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Abstract

We apply data mining to version histories in order to guide programmers along related changes:
“Programmers who changed these functions also changed...”. Given a set of existing changes,
suchrules

(a) suggest and predict likely further changes,
(b) show up coupling that is undetectable by program analysis, and

(c) prevent errors due to incomplete changes.
Our approach consists of two phases:

e Preprocessingnirrors a complete version history in a database, and searches for fine-
grained changes—that are changes on functions rather than on complete files.

e Mining creates the rules that are used for recommendations. We developed our own min-
ing technique that mines only for matching rules on the fly. Thus we can make up-to-date
recommendations very fast.

Our evaluationinvolving eight large open-source projects shows that after an initial change,
our ROSEprototype can correctly predict 26% of further files to be changed—and 15% of the
precise functions or variables. The topmost three suggestions contain a correct location with a
likelihood of 64%.
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Chapter 1

Introduction

Knowledge is a tool. Wisdom directs it.
— UniversalQuest.com

Shopping for the latest John Grisham novel “The Last Juror” at Amazon.com you may have
come across a section called “Customers who bought this book also bought. .. ”. In this section,
Amazon.com lists other books that are related by purchase with the current book. The aim is
to point customers to other interesting books, and thereby increase the sales of Amazon.com.
For our John Grisham book, the page recommends “Bleachers”, “The Big Bad Wolf”, “Split
Second”, “The Zero Game”, and “3rd Degree” (see Figlrkon the following page). Such
information is gathered bglata mining—the automated extraction of hidden predictive infor-
mation from large data sets, e.g., the purchase history of Amazon.com customers.

This feature is not restricted to books; it can be applied to any kind of product or data. Ama-
zon.com provides such information for CDs, DVDs, electronics, toys, and games. About
two years ago, Amazon.com even recommended shoppers of “Essential .NET, Volume 1” to
wear “Clean Underwear” which turned out to be a random recommendation; Amazon.com just
wanted to promote its new apparel shéi(2, Wag03.

Alexa.com Internet behavior of users of its toolbar. This allows Alexa.com to make statements
like “People who visit CNN.com Interactive also visit, among other pages, USA Today or The
Weather Channel”. It even connects Internet sites with books, e.g., it recommends visitors of
the Scholastic Publishing Corporation to buy Harry Potter bdoks.

The examples above show that data mining techniques have become a day-to-day part of e-
commerce and are now essential for increasing the performance of a business. However, data
mining is not restricted to e-commerce. It can be used everywhere—for exanmmiegiam
analysis

Generally, two forms of program analysis existatic and dynamicanalysis. Static analysis

does not execute any programs and mainly uses deduction as a reasoning technique. In contrast,
dynamic analysis relies on observation, induction, and experimentation, and therefore executes
programs to gather dynamic da#e]03.

IActually Scholastic Publishing Corporation is the publisher of Harry Potter books.
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Figure 1.1: Customers who Bought this Book also Bought. . .

In practice, most program analysis techniques only consider a single version of the program,
thus neglecting one very large source of information: \hesion archive It contains a vast
amount of information: Who changed what, why, and when? Ususdigyware evolutiorana-

lyzes such data, but it is also valuable input for program analysis, both static and dynamic.

To some extent a version archive is similar to Amazon.com: As customers buy books, program-
mers make changes, and both do it in transactions. So it is only a matter of time until users will
request a “Developers who changed this also changed...”-feature in their favorite IDE. The
realization of such a feature is the topic of this diploma thesis.

The main part of the thesis is about tROSEtool. ROSEis an acronym folReengineering
Of Software Evolutiorand isnot related to Rational Rose. It analyzes version histories and

guides programmers along related changes. To accomplish this, it uses two different types of
recommendations, both similar to those of Amazon.com:

e “Programmers who changed the selected function, also changed...”
In order to provide this informatiolROSEperforms mining only with respect to the cur-
rently selected or edited function. This approach corresponds directly to the “Customers
who bought this book also bought...”-list of Amazon.com that is displayed on book
pages, like the one for “The Last Juror” in Figure.
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Figure 1.2: Programmers who Changed this Function also Changed. ..

e “Programmers who changed functions you have changed, also changed ...”
In this case ROSErecords all changes and performs data mining with respect to these
changes. This feature corresponds to the Amazon.com “Customers who bought items in
your Shopping Cart also bought. .. -list that is displayed before you place your order.
Obviously, the aim of such a list is to avoid that customers miss a relevant item; or,
specific toROSE to avoid that programmers forget to change a relevant function.

At a first glanceROSEseems to be nothing more than a nice-to-have feature that suggests likely
changes. HoweveROSEis much more: Besides its navigation abilities, it can prevent errors

due to incomplete changes and even reveals dependencies undetectable by program analysis.
These features are illustrated below.

Suggest and predict likely changesSuppose you are a programmer and just made a change.
What else do you have to change? Figlirdshows theROSEtool as a plug-in for the
ECLIPSEprogramming environment. The programmer is exten@@glPSEwith a new
preference, and has added an element tdkbgs[] array. In theWhat*s Relatediiew,
ROSEnNnow suggests to consider further changes, as inferred froreGhéPSE version
history. On top of the list are locations with highesinfidence-that is, the likelihood
that further changes should be applied to the presented location.
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Prevent errors due to incomplete changesin Figurel.2 the top locationinitDefaults(), has
a confidence of 1.0: In the past, each time some programmer extend&@ybig array,
she also extended the function that sets the preference default values. If a programmer
now wanted to commit changesthoutaltering the suggested locatic®QSEwould issue
a warning. (This warning is shown in Figue3 on pages5.)

Reveal coupling undetectable by program analysisAs ROSEoperates uniquely on the ver-
sion history, it is able to find coupling between items that cannot be detected by program
analysis—including coupling between items that are not even programs. In Higure
position 3 on the list is aBCLIPSE HTML documentation file with a confidence of 0.75,

and suggests that after adding the new preference, the documentation should be updated,
too.

Contributions

ROSEIis not the first tool to leverage version histories. In earlier work researchers have used his-
tory data to understand programs and their evolutiRiHS97, to detect evolutionary coupling
between filesGHJI9g or classesBAY03], or to support navigation in the source codIN[OS].

In contrast to this state of the art, the presented work

e gives a detailed overview abopiteprocessingechniques,
e uses fully-fledgediata miningto obtain association rules from version histories,

e detects coupling between fine-grainpabgram entitiessuch as functions or variables
(rather than, say, classes), thus increases precision and integrates with program analysis,

¢ thoroughly evaluates thability to predict future or missing changeasus evaluating the
actual usefulness of our techniques, and

e provides a prototype implementation of the presented techniques.

For a full discussion of related work see ChapteParts of this thesis have been published and
presented at

¢ thelnternational Conference on Software Engineer{fiig@SE 2004) gWDZ04],
¢ thelnternational Workshop on Mining Software Repositoi&SR 2004) FwW04], and

o thelnternational Workshop on Principles of Software Evolutith'PSE 2003) ZDZ03].

ROSEhas been awarded with dBM Eclipse Innovation GranfIBMO04]. It will be available
for download in Fall 2004.



Structure

The remainder of this thesis is organized as follows. Chaptgves a briefoverviewon ROSE

and the applied techniques. ChapBediscusses the two preprocessing stepROEE data
collection which is the transformation of a version archive into a databasedatadcleaning

which is the identification of outliers. Chaptémpresents details about the mining process. It
introduces rules, simple measures for rule assessmentdaaadniningalgorithms. Chapteb

gives more examples for rules. Chapderovers theevaluationof ROSE It describes the eval-

uation setup and measures, and discusses the results for the navigation and error prevention
abilities of ROSE Chapter7 gives an overview ofelated workand ChapteB concludes with

the presentation diiture work
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Chapter 2

Overview

2.1 CVS in a Nutshell

Large software projects are constantly evolving under the influence of many programmers.
Therefore, it is very important to track changes and to coordinate developers. In practice,
version control systemigcilitate these tasks. An example for such a tool is @wacurrent
Versions Systent/9, used by most open source projedtd/504.

CVS uses two concepts called tinepositoryand theworking directory The repository (or
version archivgcontains all information required to restore historical versions of any file in the
project. A developer fetches the latest code from the repository to his working directory, makes
his changes, and then commits those changes back to the repository.

Each changed file is stored as a version in the reposi@rg.uses revision numbers (e.g., 1.42)
to distinguish between different versions of a file. The most recent revision is calléeice
revision. It is also possible to create symbolic names for revisions. Tagsare often used to
mark releases or important milestones.

We refer to a commited file ascheckin and to a whole commit operation as@mmit There-

fore, a commit is simply composed of at least one chec&WmS commits all files individually

which means, that it does not track commits and we have to recover them for our analysis. For
that purpose, we can use additional information @\ stores for a checkin:

Theauthor, i.e., the user name of the programmer who committed the change;

Theextenti.e., the file and location affected by the change,;

Thecontenti.e., the actual text or data inserted, deleted, or modified;

Therationalg i.e., the reason why the change was made;

Thedateof the checkin.

We refer to a recovered commit agransaction Do not expecCVS commits or transactions to
fulfill the ACID paradigm HR83: atomicity, consistency, and isolation are not guaranteed be-
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Input:
change(fKeys)

Figure 2.1: ROSEOverview

cause commits are carried out consist of single checkins, and only single directories are locked.
Durability holds if all checkins are written directly to disk.

Often a linear development process is not sufficient for larger software projects. Therefore,
CVS allows to create separate development lines cdi@ches A branch originates from
another branch or the main development line. Branches are frequently used for experimental
implementations or for bug-fixes. Most branches integrate their changes back to the original
development line at some future point. This event is caltedgingand carried out as one large
transaction. This transaction simply reproduces changes made on the branch. Unfortunately,
they are not marked in theVvs archives.

2.2 A Guided Tour of ROSE

Figure2.lillustrates the workflow oROSE It splits into two parts:

Preprocessingtakes a complete version archive as input. The archive is mirrored in a database
(data collection, changes are mapped to entities and transactaata preparatiof, and
finally noise, caused by large transactions, is remodada(cleaning. Preprocessing
allows a fast access to all necessary information.

Mining creates rules from the preprocessed data. Rules describe implications between soft-
ware entities, e.g., “ffKeys[] is changed, themitDefaults() is changed, too”. Itis possible
to mine for all rules, but typicallROSEmines only for rules with a particular left-hand
side. Thus, mining is speeded up and rules are always up-to-date.

In order to become familiar witROSE we present the individual steps using a small example.
More details about preprocessing and mining are described in Ch&mrds!.
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2.2.1 Data Collection

Suppose, there are three developers (Harry, Hermione, and Ron), who work on a smaf project
consisting of three filesAB.java, C.java, andD.java). Harry, Hermione, and Ron us&/Sto
archive their versionsCVS stores the necessary data in a very cryptic way, and access to the
data is rather slow and complicated. So, the obvious solution is to collect all information in a
database. Figur2.2(a)on the following page shows the result of this step.

2.2.2 Data Preparation

The collected data is not suitable for data mining, yet. F&$S has no transaction concept,
and secondzVS provides changes on file level only.

Step 1: Group Checkins to Transactions

Thus, the first task is to group checkins to transactions. A transaction consists of several check-
ins that all have the same author, log message, and timestamp. In Big{og the checkins
AB.java, revision 1.47, and.java, revision 1.42, have both been made by Ron on 2004-01-05
with the log message “Changed this and that”. Thus, they belong to the same transaction #1.

Step 2: Map Changes to Entities

Basically, the data is now ready for data mining. However, since we have only changes and
transactions on file level, we only can make statements about files. Thus, the next step is to
increase the granularity and to find the changes inside a file. We introduce the corerejites

to formalize that. An entity is a syntactic component of a file. Possible entities for source code
are for example classes, functions, and declarations. A checkin can affect multiple entities: For
instance, in Figur@.2(c)the checkin ofAB.java, revision 1.48, changed two entitiesccio()
andbanish().

