1,779
– investigated 4,765,447 2,243,477 93,476 660,223

Breakdown to Commands
Checkout command (O) 16,104 849,054 693 302
Commit command (M+A+R) 86,223 54,976 4,412 9,378
Update command (W+U+P+G+C) 4,662,843 1,339,201 88,323 650,487
Release command (F) 2 1 10 0
Tag command (T) 207 43 10 0
Export command (E) 68 202 28 56

Breakdown of Commits (M+A+R)
Modified file (M) 63,639 32,158 3,187 8,212
Added file (A) 18,172 15,252 812 680
Removed file (R) 4,412 7,566 413 486

Breakdown of Updates (W+U+P+G+C)
File was removed (W) 299,935 129,142 3,073 36,131
File was created or replaced (U) 1,994,101 968,647 63,891 284,218
File was patched (P) 2,356,787 239,415 20,882 327,315
File was integrated without conflicts (G) 9,285 1,066 361 1,743
File was integrated with conflicts (C) 2,735 931 116 1,080

Concurrency
Integration rate (G+C)/(W+U+P+G+C) 0.26% 0.15% 0.54% 0.43%
Conflict rate C/(G+C) 22.75% 46.62% 24.32% 38.26%

Commits (only M and A) that led to integrations (G or C) 9.06% 3.89% 9.03% 20.20%
Commits (only M and A) that led to conflicts (C) 2.84% 1.86% 2.58% 7.82%

Table 2. Breakdown of Commands

or in the presence of conflicts asself-conflicts. Such self-
integrations are caused by multiple workspaces or hack-
ing in the administrativeCVS files. Tables 8 shows that
self-integrations and self-conflicts occur in all investigated
projects, especially inJBOSSand JEDIT. Self-integrations
are a good indicator that developers had several workspaces
of a module at the same time. However, they show only the
presence not the frequency of simultaneous workspaces.

4.3. Simultaneous Workspaces

When developers work at several places, e.g., at home and
at office, they maintain several workspaces of the same
module and the same branch. Unfortunately,CVS records
for client/server connections only the workspace relative to
the repository and not its absolute path.7 This means we

7In Figure 1,<remote> denotes the client workspace; for local con-
nections the absolute path is recorded, e.g.,/home/kate/foo .

cannot use this information to estimate the number of si-
multaneous workspaces per developer.

If developers maintain several workspaces and synchro-
nize them regularly, they perform update operations for sin-
gle revisions several times. Thus, we decided to measure
for each developer the average number ofupdateandcom-
mit records per revision. This average is an indicator of
the number of workspaces. For instance, an average of two
means that for each revision of a file the developer per-
formed on average two commands, likely, because of two
simultaneous workspaces. In Table 9 we show the distri-
bution of these averages. Although most developers seem
to have one workspaces, there is strong evidence that sev-
eral developers have more than one workspaces for the same
module and the same branch. However, we still do not take
into account that the number of workspaces may fluctuate
over time.

4

0% 50% 100% Maximum Average
GCC 1 2 3 4 5 6 7 8 9 10 [11;19] [20;50] ≥51 3,780 61.5± 379.80

JBOSS [1;9] [10;29] [30;49] [50;99] [100;199] [200;499] [500;999] ≥1000 36,758 1076.9±5034.40
JEDIT 1 2 3 4 5 6 7 8 11 12 13 15 16 17 18 20 21 ≥27 164 12.7± 25.96

PYTHON 1 2 3 4 5 6 7 8 9 ≥10 33 6.2± 6.86

Table 5. Distribution of Number of Checkouts per Developer

0% 50% 100% Maximum Average
GCC 1 2 3 4 5 6 ≥7 25 2.8± 3.91

JBOSS [1;46] [47;79] [80;112] [113;145] [146;178] ≥179 442 112.8±66.03
JEDIT 1 2 3 4 5 6 7 9 10 ≥11 65 5.0± 9.39

PYTHON 1 2 3 4 5 6 7 ≥9 21 3.3± 3.40

Table 6. Distribution of Number of Modules per Developer

0% 50% 100% Maximum Average
GCC 1 2 3 4 5 6 7 ≥8 24 2.9± 3.23

JBOSS 1 2 3 4 5 6 7 8 ≥9 168 7.8±20.80
JEDIT 1 2 3 4 8 9 ≥10 80 4.1±11.57

PYTHON 1 2 3 4 5 5 2.0± 1.07

Table 7. Distribution of Number of Branches per Developer

5. How Concurrency is Resolved

After CVS integrates changes, developers can decide
whether to commit or discard the integrated file. In this
section, we will address how integrations are resolved and
how to identify revisions that include integrated changes.