2.2.3 Data Cleaning

Usually, all checkins of a transaction are related to each other. In some cases there are ex-
ceptions. For instance, @VS, amergeof two branches simply applies changes made on one
branch to the other. This is noise for two reasons: Changes (and relations) on branches are
overrated, and additional (wrong) relations are introduced because all transactions made on the
branch are summarized intmemerge transaction. Data cleaning identifies such transactions
and removes them. In Figui&2(c) transaction #3 has been identified as noise and will not be
considered for data mining.

IActually, the project is for their Muggle Studies class and covers ancient version control systems.
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| Changed Filg Rev. | Date | Autor | Log Message
AB.java 1.47 | 2004-01-05| Ron Changed this and that
AB.java 1.48 | 2004-01-06| Hermione| More changes
AB.java 1.49 | 2004-01-06| Harry And a merge
AB.java 1.50 | 2004-01-08| Ron Some changes
AB.java 1.51| 2004-01-10| Hermione| Fixed a bug

C.java 1.23 | 2004-01-06| Hermione| More changes
C.java 1.24 | 2004-01-06| Harry And a merge

C.java 1.25 | 2004-01-10| Hermione| Fixed a bug

D.java 1.42 | 2004-01-05| Ron Changed this and that
D.java 1.43| 2004-01-06| Harry And a merge

(a) Data Collection: Extract CVS Information

| Transaction Changed Fil¢ Rev. | Date | Autor | Log Message
#1 | AB.java 1.47| 2004-01-05| Ron Changed this and that
D.java 1.42| 2004-01-05| Ron Changed this and that
#2 | AB.java 1.48 | 2004-01-06| Hermione| More changes
C.java 1.23| 2004-01-06| Hermione| More changes
#3 | AB.java 1.49| 2004-01-06| Harry And a merge
C.java 1.24| 2004-01-06| Harry And a merge
D.java 1.43 | 2004-01-06| Harry And a merge
#4 | AB.java 1.50 | 2004-01-08 Ron Some changes
#5 | AB.java 1.51| 2004-01-10, Hermione| Fixed a bug
C.java 1.25| 2004-01-10, Hermione| Fixed a bug

(b) Data Preparation: Group Changes to Transactions

Transaction’ Changed Filg Rev. | Changed Symbol Log Message

#1 | AB.java 1.47 | banish() Changed this and that
D.java 1.42 | deletrius() Changed this and that

#2 | AB.java 1.48 | accio() More changes
AB.java 1.48 | banish() More changes
C.java 1.23 | confundus() More changes

#4 | AB.java 1.50 | accio() Some changes
AB.java 1.50 | banish() Some changes

#5 | AB.java 1.51| accio() Fixed a bug
AB.java 1.51 | banish() Fixed a bug
C.java 1.25 | confundus() Fixed a bug

(c) Data Preparation: Map Changes to Entities

Figure 2.2: Data Preprocessing: Build the Database
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2.2.4 Data Mining

Once preprocessing is completed, the data can be used for data mining, for exangde for
sociation rulemining. An association rule simply expresses the relation between at least two
entities, e.g., “If you have changéideys|[], then changénitDefaults(), t00.”, or more formally
“changediKeys[]) = changeiqitDefaults())”.

Such rules are generated using the transactions of the preprocessed version data. In practice, a
rule is not valid for all transactions. Three measures express the importance of a single rule:

e Frequencyis the number of transactions for which the rule was valid.
e Supportis the frequency related to the total number of transactions.

e Confidencaes the likelihood that the rule holds if the left side is satisfied.

ROSEworks on very fine-granular entities to detect such rules. This means that, if possible, it
concentrates on functions and variables rather than on files or modules. This high granularity
results in very precise rules, and thus in a high locality for the recommendatioRS$#

Often coarse-grained rules are misleading because they summarize many fine-grained rules in
one coarse-grained rule.

Mine for all Rules

ROSE can search for all rules that have a minimum frequency (or support) and a minimum
confidence. Such a search may reveal hidden dependencies and is of special interest to managers
or project leaders. For our example, Figar8on the next page shows all rules with a minimum
frequency of 2 and a minimum confidence of 50%.

Mining for all rules reveals general patterns and hot-spots, and has been the topic of another
diploma thesis in this research proje\¢igio4.

Mine for Rules with Constraints

As Figure2.3indicates, there are many possible rules. In practice, very high frequency and
confidence thresholds are required to get a manageable number of rules. However, if we increase
the minimum frequency in our example from 2 to 3, we will get only the first two rules instead

of all twelve rules of Figure.3. However, fewer rules also mean fewemverageof entities.

In our case, the first two rules only covaecio() andbanish(), but notconfundus(). In other
words,ROSEcannot make any recommendations almmufundus().

In order to get a high coveragBOSE mines for association rulesn demand This has the
advantage, that it can use information about user changes as an input for the mining algorithm—
or, more precisely, as a constraint for the left-hand side of a rule.

Suppose, Hagrid is new to our project and changegundus(). ROSEnow only considers
transactions that contaikonfundus()—in our case transactions #2 and #5 of Figarg(c)
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| Rule | Confidence| Support]|
changedccio()) = changeffanish()) 1.00 3
changeffanish()) = changedccio()) 0.75 3
changedccio()) = changefonfundus()) 0.67 2
change€onfundus() ) = changeéccio()) 1.00 2
changelfanish()) = changegonfundus()) 0.50 2
changegonfundus() ) = changepanish() ) 1.00 2
changegccio()) = changeffanish()) A changeg¢onfundus()) 0.67 2
changeffanish()) = changegccio()) A changefonfundus()) 0.50 2
change€onfundus() ) = changegccio() ) A changepanish() ) 1.00 2
changedccio()) A changelfanish()) = changefonfundus()) 0.67 2
changedccio()) A changefonfundus()) = changefanish()) 1.00 2
changeffanish()) A changefonfundus()) = changegccio()) 1.00 2

Figure 2.3: Data Mining: Create Association Rules

Because the number of transactions and entities is reduced, creating association rules becomes
a very cheap operation. The resulting rules are boldfaced in F&y8re

This approach and the techniques to speed up the mining procedure are part of this thesis. They
are described in detail in Chaptér
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Chapter 3

Preprocessing

If your version control system could talk. ..
— Tom Ball et al. BKPS97

The main purpose of version control systems likeSis to store and provide different versions

of files, or software products. Besides versions and log informa@uis, repositories contain

a huge amount of additional information, e.g., what are the most frequently changed files, or
what is the maximal gap between two subsequent checkins by the same author and the same
log message. Unfortunately, it requires some effort, namdaty preprocessingo access such
information—in other words to make a version control system “talkative”.

So, why iSCVS so silent? In this chapter we address four limitationCofS and present
preprocessing techniques dealing with those issues:

1. CvShas limited query functionality and is slow.
As mentioned above accessing information other than log information for single files is
difficult in CVS. Furthermore, access is very slow becagss uses theRCSfile for-
mat. The obvious solution is to copy the wha¥sS repository into a database. Thus, a
multitude of queries are enabled and can be evaluated very fast.

2. CVSsplits up changes on multiple files into single checkins.
If a developer commits several files simultaneously,S checks them in individually
discarding the relations between them.R3SErelies on such relations, we have to infer
transactions. Usually, a transaction corresponds to exactly one commit operation.

3. cvsknows only files—but what about changes on functions?
The usefulness AROSEdepends on the granularity of its recommendations. This gran-
ularity is restricted byCvSto the file level. We need to analyze changes and detect the
affected fine-grained entities in order to suggest functions or declarations.

4. CVScontains unreliable data.
Some specialties afVs call for data cleaning. For instance, merges or imports falsify
the results oROSE
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Many of these problems are specific to the analys@\$ archives; more sophisticated version
control systems, likSUBVERSION[Sub04, require less data preprocessing.

Note that all preprocessing steps can also be dacrementally—it is only necessary to pre-
process data for new revisions instead of working on the whole repository again. To determine
new revisions several approaches exist. Many open-source projects send an email to a mailing
list for each commit. This approach is based ondbmmitinfoandloginfo files that can also

be used to track commits on the server-side. A possibility to get recently changed files on the
client-side is thecvSs rdiff operation (with optionsfor summary, or theCVs statusoperation.

3.1 Definitions

In this section we introduce formal definitions for changes, chetksmmmits, transactions,
and entities, generalizing the concepts found in existing version archives.

Adopting the notation from4H02], a changeor checkinis a mapping : P — P, which, when
applied, transforms a produgte P into achanged product’ = §(p) € P. Here,P is the set
of all products; the set of changes is denoted asP — P.

Changes can beomposedising the composition operator: C x C — C. This is useful
for denotingcommitsor transactionsthat consist of multiple changes to multiple locations.
For instance, the transactidx, , between two versiong,, p, € P, composed of: individual
changesy, ..., d,, isexpressed a&; , = d;0d50- - -0d,, With Ay »(p1) = (d10d20- - -04,,)(p1) =

0y (52(' e 5n(p1))) = P2

The difference betweecommitsandtransactionsis that a commit refers to the user activity
(performing aCVS commit operation), whilROSEuses transactions to abstract from commits.
Ideally, a transaction corresponds to exactly one commit, but we will see later that this is not
always possible.

To express all syntactic components affected by a change, we define the cormejited An
entity is a triple(c, 7, p), wherei is the identifier of the affected components the syntactic
category such asethod class or file, andp is the parent component, dr if there is none. A
simple example for an entity ignethod (), (class Foo, (file, Foo.java, 1))).

As a short notation for an entity we simply usé the categoryc and the parent entity are
known in the context, or if is unique on its own. This notation is frequently used for the parent
entity, for instancémethod f(), Foo).

The parentp is needed to distinguish between entities that have the same identifléor
instance, we have two classBso and Bar that both contain a method callé). Then we
create two different entitiegmethod f(), Foo) and(method f(), Bar).

The mappingentitiesretrieves all entities affected by a change, checkin, or transaction. For
instance, transaction #4 of our example from Figu&b)changesccio() andbanish() in class

1n the style ofCVS, we spell check-in as checkin.
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AB of file AB.java. Thus,entitiesretrieves:

(method accio(), AB),
. R . _ ) (method banish[], AB),

entitiegA) = entitieg,) U - - - U entitied,,) = (class AB, AB java),

(file, AB.java, 1)
Entities are the base for mining: “I changed one entity; which other entities should | typically
change?” We will not use all syntactic categories for mining. In the remainder we concentrate
on the fine-granular entities, like methods or fields. Only if it is impossible to detect fine-grained
changes, we will use coarse-grained entities, e.gplf@in.properties.

For simplicity we introduce a second notation for transactions. A transagtioansists of
several items. Antemis an entitye combined with araction e.g.,changethe entitye. As

this notation will be used in our mining approach, we only include relevant entities, i.e., for no
entity e its parent entity is included i

T = {changéaccio()), changébanish[]) }

The functionauthor returns the programmer who committed the chantps, messagder
rationale, andime the timestamp when she committed her changes. For transaction #4 from
Figure2.2(b)on pagelOthe results are:

author(A) = “Ron”
log_message\) = “Some changes”
time(A) = “2004-01-08 11:42:12 a.m.”

The functiontime(A) is ambiguous as transactions are not atomi€Ws. Thus, we define
begin_timeand end_timethat give us the timestamps of the begin and end of a transaction,
respectively.