5.1. Resolution of Integrations

If a developer has made local changes to a file which has
meanwhile changed in the repository,CVS integrates these
changes with the other changes during the next update. We
investigated what developers do with such integrated files:
Do they commit their changes to the repository? Or, do they
discard their changes by deleting the file and performing
a second update? To answer these questions, we looked
at the record that succeeded an integration. For instance
the sequence GM means that a smooth integration (G) was
followed by a commit (M). Table 11 shows the results for
the following categories:

Changes were committed.The sequences GM or CM in-
dicate that the integrated changes were committed to
the repository. Between 8.3% and 31.8% of all integra-
tions without conflicts are committed to the repository;
for integration with conflicts these values are slightly
lower between 4.4% and 24.6%.

Changes were discarded.The sequences GU or CU indi-
cate that the developer discarded the integrated chang-

es and replaced the file with a fresh version from the
repository; the sequences GP or CP indicate that the lo-
cal changes were discarded manually without deleting
the file. In every investigated project more than 30% of
all integrations are discarded. Some projects stick out,
for instance, inJBOSSalmost 70% of all integrations
with conflicts are discarded. ForJBOSSandPYTHON
smooth integrations are twice as frequent as conflicts.
For GCC it is the other way round, likely because of
the high number of conflicts forChangeLog.

Changes were kept.The sequences GG, GC, CG, and CC
indicate that the local changes were neither discarded
nor directly committed to the repository, i.e., they were
kept until the next update in which another integration
took place. ForJBOSSandPYTHONconflicts are more
frequently discarded than smooth integrations.

Other. The sequences G$ and C$ are integrations where
we could not identify a next record, i.e., the integration
was the last record for this file by the developer.

5.2. Identification of Integrated Revisions

In order to identify revisions that contain integrated
changes, we refined the techniques we used in the previous
section. To locate such revisions, we searched for activity
patterns of the form [GC]+M, i.e., a sequence of integra-
tions [GC]+ that is followed by a commit operation M for

5

Integrated without conflicts (G) Integrated with conflicts (C)

committed discarded kept other committed discarded kept other

Project GM GU GP GG GC G$ CM CU CP CG CC C$

GCC 11.8% 9.4% 35.4% 21.0% 1.8% 20.6% 24.6% 18.8% 19.6% 6.8% 19.2% 11.1%
JBOSS 31.8% 23.6% 10.8% 10.0% 1.6% 22.2% 14.3% 61.9% 6.6% 1.1% 4.6% 11.6%
JEDIT 8.6% 21.9% 36.8% 25.5% 1.9% 5.3% 10.3% 50.0% 7.8% 5.2% 4.3% 22.4%
PYTHON 8.3% 9.1% 40.5% 29.0% 1.8% 11.2% 4.4% 17.3% 40.2% 2.9% 32.5% 2.7%

Table 11. Resolution of Conflicts

Filename G C

GCC:
gcc/gcc/ChangeLog 138 669
gcc/gcc/config/rs6000/rs6000.c 302 37
gcc/gcc/Makefile.in 269 36
gcc/gcc/tree-cfg.c 176 30
gcc/gcc/tree.h 175 17
gcc/gcc/testsuite/ChangeLog 22 148
gcc/gcc/config/i386/i386.c 131 14
gcc/gcc/expr.c 118 16

JBOSS:
jbosstest/build.xml 99 13
build/jboss/build.xml 37 4
thirdparty/ws4ee/ws4ee/lib/axis-ws4ee.jar 0 21
jbosstest/imports/test-jars.xml 20 1
jboss-cache/src/main/. . . /cache/TreeCache.java 7 7
contrib/jboss.net/.classpath 7 7
nukes-2/core/build.xml 11 3

JEDIT :
jEdit/org/gjt/sp/jedit/jeditgui.props 40 2
jEdit/org/gjt/sp/jedit/jEdit.java 33 1
jEdit/build.properties 28 1
jEdit/modes/catalog 19 4
jEdit/org/gjt/sp/. . . /textarea/JEditTextArea.java 19 1
jEdit/org/gjt/sp/. . . xtarea/TextAreaPainter.java 17 1
jEdit/org/gjt/sp/jedit/Buffer.java 17 1

PYTHON :
python/dist/src/Python/ceval.c 77 21
python/dist/src/Misc/NEWS 39 20
python/dist/src/setup.py 44 7
python/dist/src/configure.in 43 2
python/dist/src/configure 26 17
python/dist/src/Doc/whatsnew/whatsnew24.tex 30 3
python/dist/src/Python/compile.c 18 15