3.2 Extract Information from CVS

First of all, we extract all information contained irC¥S archive into a database. This enables
fast access to all data required in the following steps. Fi§uten pagel7 shows the database
schema, which consists of several tables:

Directories are identified withDirectoryNameand have an additional attribui@epth that
gives the level in the directory tree. For instance, a directory ndooétias depth 1.

Files are identified with the attributgilelD. The tableFiles stores the fully qualified file name
in QualifiedFileName Additionally, this name is split into BirectoryNameand aFile-
Name This redundancy improves access to files because it is now possible to create
indexes on parts of the fully qualified file name.
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Furthermore DirectoryNameis a foreign key to tabl®irectories Using this relation,
the depth of a file can be determined very fast by addition of one to the depth of the
surrounding directory.

Both attributed-ileExtensiorandKeywordExpansioare optional FileExtensiorenables
fast access to the file extension without parsing complete file namekegmerdExpan-
sionindicates whether a file is binary or not.

Checkins represent all revisions contained €8S archive. A checkin affects exactly one file
expressed b¥rilelD, which is a foreign key to tablEiles. The primary key of this table
is FileID together withRevisionIDbecause one file can only have one revision number
once. The attribut€heckinTimeontains the timestamp when the checkin was made.

As checkins are part of transactions, there is another foreign key daedactionIDto
table Transactions The description of a checkin is stored in tablansactiondbecause
it is shared with the other checkins of the transaction.

The optional attribute®lus and Minus give the number of modified lineStatemarks
whether the file was changed (“Exp”) or removed (“dead”); 8nanchPrefixcontains a
reference to the branch on which the checkin was mBdechPrefixs empty if it is the
main branch.

Transactions are identified byTransactionID A transaction is committed by atuthor who
describes her rationale inNMessage Unfortunately, transactions are not atomicaivis.
Therefore, we have two timestamBeginTimeandEndTime The flaglsNoiseindicates
whether a transactions is relevant for mining or not.

One characteristic of tabl€ransactionss the attributeMessageMD5 Many database
systems provide only limited functionality for fields of unrestricted size Message
For instance, MicrosofsQL Server can only group fields with a maximum size of 8,060
bytes Mic04]. But the remaining analysis needs to group an unrestrictessagdield.

As a workaround, we createédessageMD3%vhich contains the MD5Riv92] encrypted
content ofMessageand can be grouped by any database system.

Tags are used to mark particular revisions with symbolic names. The revision is identified by a
foreign key:FilelD andRevisionID The symbolic name is savedTagNameA revision
can have more than one tag, but each tag can only be used once for a file. Thus, the
primary key ofTagsis the tuple FileID, TagNamég

Branches are created on file level i@VS. Each branch has a branch prefix that all revisions on
the branch have in common. ThesanchPrefixdetermines the revision where the branch
originated. ThereforekilelID and BranchPrefixare the primary key. The revision of
which the branch originated is implemented as a foreign kéglD, OriginRevision to
tableFiles. In CVS, each branch gets an internal revisibmternalRevisionand a public
symbolic nameBranchName

The extraction process is straightforward (see AlgoritBii). Let F' be the set of files that
will be extracted. We insert each filginto tableFiles. Then we call thecvS log command
and parse its output. Figu@2 on pagel9 illustrates this parsing step. Next, we insert all
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Transactions Checkins Files
PK | TransactionIlD PK,FK1 | FilelD PK | FilelD
PK RevisionlD
Author T QualifiedFileName
Message < 1 CheckinTime |1-" 1" | FK1 | DirectoryName
MessageMD5 Plus FileName
BeginTime Minus FileExtension
EndTime State KeywordExpansion
IsNoise BranchPrefix -
FK2 TransactionlD -
1 1
1
Directorys
0. PK | DirectoryName
Branches .
| O- Depth
PK,FK1 | FilelD _ Tags
PK BranchPrefix
PK,FK1 | FilelD
BranchName PK TagName
InternalRevision
FK1 OriginRevision FK1 RevisionID

Figure 3.1: ROSEDatabase Schema: Tables @vsS

revisions into table€heckinsand Transactions all symbolic names into tabl€ags and all
branch information into tablBranches

There exists one characteristic of the extraction: Each checkin is considered as a single trans-
action. After the extraction is completed, checkins will be grouped to larger transactions (see
Section3.3). Basically, it is possible to integrate grouping into extraction. But separation of
both tasks is easier and faster because the number of total sc@hsainsand Transactions

is reduced.

Branches require a special treatment during extraction because all necessary data is spread
across several locations in tl/S log output. The “symbolic names”-part contains later-
nalRevisios andBranchName. An internal revision is identified with the included zero. For
instance, 1.15.0.2 is internal and belongs to t&enches 1.15 is a regular symbolic name

and is stored in tabl@ags The “revision”-blocks contain all remaining data for branches, like
BranchPrefixand OriginRevision The link between amnternalRevisionrand aBranchPrefix

is established by removing “0.” from tHaternalRevision For example, an internal revision
1.15.0.2 is connected to a branch prefix 1.15.2.

Another important aspect is the selection of files-extract all files, or only files on the main
development line? And what about deleted files? These decisions have a direct impact on the
quality of the results. Thus, they depend heavily on the application:

Software evolution analysis.As the keyword “evolution” suggests, tivehole history is of
interest. This includeall files, no matter which development line. Even deleted files are
important because they also represent evolution. Ve operationlog called with no
parameter returns all files that ever existed.
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Algorithm 3.1 CVS Extraction Algorithm
Input: Files F', Databasé®
Output: Databasé>

1: procedure EXTRACT(F)

2: fileid = 0

3: tid =0

4: for all files f in F do

5: if directoryd of f is not in tableDirectoriesthen

6: insertd into tableDirectories

7 end if

8: fileid = fileid + 1

9: insertfileid, f into tableFiles
10: callCcvSlog for f
11: parse output for revisionRB, tags?’’, and branche®
12: for all revisionsr in R do

13: tid =tid + 1

14: insertr, fileid, timestampandtid into tableCheckins
15: inserttid, author, andmessagénto tableTransactions
16: end for

17: for all tagst inT do

18: insert data of into tableTags

19: end for
20: for all branche9 in B do
21: insert data ob into tableBranches
22: end for

23: end for
24: end procedure

Providing user recommendations.Users only have a limited interest in evolution. They do
not care about files on other development lines because they are out of their reach. There-
fore, only files on the current branch are important to make recommendations to program-
mers. Deleted files should not be considered because they cannot be changed anymore.
A very simple approach to get all existing files on a branch is to checkout the branch.

Of course, it is possible and even practical to extract everything, and then restrict the relevant
files according to the later application.

3.3 Group Checkins to Transactions

Most modern version control systems have a conceptarfuct versioning-that is, one is able
to access commits that alter the entire product. Howey&g provides onlyfile versioning
discarding the relations between files of a commit. But this information is essentROBE
as the mining approach is based on it. Thus, we myustip the individual per-file changes
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RCS file: /home/eclipse/org.eclipse.jdt.core/model/org/eclipse/jdt/core/IBuffer.java,v
Working file: [./org.eclipse.jdt.core/model/org/eclipse/jdt/core/IBuffer.java |

head: 1.17
branch:
locks: strict
access list: \ 4 \ 4
symbolic names:

v 397: 1.16 Files Directories
v_396a: 1.16
I

v_382: 1.15
JDK_1_5: 1.15.0.2
v_381: 1.15

keyword substitution: o
total revisions: 24;selected revisions: 24

Branches description:

Tags

revision 1.17

revision 1.15
date: 2003/05/26 16:13:24; author: pmulet; state: Exp; lines: +5 -1

date: 2004/01/13 15:48:42; author: jlanneluc; state: Exp; lines: +1 -1

Updated copyrights to 2004 F{ L
____________________________ evisions
revision 1.16

date: 2003/12/15 16:25:37; author: jlanneluc; state: Exp; lines: +15 -26

46040 \

branches: 1.15.2; /

*** empty log message ***

---------------------------- Transactions
revision 1.15.2.1
date: 2004/01/12 19:53:11; author: othomann; state: Exp; lines: +15 -26

Merge with HEAD

Figure 3.2: Extract Information fronCVS log output

(also called checkins) into individual transactions. We distinguish betee@mitsperformed
by developers (by callin@VvS commit) and inferredransactionsused byROSEfor mining.
Ideally, one commit matches exactly one transaction, and vice versa.

There are two approaches to infer transactions from chectims:windowsandcommit mails

3.3.1 Time Windows

An obvious solution for grouping checkins is to consider all changes by the same developer,
with the same log message, made at the same time agamsaction But the term “same

time” is inaccurate in this context because usually, commit operations take several seconds or
minutes—especially if many files are involved. In practice, many approaches consider not only
checkins at the same time as candidates, but also checkins during a time interval:

Fixed time windows restrict the maximal duration of a transaction. The time interval always
begins at thdirst checkin This approach has been used with a time window of three
minutes by MFHO02, GJKOJ for the analysis oCVS archives.

Sliding time windows restrict the maximal gap between two subsequent checkins of a trans-
action. The begin of the time interval is shifted to tim@st recent checkinThus, this
approach can recognize transactions that take longer to complete than the duration of the
time window. This approach originates froBhangeLogprograms likecvs2c| and is
called the “Right Way” by its developers including Karl Fogejo3.
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Figures3.3and3.4illustrate the difference between fixed and sliding time windows. FigBe
uses a fixed time window: After the checkinafL.3, both checkin®:1.2 andC:1.4 are part of

the same transaction because they are visible within the time window (drawn in wiite3.

andE:1.5 are outside the time window and therefore considered as a new transaction.

Figure3.4shows that a sliding time window additionally considers$.3 andE:1.5 because the
time window “slides” from checking:1.3 to finally E:1.5 (see Figures3.4(a) to 3.4(e). The
transaction (light gray) is closed aftérl.5 as no further checkins are visible within the time
window (drawn in white).

Same Author, Message, and Time

Formally, using a sliding time window of 200 seconds, for all checkins. ., §, that are part
of a transaction)\, the following conditions hold (without loss of generalifys are sorted by

time(d;)):

Vo; € A :author(o;) = author(d;) (3.1)
Vo; € A : log_message;) = log_messagde; ) (3.2)
Vie{2,...,k}: |timed;) — time(d;_1)| < (200 se¢ (3.3)

For transaction®\ of size two or more we can rewrite Conditi8r3:

Vo, € A 30, € A6 # 0 : [timE(d,) — time(dy)| < (200 seg (3.4)

Condition 3.3 for a fixed time window is similar t@.4—except for thed quantifier which is
now av quantifier:

Vi, € A V0, € A0, # 0p : [time(d,) — time(dy)| < (200 sed (3.5

This difference is quite straightforward: For sliding time windows only two subsequent changes
have to be within 200 seconds—corresponds)te-while for fixed time windows all changes
have to be less than 200 seconds apart—corresponds to

There are two additional conditions for transactions (valid for both fixed and sliding time win-
dows): mutually exclusive fileandno interleaving of transactions

Mutually Exclusive Files

Each file can only be part of a single transaction once becauSeloes not allow to commit

two revisions of a file at the same time. For a transacfios: (41, ... ,d,) this means, that all
checkinsy, andd, have to affect mutually exclusive files:

V0a, 8y € At 5, £ &, = file(s,) # file(5,) (3.6)
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e : — s same author +
@ o——o @

Same message

e : — = same author +
@ o—o ®

Same message

(@) The time window starts #:1.3. A! = {A:1.3}

A:il.3 832 C‘A D;.S E;.5 same author +

same message

(b) The time window shifts t®:1.2. A? = A' U {B:1.2}

same author +
same message

aE L aE : same author +
® ® @ @ ;

same message

A:1.3 B:1.2 C14 D:1.3 E:1.5
o—o—o0o—o

same author +
same message

(e) The time window shifts t&:1.5. A> = A* U {E:1.5}. No other checkins are visible; so, the
transaction is closed\ = A® = {A:1.3,B:1.2,C:1.4,D:1.3,E:1.5}.

Figure 3.4: Sliding Time Windows
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Algorithm 3.2 Infer Transactions Algorithm
Input: DatabaseD
Output: Databasé>

1: procedure GROUP

2: tid =L
3 author=_1
4: message-_L
5: time= —1
6: Files= ()
7 SortTransactions< Checkindy Author, CheckinTimeMessage
8: for all rowsr of Transactions< Checkingrocessed in sort ordeio
9: if r.Author+£ author
V r.Message# message
V |r.CheckinTime- time > (200 seconds
V r.FilelD € Files then
10: tid = r. TransactionID [* Found a new transaction */
11: author = r.Author
12: message- r.Message
13: Files=0
14: else [* Assign checkin to correct transaction */
15: Update tableCheckinsset newtid for r.FileID, r.RevisionID
16: end if
17: time = r.CheckinTime /* We have asliding time window */
18: Files = Filesu {r.FilelD }

19: end for
20: Remove all unreferenced transactions in talstEnsactions
21: end procedure

No Interleaving of Transactions

A developer cannot perform two different transactions at the same time. In other words, if she
begins a new transaction, all her previous transactions have to be completed. This means that
for a transaction\ the following must hold:

Vo € A : begin_timé¢A) < timg(d) < end_timéA) A author(§) = author(A)
= log_messageé) = log_message\) (3.7)

This condition is difficult to realize because in some ca3¢s inserts dummy checkins, e.g.,
if a file was initially added on a branch and merged into another branch later on. Such checkins
have to be treated separately to avoid incidentally breaking up a merge into several transactions.



3.3 Group Checkins to Transactions 23

tid | FileName | RevisionID | Author | CheckinTime Message
#1 | A 1.3 Frodo 2004-01-2310:23:17 p.m|. L1
B 1.2 Frodo 2004-01-2310:24:11 p.m| L1
#2 | C 1.4 Frodo 2004-01-24 07:41:27 a.m|. L2 >1
D 1.7 Frodo 2004-01-24 07:43:33 a.m|. L2
#3| C 1.3.14 Frodo 2004-01-24 07:45:07 a.m|. L2 >2
#4 | E 15 Frodo 2004-01-24 03:52:07 p.m| L3 >3
#5 | F 1.3 Frodo 2004-01-24 03:54:17 p.m| L4 >4
#6 | G 1.9 Frodo 2004-01-24 03:55:00 p.m| L3 >5
#7 | H 1.8 Gandalf | 2004-01-22 08:14:23 p.m| L5 >6

Reasons for new transactions
>>1 message is different; interval to previous checkin exceeds 200 seconds
>>2 file Cis already in transaction #2
>3 message is different; interval to previous checkin exceeds 200 seconds
>4 message is different
>5 message is different
>>6 author and message are different; interval to previous checkin exceeds 200 seconds

Figure 3.5: Grouping Revisions to Transactions

The Algorithm for Inferring Transactions

The algorithm for grouping checkins to transactions is straightforward (see Algo8ithon

the preceding page): Simply sort checkins by author, checkin time, and log message. lterate
over checkins in this order: Each time the author or log message differs from the ones of the
previous checkin, or the time window is exceeded, start a new transaction. Sorting by author, log
message and checkin time is also possible, but ignores Con8iffidand allows interleaving

of transactions). An example application of the grouping algorithm is illustrated in F&jbre
Differing attributes that result in new transactions are in boldface.

Based on our experience, sliding time windows are superior to fixed time windows because
they deal with transactions of any duration. The selection of the length of a time window (fixed
or sliding) depends on the analyzed project and the analysis itself. The time window should
be chosen based on the assumption on how long it takes to check in the largest file with high
network latency. Up to now, most lengths of time windows are arbitrary: They range from two
to four minutes. The length of time windows is discussed in detail in Se8t®A

3.3.2 Commit Mails

Time windows are a good approximation for inferring transactions f@8. A more precise
solution is based ocommit mails—that are mails sent to developers after a commit. The
example in Figure8.6 on the next page shows, that such a mail contains the committer, the
timestamp, the modified files, and the log message. With this information, it is straightforward
to relate files to revisions, and then to commits.
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CVSROQOT: /cvs/gce
Module name: gcc
Changes by: zack@gcc.gnu.org 2004-05-01 19:12:47

Modified files:
gcclcp : ChangelLog decl.c

Log message:
* decl.c (reshape_init): Do not apply TYPE_DOMAIN to a VECTOR_TYPE.
Instead, dig into the representation type to find the array bound.

Patches:
http://.../cvsweb.cgi/gcc/gec/cp/ChangelLog.diff?...&r2=1.4042
http://.../cvsweb.cgi/gcc/gec/cp/decl.c.diff?...&r2=1.1204

Figure 3.6: Commit Mail

Unfortunately, the solution based on commit mails has two major drawbacks:

1. Suitable commit mails are only available for few projects.
Many projects (especially projects hosted at Sourceforge.net) send commit mails for each
directory separately, which makes it hard to restore transactions. In practice, one has to
use time windows to deal with such mails.

2. Commit mails andCVvSdata are difficult to integrate.
All data stored inCVS is dynamic which means, that it can be changed at any time; even
log messages can be modified. In contrast, commit mails are static—once sent, they
remain unchanged. ThuSysS archives and commit mails diverge during time, and it is
tricky to bring them back together.

Therefore, commit mails are of limited use for restoring commits. However they are useful to
adjust the length of time windows as we show in the next section.

3.3.3 Choosing the Time Window Length
We restored all commits @g6CC between 2000-06-01 and 2003-06-01. Using the commit mail

approach we inferred a total of 32,529 commits. We will use these actual commits to determine
lower and upper bounds for the length of time windows.

How long are commits?

The duration of a commif\ is the difference between the timestamps of the first and the last
checkin:
durationA) = end_datéA) — begin_datéA)
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Table3.10n the following page shows that although the average duration is around six seconds,
there are commits that take more than 21 minutes. This confirms the proposition that fixed time
windows are not reasonable because the duration of commits is unbounded. (Recall that most
fixed time window approaches use a time window of three minutes.)

Within one commit, what is the maximal distance between two subsequent checkins?

Two checking, andd, aresubsequenwithin one commitA if no other checkin exists between
them (without loss of generalityme(d,) < time(d,)):

Vo, € A, 8, # 0a, 0, # 0, : time(d,) < time(s,) V time(d,) < time(s,)

Thedistancebetween two subsequent checkijsandd, is defined as:

distance),, 6,) = [time(d,) — time(d,)|

Measuring the distance between two subsequent checkins of the same commit gives us a lower
bound for the length of a sliding time window. This distance varies for different files and is
influenced by:

e Number of Revisions & Size RESFiles.
For anASCiIl file, CVS only stores the differences between two revisions in a correspond-
ing RCSfile. For a commit, the latest revision is needed and assembled on demand by
applying all existing differences. The speed of this assembly depends on the number of
revisions, and the size of the difference (which is the size oRtb8file).

e Size of Files.
Additionally, the size of a file has impact on the distance between two checkins because
the content of a file is transferred over network before the commit operation takes place.

Table3.2 on the next page shows the highest measured distances per file. Two files stick out:
gcc/libstdc++-v3/configure with 10 minutes 28 seconds, aget/gecc/Changelog with 7 minutes
12 seconds. This suggests a sliding time window length of at least 10 minutes 28 seconds.

Additionally, Table3.2 compares the maximal distances to the number of revisions, the size of
the correspondin@CSfile, and the size of the file itself. Values that belong to the ten highest
values in a category are in italics.

Note that it does not matter if entries of Talll are generated from other files. In most cases,
they are generated by developers and nat3g. Even ifCvVSwould create them automatically,

we have to consider them because otherwise one commit could be split incidentally into two
commits.
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| Author | Log Message | # Files]| Duration |
matz merged with ra-merge-initial 5,910| 21 min 17 seg
dnovillo | Merge with mainline as of 2002-03-04.| 1,087| 21 min 03 seg
dnovillo | Mainline merge as of 2002-05-26. 596 | 18 min 03 sec¢
matz merge in head from ra-merge-20020521 791 | 17 min 56 seg
geoffk | Merge to tag pch-merge-20020430..] | 2,672| 15 min 15 seg
& 8.78 2 6 sec
Table 3.1: Duration of Commits
| File Name | Max. Distance| # Rev.| Size ofRCS]| File Size]
gccl/libstdc++-v3/configure 10 min 28 sec 550| 33,570KB| 715KB
5 min 17 sec
5 min 13 sec
4 min 44 sec
2 min 53 sec
gcc/gec/Changelog 7 min 12 sec| 22,097| 32,515KB| 600 KB
3 min 41 sec
3 min 15 sec
2 min 39 sec
2 min 36 sec
gcc/gec/polgec.pot 2 min 15 sec 53 8,662 KB| 450 KB
gccl/libstdc++-v3/config.h.in 2 min 05 sec 150 211 KB 25 KB
gcc/libstdc++-v3/acconfig.h 1 min 23 sec 69 114 KB 10 KB
gccl/libstdc++-v3/acinclude.mgd 1 min23sec 424 843 KB | 80KB
gccl/libstdc++-v3/aclocal.m4 1min23sec 446 1,306 KB| 87KB
gcc/libstdc++-v3/ChangeLog| 1min2lsec 2,522| 4,683KB| 153 KB
gccl/libstdc++-v3/configure.in| 1 min 21 sec 272 312 KB 18 KB
gcc/gec/polfr.po 1 min 17 sec 34| 10,645KB| 818 KB
gcc/libstdc++-v3/Makefile.in 1minl7sec 243 315KB| 173 KB
gcc/gec/poles.po 1 min 12 sec 29 9,623 KB| 820 KB
gcc/gec/cp/Changelog 1 min08sec 4,392 8,057 KB| 660 KB
gccl/libstdc++-v3/Makefile.am 58 sec 112 98 KB 5KB
(further 21,831 files) : : :
@ 17.4 41 KB | o 6KB

Table 3.2: Maximal Distance between two Subsequent Checkins within one Commit
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What is the minimal distance between two similar commits?

Two commitsA; and A, aresimilar if they have the same developer, the same log messages,
and all files are mutually disjoint.

author(A,) = author(As)
log_messagde\;) = log_message\,)
Vda,0p € Ay U Ay 2§, # 0 = file(d,) # file(dy)

In other words, without Conditio3.4 (for same time) but all other conditions valid (same
author, same message, no interleaving, aspeciallymutually exclusive files), they would

be considered as one single transaction. Measuring the minimal distance between two similar
commitsA; andA, (without loss of generalitpegin_timéA;) < begin_timéA,)) allows us

to determine an upper bound for the length of sliding time windows:

distancéA,, A,) = max(0, begin_timéA,) — end_timeA,))

Table3.30n the following page shows the results ®&CC. Surprisingly, the minimal distance is
only onesecond. This means that, if we use time windows it is not possible to infer transactions
that match exactly one commit operation. In practice, a transaction consists of several commits.

Two log messages deserve some explanation: “Mark ChangelLog” appears more than 472 times,
by two authors and on 14 different dates. Each of these commits inserts the release of a new
GCC version into one of the numero@hangLog files. “Update version” does the same for
several version files (e.geersion.c). Again, for each of these files one commit is performed.

Often developers consciously call a commit operation several times with the same log message.
In this case, for each call one commit mail is sent. One example is the log message “PR
java/10145...” with a total of only two commits. As they are only 7 seconds apart, it is very
unlikely that they are unrelated. This is another disadvantage of the commit mail approach: One
logical change can be distributed over several commits. To deal with such situations, we would
have to introduce time windows again.