Table 3. Most Frequently Integrated Files

0% 50% 100%

GCC .c Changelog .h .in Other

JBOSS .java .xml Other

JEDIT .java .xml .props Other

PYTHON .py .c .tex .h Other

Table 4. Integrations per File Extension

Self-integrations (G) Self-conflicts (C)

GCC 1,373 (15.4%) 307 (11.8%)
JBOSS 314 (29.7%) 396 (44.4%)
JEDIT 71 (20.1%) 41 (36.9%)
PYTHON 145 (8.6%) 56 (5.2%)

Table 8. Self-integrations and Self-conflicts

0% 50% 100%

GCC 1.0]1.0;1.5]]1.5;2.5] >2.5

JBOSS 1.0]1.0;1.5]]1.5;3.5]

JEDIT 1.0]1.0;1.5]]1.5;2.5] >2.5

PYTHON 1.0]1.0;1.5]]1.5;2.5] >2.5

Table 9. Simultaneous Workspaces

Without conflict With conflict Total

GCC 1,045 (61.4%) 656 (38.6%) 1,701
JBOSS 293 (76.5%) 90 (23.5%) 383
JEDIT 17 (60.7%) 11 (39.3%) 28
PYTHON 148 (75.9%) 47 (24.1%) 195

Table 10. Commits with Preceding Integration

6

a revisionr. Furthermore, we disallowed any other opera-
tion between the integrations and the commit because then
it would unlikely thatr contains any integrated changes. If
the sequence of integrations [GC]+ contains a conflict (the
position of C does not matter) we say that the revisionr
contains integrated changeswith a conflict, otherwise we
saywithout conflict. In Table 10 we show the number of
revisions we have identified by this approach. In the future,
we will use such revisions to identify the risk of integra-
tions.

6. Visualization of Concurrency

As a final analysis, we decided to map the concurrency in
development using graphs in which each developer is rep-
resented with a vertex. An edge indicates that between two
developers conflicts occurred and its thickness expresses the
frequency of the conflicts. We refer to such graphs ascon-
flict graphs. Self-conflicts as described in Section 4.3 are
represented with self-loops.

In order to get many conflicts, we used the completeCVS
history for each project. Figure 2 shows the conflict graph
for PYTHON. We can recognize two groups: aninner circle
in which the developers have many conflicts and anouter
circle in which the developers have conflicts with only few
developers. It is likely that the inner circle corresponds to
the core developer team ofPYTHON. Figure 3 shows the
conflict graph forJBOSS. In this graph we can identify two
clusters that are rarely connected with each other. These
clusters likely correspond to independent developer teams.

In Figure 4 we treated the conflict graph forJEDIT as a
social network. The size of a vertex represents with how
many other people a developer had conflicts. This value
is highest for developer 1.8 Furthermore, the vertices are
ranked by the layers according to theirbetweenness. In so-
cial networks, the betweenness is used to identify actors
that play a central role. Once again developer 1 is most
important followed by developer 17. Social network has
frequently been applied to developer networks [3, 4] We
believe that social network analysis on conflict graphs is a
powerful tool for managers to improve the communication
and collaboration in projects.

7. Limitations

• The CVS history has only limited functionality if it is
used on aCVS server (most distributed projects use
it this way). For instance, until version 1.11.7 the
record types U and P were not logged. Furthermore,
the workspace is logged relative to the repository. This

8We decided to anonymize the developer names.

11

58

14

29

62

42

12

64

26

28

60

23

15

59

10

24

13

20

6

46

57

1

22

39
56

19

25

17

3

49

53

21

51

48

45

40

50
35

4

52

34

33

5

38

2

3041
37

61

43

47

44

7

55

8

65

18

9

31

36

63

27

54

32

16

Figure 2. Concurrency in PYTHON

Figure 3. Concurrency in JBOSS

29 44
43

10

23

24

3 33

51

8

13

46

4

9

27

52

31

47

6

38

32
21

7

11

28

14

2

19

16

2515

5

18

17

1

Figure 4. Concurrency in JEDIT

7

makes it almost impossible to distinguish between dif-
ferent workspaces of one developer.

• Only a subset of the commands is recorded in theCVS
history. For instance, theimport and join commands
are not yet recorded. The latter would be valuable to
precisely detect the merge of branches without heuris-
tics like the one proposed by Fischer, Pinzger, and
Gall [2].

• Until version 1.11.7 ofCVS, developers could suppress
the logging of commands with the -l option. This
means that the data in the history may be incomplete
for older entries.

• The history data ofCVS is only available for a few
projects. We had difficulties finding projects for our
case studies.ECLIPSEandMOZILLA have disabled the
history feature; forAPACHE the history is only avail-
able for the anonymousCVS mirror. Fortunately for
us, all projects that are hosted at SourceForge.net have
CVS histories.