Note that some commits are performed daily, like “Bump dates.” or “Daily bump.” Both com-
mits insert the current date into the version filesG#C. These commits do not match the
definition of similar commits because they all affect the same files (Condti®ior mutually
exclusive files is violated). Thus, they do not manifest in Taog

What are the consequences for ROSE?

The above results indicate that sliding time windows are superior to fixed time windows.

The average distance between checkins for the two outliers of Bables 23 seconds for
gcc/libstdc++-v3/configure, and 7 seconds faycc/gcc/Changelog. In addition, for only a few
checkins this distance exceeds three minutes. Based on these observations, we take three min-
utes as the lower bound for the length of time windows.
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| Author | Log Message | Min. Distance

aoliva * configure.in: Propagate ORIGINAL_LD_FOR_MULTILIBS tp 1sec
config.status.

* configure: Rebuilt.
gdr Mark ChangelLog 2 sec
mmitchel | * decl.c (grokfndecl): Require that ‘main’ return an ‘int’. 2 sec
* mangle.c (write_encoding): Don’t mangle return types for conver-

sion functions.
mmitchel | Mark ChangelLog 2 sec
mmitchel | Update version 2 sec
gdr Update version 3 sec
mmitchel | * expr.c (expand_expr, case ARRAY_REF): Correct check for sjde- 5 sec
effects in the value of an array element.
jason PR java/10145 7 sec
* stor-layout.c (update_alignment_for_field): Respect
DECL_USER_ALIGN for zero-length bitfields, too.

* c-decl.c (finish_struct): Don’'t set DECL_ALIGN for normal fields.
* cp/class.c (check_field_decl): Don’t set DECL_ALIGN.

(further 705 log message) <5 min 00 sec

bkoz Benjamin Kosnik <bkoz@fillmore.redhat.com> 5 min 03 sec

* acinclude.m4: Change up to reflect new directory organjza-
tion.

Add in bits for NetBSD.

* aclocal.m4: Regenerate.

* configure: Regenerate.

* config/os/bsd: New directory.

(further 70 log message)

cof Merge from 3.2.1. 36 min 35 seg
jason PR c++/7279 42 min 41 seg
* tree.c (cp_copy_res_decl_for_inlining): Also copy
TREE_ADDRESSABLE.

bkoz 2001-04-02 Stephen M. Webb <stephen@bregmasoft.com> 49 min 32 sec

* include/c_std/bits/std_cstring.h: Fix for const-correctness.
* include/c_std/bits/std_cwchar.h: Same.
* testsuite/21_strings/c_strings.cc: Add.

Table 3.3: Minimal Distance for Similar Commits
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1 class Cat {
o| pwtic semingy conons = (| | cacorons |
lines 3-23
2 }
8 Class Cat !
25 public Cat() { Cat.Cat) lines 1-56 ........... :
lines 25-30 i Change in Line 8
30 } .
1 affects
56 | ) i file animals java
i class Cat, and
58 | class Dog { i field Cat. COLORS
60 ubli Stri COLORS =
public String(] { Dog.COLORS Class Dog
80 , a lines 60-80 lines 58-99
99 |

Figure 3.7: Changes on Lines Affect Entities

Using 49 minutes as an upper bound is not reasonable because most developers are fast com-
miters. About 90% of all log messages in TaBl& have a distance of less than five minutes.
Thus, we consider five minutes as an upper bound.

To summarize: The time window should be between three and five minutes. Using such a time
window, it is not possible to exactly approximate commits with transactions. However, only
related commits are composed to one transaction.

ROSE uses a sliding time window of 200 seconds, which is three minutes pludfer of

20 seconds. Without this buffer, the end of the time window can clash with the releas®/6f a

lock. In this case, the continuation of an interrupted transaction would be considered as a new
transaction.

3.4 Map Changes to Entities

CVS provides only information on changed files but not on changed functions. Thus, another
preprocessing step is required: Each revision is compared with its predecessor, and the changes
are mapped to syntactic components of files. Revisions with no predecessors are compared
against an empty file. Figu®7 sketches the idea that a changed line affects at least one entity,
e.g., line 8 affects the fiel@at. COLORS, in classCat, in file Animals.java.

Without this preprocessing steBOSE could only make recommendations on file-level, and
would miss many interesting relations, thus being only of limited use.

3.4.1 The Framework

Fine-grained changes can be computed usidiff ool and a light-weight analysis that creates
the building blocks of files. This approach is open to everything: source code, documentation,
XML files, and even diagrams or images. For a change from revigitlr, we compute the
entities as follows:
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1. Parse r, for entities 2. Parse r, for entities
diff a()
Rev.r, Rev.r,
_ new f() _
voif =0t / diff \ voig =0t
t’?%d b(){ V°1<;1 £01{
void c(){ C . void b() {
Wik a0 c() gone b() i=23; woid a0
veid o0 ( \ diff void e()¢
d() d()
diff
e() e()

3. Compare matching entities

Figure 3.8: Map Changes to Entities

1. Determine all entitied”; of revisionr; and all entitiest, of revisionrs.
2. Theaddedentities arel, — E,, and thecemovecdentities arel); — E.

3. All entities in E; N E; mayhave been changed. Whether an entityas actually been
changed is decided by performinglidf between the source-codec«ih r; and its source-
code inry. The set of all changed entitiesds

Figure3.8outlines the above algorithm. First the sets of entities are determined: {a(), b(),

c(), dQ),e()} for revisionr; and £, = {a(), f(),b(),d(),e()} for r5. Until now, we know that

in revisionr, functionc() has been removedy( — F,) andf() has been inserted, — F).

Next we compare for each entity the respective source code parts (indicated by thick lines) and
recognize thab() has actually been changed. All other entities have been unchanged because
thediff between them is empty.

If an entitye is renamed tgf, the approach above will recognizeas deleted and as inserted.

But detecting renaming is important because otherwise all information prior to renaming is
lost for mining. Using text similarity measures we can recognize such renaming: Measure the
similarity of the content of each entitye FE; — E; to the contents of each entifye F, — E;.

If a given threshold is reached theas been renamed fo As changes between two revisions

are usually small there is no need for a sophisticated clone detecting algorithm.

ROSEprovides an own extendible framework for mapping changes to syntactic entities based
on the above algorithm. Extensions are provided by classes that decompose files into entities.
Currently,ROSEcan deal with the following file types:

JAVA, C, C++. Classes methods andinitializations of arrays are recognized for these lan-
guages. Although the used technique sounds simple (counting brackets), dealing with
preprocessor commands is tricky and involves many special cases (e.g., for conditionals).

Running the preprocessor instead is not reasonable because macro expansion may hide
changes.
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PYTHON. Based on indentation, we recognidassesandfunctions The approach is straight-
forward, except that tab characters have to be handled correctly. (The length of a tabulator
depends on its position in a line.)

TeX, TEXINFO . Chapterssectionsandsubsectionsire recognized forgX files.

ROSEalso deals with hierarchical structures. For instance, a change in a subsection also counts
as a change in the enclosing chapter; or, as in Figutthe change ofat. COLORS also affects
classCat and of course fil&nimals.java. Future versions dROSEwill integrate theCTAGStool

that maps tags (or entities) to source code, and vice versa.

3.4.2 Detecting Fine-Grained Changes in ECLIPSE

The ECLIPSEintegration ofROSEmakes use of thECLIPSEplatform [Obj03 which provides
a powerful and extensible framework for comparing files:

e Range Differencer-TheRangeDifferencer class compares two versions basedakens
This approach is based on the traditioddf algorithm MM85]. The tokens are created
using classes that implement the interfa@ekenComparator, e.g., for lines the class
DocLineComparator. The calculated differences are returned in a list.

e Structure Merge Viewe+TheDifferencer class compares two versions of any giveer-
archical structureand returns a delta tree describing each change in detail. The structure
is created with an implementation of the interfaSeuctureCreator. The fearless like
ROSEuse existingnternal classe$ e.g., thelavaStructureCreator.

Furthermore ECLIPSE provides an easy access J&VA abstract syntax trees and facilitates
further analysis of source code. The only drawback is that many of those features cannot be
executed from the command line. For that reagiSEdoes not us&CLIPSEfeatures during
preprocessing.

3.4.3 The Database Schema for Entities

All computed fine- and coarse-grained entities are stored iIRO®Edatabase. Figurd.9on
the next page shows the tables that are relevant for entities:

Entities contains all entities exactly once, regardless whether they have been changed or not.
An entity with nameEntityNamads identified by itsEntitylD. Additionally, it has a refer-
ence to the enclosing filélelD, which is a foreign key to tablEiles. The type of such
an entity is stored antityTypelD which is a foreign key to tablEntity Types

2|t is dangerous to usieternal classes, because they may change without prior announceRied1]] How-
ever, most interesting featuresleCLIPSEare internal.
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Checkins Diffs
PK,FK1 | FilelD . PK,FK1,FK2 | FileID
PK RevisionlD |- 07 PKFK1 LeftRevisionID
PK,FK2 RightRevisionlD
CheckinTime 41 0.*
Plus Diff
Minus
State
BranchPrefix
FK2 TransactionlD
A A
1 1 EntityTypes

PK | EntityTypelD

TypeName
TypeDescription
1
0.* 0.* o Files
ModifiedEntities =
Entities PK | FilelD
PK,FK1,FK2 | FilelD
PK,FK1 LeftRevisionlD . PK | EntitylD o+ 1 QualifiedFileName
PK,FK2 RightRevisionID u» ——p| FK1 | DirectoryName
PK,FK3 EntitylD EntityName FileName
FK2 | FilelD FileExtension
Action FK1 | EntityTypelD KeywordExpansion

Figure 3.9: ROSEDatabase Schema: Tables for Entities

EntityTypes are, for instancdfjles classesmethodsfields sectionssubsectionsetc. A type
calledTypeNames identified by arEntityTypelDand described by &ypeDescription

ModifiedEntities stores all entities that have been modified between two subsequent checkins.
The kind of modification—added removed or changed—is stored inAction Recall that
ActionandEntitylD form an item. The first revision is referenced yl€ID, LeftRevi-
sionlD) and the second bylelD, RightRevisionlD).

Diffs contains output of thdiff algorithm between two revisioneftRevisionIDandRightRe-
visionID of a file FileID. This output is stored iDiff .

TableModifiedEntitiescontains even those entities that are not used by mining. For efficiency,
a special table calletineitemswill be created for mining, containing only relevant items (for
details see Sectid.6).

3.5 Data Cleaning

This section discussamise—that is transactions that will likely induce or contribute to in-
correct results—and presents appropriate cleaning techniques. However, noise evolves from
several kinds of transactionfarge transaction®ften originate from infrastructure changes,
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import transactionscontain complete subsystems, amerge transactionsimply reproduce
changes. Note that transactions can fit in multiple categories, e.g., large merge transactions.

ROSEperforms two kinds of data cleaning:

Explicit data cleaning identifies noisy transactioriseforemining (during preprocessing) and
tags them so that they can be ignored later on. (Recall the attribhtEsein table
Transactiong

Implicit data cleaning is performedafter mining and is based on the observation that rules
induced by noisy transactions usually are weak compared to regular rules. In some cases,
noise strengthens existing rules, but it never makes rules disappear. Thus, concentrating
on only strong rules filters out most noisy rules.

ROSEuses explicit data cleaning for large transactions, and implicit data cleaning for import and
merge transactions. Detecting user-created noise, like unrelated changes within one commit, is
out of reach for any approach. Although program analysis might be used, this conflicts with the
goal to recognize dependencies that are undetectable by program analysis. (Program analysis
would consider exactly these dependencies as noise.)

3.5.1 Large Transactions

Large transactions are very frequent in real-life. Here are two examplesSJRENSSL

¢ “Change #include filenames frorifoo.h> [sigh] to <openssl.b-.” (552 files)
e “Change functions to ANSI C.(491 files)

As the log messages indicate, the files contained in these transactions have been changed be-
cause of some infrastructure changes (a new compiler version), and not because of logical
relations.

A solution is to ignore transactions of size greater thaim the analysis. The bound depends
on the examined software project. If desired, suspect transactions can be investigated manually
in order to guarantee that they are actually noise.

ROSEusesN = 30. This bound has been determined by investigating seztal transac-
tions. This bound may sound low, however, a transaction of 30 files contributes to at’feast
association rules and increases the complexity for traditional mining algorithms dramatically.

3.5.2 Import Transactions

An import transaction consists exclusively of new files and contains in many cases a complete
subproject. Two examples taken fraeCCare:

¢ “Initial import of libgcj” (371 files)
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Changed files
|AB | CD]| | EF | [ GH|
0 0

Branch can continue

Branch
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single branch are
possible

Merge

O = Commit/Transaction Point

Figure 3.10: Merges Considered Harmful

¢ “initial import of Java front-end’(43 files)

Considering such transactions for mining induces many relations between unrelated entities.
It is straightforward to detect such transactions: Simply check for each transaction if all files
are additions to th€VsS repository. Another possible approach is to ignore additions in all
transactions.

3.5.3 Merge Transactions

Another more sophisticated kind of noise are merges of branaS simply reproduces all
changes made to one branch to the other—in one large transaction. One real-life example taken
from GCCis

“mainline merge as of 2003-05-045874 files)

Figure3.10shows a smaller example. On the branch four transactions have been committed:
{A, B}, {C, D}, {E, F}, and{G, H}. These files are now again changed at the merge point
within a transaction that contains all changes made on the bradct3, C, D.E, F, G, H}.

Merge transactions are noise for two reasons:

1. They contain unrelated changes, egjandC.

2. They rank changes on branches higher (those changes are duplicated)aag;.

Taking such transactions into account has a significant influence on the results. Thus, transac-
tions that resulted from merges should be identified and ignored.

Unfortunately,CVS does not keep track of which revisions resulted from a merge. Michael
Fischer et al. proposed a heuristic to detect these reviskG()3h. For each file on a branch

a potential merge point is determined and verified using similarity measures. If the potential
merge point is rejected, another one is tested until a valid merge point is found, or all revisions
have been tested. This approach is restricted to merges to the main branch, but it is straightfor-
ward to apply it to other branches. Additionally, they work only on revisions instead of analyz-
ing complete transactions. Analyzing transactions simplifies the detection of merges because if
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a merge is detected for a single file, the whole transaction is probably a merge. Nonetheless,
automatic merge detection is difficult to realize because of the large number of existing merge
policies. For example, as FiguBelOindicates, the development can continue on both branches
after a merge, creating additional complexity for all heuristics.

A simple but powerfubuspect & verifyapproach is based on log messages and the observation
that merges are well-documented in those messages:

1. All transactions whose log message contains a “merge” (case-insensitiva)specto
be a merge transaction.

2. Check each suspect transaction manually \arify merge or not. This step is essential
to avoid errors for log messages that incidentally contain a “merge”, like the ECLIPSE
transaction “New isMerge(), isMergeWithConflicts(), and setMerge() methods”.

Although this approach sounds time-consuming, the verification usually takes only a few min-
utes, which is nothing compared to the cost of designing and implementing an equal automatic
approach.

3.6 The Output of Preprocessing

The output of the preprocessing phase are fine-grained changes, represented by items and
grouped to transactions. All these results are linked in one database table (seeS3Higwre
the next page).

Lineitems contains for each transactidmansactionIDthe items, represented #ction and
EntitylD. Additionally, the typeEntityTypelDof each entity , the enclosing fillelD,
and the start timestamixBeginTimef the transaction are stored. Most datd mfeitems
is redundant in order to avoid extensive join operations.

ROSEalways mines on the finest possible granularity: for source-codeeathodor field level,
for documentation orsubsectiorievel, and for all other files, e.gplugin.properties, on file
level. Thus, only those items are inserted into tdbleitems We will discuss the mining
approaches in the next chapter.
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Files Transactions
PK [EilelD PK | TransactionlD
QualifiedFileName Author
FK1 [ DirectoryName Message
FileName MessageMD5
FileExtension BeginTime
KeywordExpansion Lineitems |0.” 1 | EndTime
1 PK,FK1 | TransactionID IsNoise
o +| PK,FK2 | EntitylD
FK3 EntityTypelD
FK4 FilelD
— 1 0.* Action
Entities R —— TxBeginTime
- EntityTypes
PK | EntitylD 0.*
PK | EntityTypelD
EntityName 1>
FK2 | FilelD TypeName
FK1 | EntityTypelD TypeDescription

Figure 3.11: ROSEDatabase Schema: Tables for Mining
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Chapter 4

Mining Association Rules

There are far more papers published on algorithms to discover association rules
than there are papers published on applications of association rules.
— David Hand, Heikki Mannila, Padhraic Smyth idHfS01]

The most popular application for association rule mining is market basket analysis. Based
on sales transactions, frequent patterns are searched and returned as association rules. One
common example is that diapers and beer often are sold together. Such information is valuable
for cross-selling, thus increasing the total sales of a company. For instance, a supermarket can
place beer next to diapers hinting to parents that they should buy not only necessities for their
baby but also luxury for themselves.

ROSEdoes pretty the same thing for software developers. It searches for patterns within the ver-
sion history and presents related entities in a view next to the source code (recallE&yome
page3). However, we have to keep in mind that the objectiveR@EEare different from those

of supermarketsROSEdoes not benefit by selling diapers, beer, or changes. In other words, it
has no interest in increasing the total number of changes by developers.

The objectives pursued IBOSEare:

o Simplify navigation through source code.

e Avoid errors due to missing updates.

We can think ofROSEas the owner of a small shop around the corner whose main interest are
happy customers. Of courseOQSEhas to take a small fee which is the version history plus
some computing power.

In this chapter we will discuss the techniques use®0gEto provide its functionality. We will

start with the concept of association rules and show RO8Euses them. Afterwards, we will
introduce a general mining technique, called the Apriori algorithm, and present an improved
mining algorithm forROSE
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4.1 Association Rules

As indicated before association rules represent spateern For instance, the following rule
represents the patterrikgys[], initDefaults(), plugin.properties} within the version history of
ECLIPSE

changefkeys[]) = changeifitDefaults()) A changeglugin.properties) [0.875]
There are two different interpretations for this rule:

e The descriptiveinterpretation directs to the past: Whenever the user changed the field
fKeys[], she also changed the methedDefaults() and the fileplugin.properties with a
certainty of 87.5%.

¢ In contrast,predictiveinterpretation (as used IROSH directs to the future: Now, the
rule means that, whenever the user changes thefkejd[], sheshouldalso change the
methodinitDefaults() and the fileplugin.properties. Here, “should” means that the rule is
based on experience (with a certainty of 87.5%) and does not constitute absolute truth
the character=-" is thus not to be read as a logical implication that always holds.

As mentioned before, rules havepmbabilisticinterpretation based on tl@@mount of evidence
in the transactions they are derived from. This amount of evidence is determined by three
measures:

Frequency. Thefrequency(or coun) determines the number of transactions the rule has been
derived from. Assume that the fiefdleys[] was changed in 8 transactions. Of these
8 transactions, 7 also included changes of both the metiitdéfaults() and the fileplu-
gin.properties. Then, the frequency for the above rule is 7.

Support. The supportrelates the frequency of a rule to the total number of transactions. As
ECLIPSEhas 44,786 transactions the support for the above ralglisr86 = 0.00016.

Confidence. The confidencaletermines the certainty of the consequence if the left hand side
of the rule is satisfied. In the above example, the consequence of chamitiefaults()
and plugin.properties applies in 7 out of 8 transactions involvirigeys[]. Hence, the
confidencdor the above rule i§/8 = 0.875.

For the formal definition of association rules we addtifS0Y. LetZ = {i4,...,14,} be the set
of all items recognized during preprocessing. Recall thateanis an entitye combined with
an actior, e.g., change entity. Let D be the task-relevant data, i.e., the set of all transactions
where each transactidiiis a set of items such thdt C 7.

! Note that using predictive interpretation an association meleercan constitute absolute truth, even if its
certainty is 100%.

2 Currently, ROSEmines only items where the action is “change”. The resulting rules are csihigte-
dimension association ruldsecause each action corresponds to one dimension.

3 Recall that we have two different notations for transactionsis based on the composition of changes
represented by functions, afitlis a list of items, in particular of the changed entiti@OSEuses the latter for
mining.
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An association rules an implication of the forrd = BwhereA c Z, B C Z,andANB = ().
Theantecedenbf a rule isA and theconsequenis B. Usually, A and B are conjunctions, but
it is possible to use any kind of proposition. However, we will focus on conjunctions.

Formally, we define the frequency, support, and confidence of an association rule as follows:
e Thefrequencyof a setX in the task-relevant da@® is defined as:
frequency,(X) = {T|T € D, X C T}
Thefrequencyof an association ruld = B in the task-relevant dat® is defined as:

frequency, (A = B) = frequencyA U B)

e Thesupportof a setX in the task-relevant daf is defined as:

supporp () — =TI — piy)

Thesupportof an association ruld = B in the task-relevant dat® is defined as:

frequency, (A U B)

supporf,(A = B) = ]

— P(AU B)

o Theconfidencef an association ruld = B in the task-relevant daf® is defined as:

frequency,(A U B)

confidencg(A = B) = frequency,(A)

= P(B|4)

We omit the task-relevant da@ if it is known in the context or irrelevant. The shorthand
notationr(s; ¢c| denotes a rule with s = supportr) andc = confidencér).

For a set of itemg, many possible rules exists: Each of té patterns contributes to one
or more rules. Thus, thresholds for suppaonir{_supp and confidencengin_conj are used to
reduce the number of total rules. A rulés calledstrongif and only if supportr) > min_supp
andconfidencé-) > min_conf

Obviously, the support threshold can be replaced by a frequency threshold:

min_freq= [min_supp |D||
ROSEuses frequency instead of support for two reasons:

1. Frequency is easier to understand for developers
Support values like 0.00016 give them no idea whether this value is high or low. In
contrast, the corresponding frequency of 7 clearly expresses the significance of the rule.

2. Frequency allows comparison of different projects.
It is not possible to reuse a support threshold for another project. ComsidérSEwith
a total of 44,786 transactions, adEDIT with only 1,905 transactions. Usimgin_supp=
0.0001 we mine inECLIPSEwith min_freq= 5, but in JEDIT only with min_freq= 1.
Using such low frequency thresholds is not reasonable.
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Confidence is an Indicator for Certainty.

The confidence of a rule can be misleading as the example below shows:

B B

20% | 5% | 25%
70% | 5% | 75%
90% 10% 100%

A
A

Consider the rulel = B with the high confidence oP(B | A) = Pg&’f) = 220 — (.80.
This rule is misleading since the rule has a high confidence, but the occurredcactdally
decreaseshe likelihood of B from P(B) = 0.90 to P(B | A) = 0.80. This observation led to

a variant of association rule mining called correlation minisgM9§|.

ROSEdoes not care if a rule is misleading or not. In the example ab@ves been changed in
80% after a change oA, and is therefore still important for developers.
Support is an Indicator for Statistical Significance.