8. Related Work

To our knowledge this is the first work that analyzesCVS
activity data. A similar case study based onchange data
was performed by Perry, Siy, and Votta [5]. They inves-
tigated parallel changes on different levels and observed a
high degree of parallelism as well as a significant correla-
tion between parallelism and the number of defects. We
could not observe a high degree of parallelism on within
single files.

The high percentage of integrations with conflicts re-
flects a shortcoming ofCVSand underpins the need for tools
like Palant́ır which was developed by Sarma, Noroozi, and
van der Hoek [6]. Palantı́r continuously shares information
about changes. This way it increases the awareness among
developers and can reduce conflicts.

9. Conclusions and Consequences

We investigatedCVS activity data of four large open source
projects. Our results are as follows:

• We observed that parallel development within the same
file has only little impact on other developers (between
0.26% and 0.54% of all updates).

• CVScan integrate many changes but not all; in our case
studies between 22.75% and 46.62% of all integrations
resulted in a conflict.

• The degree of parallel development was highest for
PYTHON; every fifth commit caused a later integration.

• Developers work with different workspaces, e.g., at
work and at home. Between 7.3% and 26.4% of all
integrations are caused by this circumstance.

• Most developers work only on a single module and on
a single branch.

• ForJBOSSandPYTHON conflicts have been discarded
more often than smooth integrations.

• We can identify revisions that contain integrated
changes by analyzing the sequence of updates and
commits.

CVS activity data is a valuable supplement to other project
data, our plans for the future are as follows:

Deal with simultaneous workspaces.Right
now, our approach cannot distinguish between differ-
ent workspaces of the same developer. We plan to use
time windowsto combine several records into transac-
tions. This should help to distinguish workspaces.

Analyze conflict graphs. The conflict graphs that we in-
troduced in Section 6 represent relations between de-
velopers thatshouldwork very closely together. By
applying graph and network analysis, we plan to iden-
tify virtual teams and important developers of a proj-
ect. This can be used to improve the communication
in a project and thus reduces the number of conflicts.

Assess the risk of commits.We can use theCVShistory to
categorize commits based on the outcome of the pre-
ceding update, i.e., without integration, with smooth
integration, with conflicts. One would guess that com-
mits that succeed a conflict are more risky, but we ex-
pect the opposite because conflicts are (hopefully) in-
spected by developers.

For ongoing information on this project, see

http://www.st.cs.uni-sb.de/softevo/

Acknowledgments.
Thanks to Holger Cleve, Christian Lindig, and Stephan
Neuhaus for their valuable discussions and helpful sugges-
tions on earlier revisions of this paper. Christian Lindig also
provided the TEX macros used for Tables 4–7, and 9. Fig-
ure 2 and 3 were created with yEd [7] and Figure 4 was cre-
ate withVISONE [1]. This research was funded by a schol-
arship from the Graduiertenkolleg “Leistungsgarantien für
Rechnersysteme” sponsored by the Deutsche Forschungs-
gemeinschaft.

References

[1] U. Brandes and D. Wagner. Visone–analysis and visualiza-
tion of social networks. In M. J̈unger and P. Mutzel, editors,
Graph Drawing Software, pages 321–340. Springer Verlag,
2003. Tool download http://www.visone.de/.

8

[2] M. Fischer, M. Pinzger, and H. Gall. Populating a release his-
tory database from version control and bug tracking systems.
In Proc. International Conference on Software Maintenance
(ICSM 2003), Amsterdam, Netherlands, Sept. 2003. IEEE.

[3] L. Lopez-Fernandez, G. Robles, and J. M. Gonzalez-
Barahona. Applying social network analysis to the informa-
tion in CVS repositories. InProc. International Workshop on
Mining Software Repositories (MSR 2004), pages 101–105,
Edinburgh, Scotland, UK, May 2004.

[4] V. F. G. Madey and R. Tynan. The open source development
phenomenon: An analysis based on social network theory.
In Americas Conference on Information Systems (AMCIS),
pages 1806–1813, 2002.

[5] D. E. Perry, H. P. Siy, and L. G. Votta. Parallel changes
in large-scale software development: an observational case
study. ACM Transactions on Software Engineering and
Methodology (TOSEM), 10(3):308–337, 2001.

[6] A. Sarma, Z. Noroozi, and A. van der Hoek. Palantı́r: Raising
awareness among configuration management workspaces . In
Proc. 25th International Conference on Software Engineering
(ICSE), pages 444–454, Portland, Oregon, May 2003.

[7] yWorks. yEd–Java Graph Editor, Apr. 2005.
http://www.yworks.com/en/productsyedabout.htm.

9