The support value of a rule is a measure for its statistical significance. If the following condition
holds, A and B are likely independent and their co-occurrence in transactions is incidentally:

supportA = B) ~ supportA) - supportB)

However, this is not the case for the following condition:

supportA = B) > supportA) - supportB) (4.1)

This condition can be transformed in an in-equation that is based on the confidence of a rule:
supportA = B) > supportA) - supportB)

supportA = B)
supportA)

> supportB)

frequencyA = B)- | D |
frequencyA)- | D |

> supportB)

supportA = B)
supportA)

> supportB)
confidencéA = B) > supportB) (4.2)

However, we can determine an upper boundsiepportB). It is obvious that the support is
highest for a singletos. Table4.1on the next page contains the most frequently changed files
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| Project (#Tx8) | File | Count| Max. Support|
ECLIPSE org.eclipse.jdt.core/buildnotes_jdt-core.html 2,403 0.054
(44,786 Txs.) | org.eclipse.jdt.debug/buildnotes_jdt-debug.html 1055
org.eclipse.debug.core/buildnotes_platform-debug.html 548
org.eclipse.ant.core/buildnotes_platform-ant.html 357
org.eclipse.jdt.ui/buildnotes_jdt-ui.html 314
GCC gcc/gec/Changelog 21,261 0.463
(45,983 Txs.) | gcc/gec/version.c 4,361
gcc/gec/cp/Changelog 3,913
gcc/gec/testsuite/Changelog 3,370
gcec/libf2¢/libl77/\Version.c 3,265
GIMP gimp/ChangelLog 5,795 0.660
(8,783 Txs.) gimp/po/ChangelLog 884
gimp/po-plug-ins/ChangelLog 554
gimp/configure.in 476
gimp/po-script-fu/ChangelLog 285
JBOSS build/jboss/build.xml 459 0.040
(11,543 Txs.) | jboss/build.xml 217
jboss/srcletc/conf/default/jboss-service.xml 151
contrib/jetty/build.xml 142
jboss/src/etc/conf/default/standardjbosscmp-jdbc.xml 135
JEDIT jEdit/doc/TODO.txt 578 0.304
(1,905 Txs.) jEdit/doc/CHANGES.txt 560
jEdit/org/gjt/sp/jedit/textarea/JEditTextArea.java 208
jEdit/org/gjt/sp/jedit/jedit_gui.props 184
jEdit/org/gjt/sp/jedit/jEdit.java 143
KOFFICE koffice/kword/kwview.cc 990 0.051
(19,781 Txs.) | koffice/kpresenter/kpresenter_view.cc 866
koffice/kword/kwtextframeset.cc 685
koffice/kspread/kspread_view.cc 592
koffice/kword/kwdoc.cc 592
PYTHON python/dist/src/Misc/NEWS 1,022 0.036
(28,802 Txs.) | python/dist/src/configure.in 484
python/dist/src/Python/ceval.c 372
python/dist/src/Objects/typeobject.c 340
python/dist/src/Doc/Makefile 309
POSTGRESQL pgsql-server/doc/TODO 1,050 0.082
(12,894 Txs.) | pgsql-server/src/backend/parser/gram.y 410
pgsql-server/src/bin/pg_dump/pg_dump.c 277
pgsql-server/configure 264
pgsql-server/src/backend/postmaster/postmaster.c 263

Table 4.1: Most Frequently Changed Files
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and the resulting upper bound feupportB). In most cases this bound is well below 10%.
Thus, using a confidence threshold of at least IROGEIs on the safe side and can set the
significance test aside. For the projects with a bound above RG%BEwill likely recommend
entities that are not statistically significant, but are still justified (§@DO.txt for JEDIT).

4.2 Association Rules in ROSE

4.2.1 Choosing the Task-Relevant Data

ROSEsearches for patterns in the task-relevant datahich consists of past transactions that
have been inferred during preprocessing. Patterns evolve during time; one pattern being im-
portant may become less important or even incorrect later in a project. In addition, the set of
entities constantly evolves, too (functions are added or removed). Thus, the concept of patterns
softens.

These problems can be addressed using two different approaches:

Mine from transactions of the last, say, year.Thus, only new or constantly occurring pat-
terns are found. Additionally, new patterns establish fast because strong old patterns
are discarded.

Rate new transactions higher than old onesThis approach introduces an implicit aging for
rules. Still, all patterns (old and new ones) are found, but usually new or constantly
occurring patterns are rated higher than old ones.

Currently, ROSE applies none of these techniques because the main focus of this work is on
general predictiveness. The realization of the approaches above will be future work.

4.2.2 From Rules to Recommendations

As soon as the programmer begins to make changefRQB&client suggests possible further
changes. This is done @pplyingmatching rules. In general, two notions of matching rules
exist:

Weak matching. A rule A = B matchesa set of items: (e.g., changed entities) if the an-
tecedent is a subset bf i.e., A C X.

Strong matching. A rule matchesa set of itemst if this set is equal to the antecedent of the
rule, i.e., therule i& = B.

For both notions, the antecedent of a rule is satisfied, but only for strong matching it is satisfied
exactly. We refer to the set of iterdsas thesituationin which ROSE makes recommendations.
Recall that an item is an action, e.g., change, and an entity.

4Table4.1: Number of transactions @fter data cleaning.
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¥ Preferences

- Warkbench #| | Compare/Patch
Appearance
Compare/Patch General | Text Compare
+- Editors
v Open structure compare autamaticall
File Associations & 3 o
Fonts [ Show additional compare information in the status line
kKeys [ Ignore white space

Figure 4.1: An Example for an ECLIPSE preference

Considering weak matching rules for recommendations is not reasonable because this bypasses
support and confidence thresholds. Suppose that we have three fu@tigsandh(). The
functionsg() andh() exclude each other. Thus, no strong rifje\ g() = h() exists because it

has no support. The user chan@@andg(). Using weak matching, we would consider the rule

f() = h() and falsely recommenia) —which is excluded by the occurrenceggf. Thus,ROSE

uses onlystrongrules andstrongmatching.

How doesROSE compute suggestions? The set of suggestions for a situatiemd a set of
rulesR is defined as thanionof the consequents of all matching rules:

apply(2)= ] B

(E=B)eR

Recall Figurel.2on page3; assume the task of a programmer is to exteadIPSE® with a new
preference. Usually, a preference consists of GUI elements, a default value, and a description
(see the example in Figurel). In Figurel.2the programmer has extended the arfigys]]

in file ComparePreferencePage.java. Thus, the situatiol; is:

¥, = {changéfkeys[]) }
ROSEfinds many matching rules for this situation; one of thentis
changefKeys[]) = changeifitDefaults()) A changeglugin.properties) [7; 0.875]

Using the ruler in the given situatiort;;, ROSEsuggests the consequentrof
apply,; (1) = {changéinitDefaults()), changéplugin.properties) }

The entire seR of actually mined rules contains further rules, though. The actual result of
apply; (1) is shown in Figurel.2, ordered by confidence. In practidRQSEuses all strong
rules for recommendations.

Let us assume the user decides to follow the first recommendatianitidefaults() (with a
confidence of 1.0); it is obvious that a new preference should get a default value. So, she

Sltis important to capture th&® OSEis used inandon ECLIPSE
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changes the methaditDefaults(). Again, ROSEproposes additional changes which are in this
case the same as before, except thatina@efaults() is missing. The situation now additionally
containgnitDefaults():

Yo = {changéfKeys[]), changéinitDefaults()) }

The user examines methoc®ateGeneralPage() andcreateTextComparePage() because they
are in the same file @keys[] andinitDefaults(). Each of these two methods creates a page where
preferences can be set (in Figurd pageGeneralis open). Now, she extends theeateGen-
eralPage() method, resulting in a new situatiary:

Y3 = {changéfKeys[]), changginitDefaults()), changécreateGeneralPage()) }

Given this situation, a minimum support&fand a minimum confidence 0f5, ROSEcomputes
the following rules:

Y3 = {changéplugin.properties)}  [5;1
Y3 = {changéTextMergeViewer())} [3;0
Y3 = {changépropertyChange())} [3;0.
Y3 = {changé¢build.html) } (3;0

Applying the above rules yields the union of the consequents of all rules because they have the
same antecedent and match the situatign ROSEwill rank the entities by their confidence,
suggesting the user to change the filgyin.properties next. This file contains the descriptions

that are used for the labels of a preference (e.g., “Open structure compare automatically” in
Figure4.l).

The next two sections present mining techniques: Apgori algorithm mines forall strong
rules; theROSEapproach in contrast mines only fstrongandmatchingrules. Whether rules
are matching or not depends on the situatibim which ROSEis called.

4.3 The Apriori Approach for Mining Association Rules

One of the most popular approaches for minatigstrong association rules is the Apriori algo-
rithm [AS94, MTV94]. It takes amin_suppand amin_contthreshold and the task-relevant data
D as an inptit

Internally, the Apriori algorithm represents patterns viiéimsets. A k-itemset is an itemset of
sizek. An itemset is calledrequentif it satisfies the support (or frequency) threshold. The set
of all frequentk-itemsets is denoted ds..

The Apriori property helps to reduce the search space for frequent itemsets:

All nonempty subsets of a frequent itemset must also be frequent.

The threshold for the frequeneyin_fregis computed usingnin_suppand| D |.
’In data mining literature item sets are spelled as itemsets.
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This is obvious because the support increases, if ité&imare removed from an itemsét
P(I) < P(I — X). Thus, if I was frequentmin_supp< P(I), thenl — X is frequent,
too: min_supp< P(I) < P(I — X).

The Apriori algorithm consists of two phases:

1. Find all frequent itemsets.
Frequent itemsets are generated level-wise: Eirgs computed, thet; is used to find
Ly which is used to computés, and so on. This phase terminates if fok @0 more
frequentk-itemsets are found. Each level, i.e., the creation of agetonsists of four
steps:

— Thejoin step:
A candidaté:-itemsetC, is generated by joining,_; with itself. The join condition
is that the firstt — 1 items of two itemset$, and/, are equal and only the last
elements differ?, [k] < l5[k].

— Theprunestep:
Remove itemsets fror@', that cannot be frequent by means of the Apriority prop-
erty. The check whether subsets are frequent or not can be done quickly by main-
taining a hash tree of all frequent itemsets.

— Thescanor countstep:
Scan the databagde and count the frequency of each remaining candidae,in

— Thecreatestep:
The frequenk-itemsetsl, are those sets i@}, that satisfy the frequency threshold.

Searching for frequent itemsets is the most time consuming part of the Apriori algorithm;
each level requires a full scan of the database. Thus, the support (or frequency) threshold
has a huge impact on running time.

2. Generate association rules from frequent itemsets.
For each frequent itemskall nonempty subsetsare created. Such a subset results in a
rules = [ — s if and only if:

confidencés = | —s) = P(l— s | s) = fr?;]el;ir;c;yéy;)s) > min_conf

The test for the support (or frequency) threshold can be omitted because rules are created
from frequent itemsets, and therefore the following test is always true:

support(s =1 —s) = P(l —sUs) = P(l) > min_supp

Figure4.2 on the following page shows an example for the Apriori algorithm. The candidate
1-itemsetC; corresponds to the set of all iteris The count step reveals that itemg$ét} is
not frequent. Next the candida®eitemsetsC, are generated by joining,; with itself (C is
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Relevant transactions: D
TxID | List of items
100 | A/B,C
200 | A,D
300 | A,B,C
400 | B,D
500 | A,D
600 | B, E
700 | A, B
Generate frequent 1-itemset’,
C1 Ch I
ltemset ltemset| Count !
Itemset| Count
{4} {ay | 5 a7 5
{B} count {B} 5 create
- — | {B} 5
() ey | 2 ) | 2
{D} {p} | 3 o | 3
(B} (B} | 1
Generate frequent 2-itemsetl.,
Cs Co Cs
[temset Itemset ltemset | Count Lo
{4, B} {4, B} {4, B} 3 Itemset | Count
join {A’ C} prune {A’ C} count {A> C} 2 create {A7 B} 3
{A,D} | — | {A,D} {4, D} 2 — | {A,C} 2
{B,C} {B,C} {B,C} 2 {4, D} 2
{B,D} {B,D} {B,D} 1 {B,C} 2
{c,D} {c,D} {c.p}| o
Generate frequent 3-itemsetl3
Cs
Itemset Cs Cs Ls
join {A,B,C} | _Pune Itemset | _count Itemset | Count | _create Itemset | Count
{A,B,D} {A,B,C} {A,B,C} 2 {A,B,C} 2
{A,0,D}
Generate association rules fromL, and L3 _ _
Frequent itemset Rule Confidence| Strong
{4, B} A= B 3/5=0.60 | yes
B= A 3/5=0.60 | yes
{4,C} A=C 2/5 = 0.40 no
C=A 2/2=1.00 | yes
{4, D} A=D 2/5 = 0.40 no
D= A 2/3=0.67 | yes
{B,C} B=1C 2/5 =0.40 no
C=21B 2/2=1.00 | yes
{A,B,C} A= BAC | 2/5=0.40 no
B=AAC | 2/5=0.40 no
C=AAB|2/2=1.00| yes
AANB=C | 2/3=067| yes
ANC =B |2/2=1.00| vyes
BANC=A|2/2=1.00| vyes

Figure 4.2: An Example for the Apriori Algorithmifin_freq= 2; min_conf= 0.5)
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always the cross product éf;). Fork = 2 it is never possible to prune any elements because
all subsets are singletons and always containefl;inThe count step identifie§B, D} and

{C, D} as not frequent. Next the candid&t@emsets’’; are generated from, using the join
condition/; [1] = I5[1] A [1]2] > [2[2]. This returns three itemsets. Two of them are not frequent

by the Apriori property and pruned: Férl, B, D} the subsef B, D} is not frequent and for the
itemset{ A, C, D} subsef{C, D} is not frequent. For the third candidafd, B, C'} a database

scan verified that it is frequent. After all frequent itemsets have been computed, each itemset
in L, and Ls is used to create rules. The confidence is computed for each rule and only strong
rules are returned.

Keep in mind, that the Apriori property can only tell that an itemsetasfrequent. A check
for an itemsebeingfrequent always has to scan the database.

The Apriori algorithm has several drawbacks: The dataliaserepeatedly scanned for each
level of the frequent itemset creation. Additionally, the creation of candidate sets is expensive.
If there arel0* frequent 1-itemsets abol®® candidate 2-itemsets are generated. Moreover, to
discover a pattern of size 100, the Apriori algorithm must create more2faicandidates in

total.

It is possible to mine association rules without candidate generation based on a divide-and-
conquer strategy. The algorithm is calleelquent-pattern growthnd also known asSP-growth
[HPYOQ.

4.4 The ROSE Approach for Mining Association Rules

The classical use of the Apriori algorithm is to compute all rules above a minimum support and
confidence. However, computing all rules is useful for searching general patterns but not for
making recommendations:

The coverage of Apriori is too low. The coverageis directly proportional to the number of
distinct antecedents within a rule set A high coverage is desirable becal&@SEcan
then make recommendations in most cases. A low coverage mear®8gis often
clueless.

The coverage can be increased by extending the rul® setg., by lowering the con-
fidence and especially the support thresholds. However, for too low support thresholds
Apriori may take months. The bottleneck is not Apriori but the circumstanceRtgets

too large—greater tha2i”! in worst case.

Of course, too low support thresholds have a bad influence on the quality of recommen-
dations. Nevertheless, the developer should be able to decide on support thresholds and
not any technical boundaries created by the Apriori algorithm.

Search for matching rules is expensive As mentioned aboveR gets very large—for most
projects a multiple of the number of transactions. Thus, the search for matching rules is
expensive ifR does not fit into memory and no suitable index structures are available.
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Therefore ROSEuses its own mining algorithm that minesly requiredruleson the fly This
algorithm is based on two optimizatiofs:

Mine with constrained antecedents.In our specific case, the antecedent is equal to the situa-
tion; hence, we only mine rulem the flywhich matchthe situation, i.e., rules that are
Y = B. Mining with such constrained antecederf®&/p97] takes only a few seconds.
An additional advantage of this approach is that it is incremental in the sense that it allows
new transactions to be addedZ®obetween two situations. Thus, recommendations are
always up-to-date.

Mine only single consequents.To speed up the mining process even more, we only compute
rules with a single item in their consequent. So, for a situatiprthe rules have the
form X = {i}. For ROSE such rules are sufficient becaus®SEcomputes the union
of the consequents anyway. Therefore, considering non-singleton consequents is su-
perfluous: For each iteh e B of aruleX = Bls;c| exists a single consequent rule
Y. = {i} [si; ¢;] with higher or equal support and confidence valsie® s andc; > ¢
becausdrequency> U {i}) > frequencyX U B).

The ROSEmining algorithm consists of three steps:

Find transactions. Find all transactiong that contairall items of the situatiolx, i.e.,> C T.
Using the database schema of Chaptand relation algebra, we denote these transactions
asoTransactionid Lineitems:- X).

Group & sort.  Group the itemd.ineitems> oTransactionig Lineitems+ ¥) of these transac-
tions byEntityID, and sort them by their descending count.

Create rules. Each group corresponds to exactly one single-consequent rule.

— The frequency oE is the maximal count of a group (which is likely for an group of
an item: € Y and is always for the first returned group).
— The count for a group of an iteims the frequency for the rulg = {i}.
— The confidence of a rulg = {i} is
frequencyX = {i})
frequencyX)

— Ignoretrivial rules—that are rules = {i} with; € X.

Return only rules that satisfy the support and confidence thresholds.

Figure4.3 on the next page shows an example for R&@SEmining algorithm. Suppose, the
situation is> = { A, B}. First,ROSEsearches all transactions that confairl00, 300, and 700.

Next, it groups exactly those transactions by items and sorts them by their descending count.
The highest count is for iterd, thus thefrequencyfor X is 3. The rules ford and B are trivial
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Situation ¥ = {A, B} andk =| X |=2

Generate frequentk-itemsets andk + 1-itemsets that containX:

TXID

List of items

100
200
300
400
500
600
700

A, B,
A, D
A B
B,D
A, D
B, E
A B

TXID | List of items Item | Frequency

find 100 A’ B' C group & sort A 3 = {A’ B }
300 | A,B,C - B 3 ={A, B}
700 | A,B C 2 ={A,B,C}

Create single-consequent rules with antecedeiit

Item Frequency
A | frequencyX) =
B 3
C 2

{A,B} = {A}is trivial
{A,B} = {B}is trivial
{A,B} = {C} has frequency=2, confidence=2/3 and is strong

Figure 4.3: An Example for the ROSE Algorithmm{in_freq= 2; min_conf= 0.5)

(because both are in the situation), thus they are ignoredC'Ftive ruleX = {A, B} = {C}
is strong because the thresholdsrun_freqandmin_confare satisfied.

The optimizations above make mining very efficient: The average runtime of a query is about

0.5s for large version histories likeCC.°

ROSEprovides another mining algorithm fgingle antecedent single consequenés{a} =

{b}. Such rules are less precise for recommendations, but valuable for measurement and visu-
alization of coupling between entities (see Sectohfor some examples). The algorithm is

exactly like the Apriori algorithm presented in Sect3, except that onl2-frequent itemsets
are generated and used for rule creation.

In the next chapter we will present some examples for association rules.

8These optimizations have already been used in the example of Subgk2tdn
SMeasured on a PC with Intel 2.0 GHz Pentium 4 and 1 GB RAM.
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Chapter 5

Real Life Examples

The young men know the rules.
The old men know the exceptions
— Oliver Wendell Holmes

This chapter gives anecdotic evidence for the usefulneBOSE We start with the most basic
kind of rules calledsingle antecedent single consequernés. Then we show the superiority of
single consequent ruledVe will see in the last section thRIDSEIs not restricted to specific

programming languages—it even detects relations between source code and text files.

5.1 Visualization of Binary Coupling

Single antecedent single consequeltes (or sometimes referred tolaimaryrules) are the most
simple kind of association rules. They are implications of the féih=- {b} with a,b € Z.

Their value for recommendations is limited because they cannot take advantage of the situation
Y. This means whenever a user changes more entitieseeagd f, an entityg may be pro-
posed, although the association ralke f = ¢ has no or to few support. Thus, using such rules,
one will get more but less precise recommendations.

However, binary rules are very important for measurogipling between modules, directo-

ries, files, or functions (which we subsume as entities): Two elements are coupled if they occur
together in at least one transaction. The stronger the support and confidence values are the
stronger is the coupling. Such coupling by simultaneous changes is referrebbtpcas cou-

pling [GJKT97, GIJKO3. However, we will prefer the ternevolutionary couplingoecause it

clearly states the domain of this kind of couplirdjqZ03).

Evolutionary coupling can be represented as a g@pk (V, E), with the entities as nodes

V' = £ and for each coupling between to entitiesnd f an edgde, ) € E. We will call these
graphscoupling graphs However, drawing such huge graphs will be expensive and provides
only unsatisfying results.

One special layout for coupling graphs grig&el-maps The idea is to visualize not the graph
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Directory A Directory Z

File A/A
File I/A
File Z/A

A/B
A/IC
A/D
AJE
Z/B
ZIC
Z/ID

File A/A
A/B
A/IC
A/D
AE

Directory A

File I/A

File Z/A
Z/B
Z/C
Z/ID

Directory Z

Figure 5.1: An Example for a Pixel-Map

itself, but its adjacency matrix. Each edge is thus represented by a pirgland each node as

two lines (one horizontal and one vertical). Thus, pixel-maps can easily visualize large graphs.
Figure5.1shows an abstract example for an pixel-map. For instancey/filés represented by

the third row and the third column.

Another advantage of pixel-maps is that using a specific order, e.g., lexicographically by direc-
tory and file name, we can emphasize a given structure. For instance the boldfaced blocks in
Figure5.1represent all coupling within directories. Everything outside these blocks is coupling
between different directories.

An important aspect is the use of color in pixel-maps. We can color a fixe) by:
e thesupportor frequencyof the rulex =y,
¢ theconfidenceof the rulex = y, or
o thecorrelationof the rulex = y which is:

supportz = y)
supportzx) - supporty)

correlation(z = y) =

Note that support pixel-maps are symmetric. Confidence and correlation pixel-maps are not
symmetric: The pixe(z, y) usually has a different color thay, ). All pixels (z,x) on the
top-down diagonal of a confidence pixel-map have the same confidencecealiidencéer =

x) = 1.0 and thus the same color.
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In the remainder we will focus on confidence pixel-maps. The color rangestfaenfor low
confidence values, t@d, for high confidence values.

5.1.1 Coupling within DDD

Figure5.2 on the next page shows such a confidence pixel-map fobDiz debugger. Each
pixel (z,y) represents the coupling between two fiteendy. The files have been sorted
lexicographically by directory and file name.

How do we read such pixel-maps? Basically, we lookgmesenceandabsenceof coupling.
This coupling may have different forms:

Pixels—Coupling between files.This is the most basic kind of coupling.

Lines—Coupling between a files and a directory.In Figure 5.2 the ddd/-directory consists

of two parts: thesource codendpictures(in directoryPICS). One can easily spot four
lines (for this example we take symmetry into account and consider only lines below the
diagonal):

— theupper horizontal linas the fileDDD.mk.in

— thelower horizontal lines the fileMakefile.bin

— theleft vertical lineis the filePICS/ddd-graph.eps

— theright vertical lineis the filePICS/FIX-XPM

ThusDDD.mk.in and Makefile.bin are coupled with th&I1CS/-directory; and the source
code is coupled witlPICS/ddd-graph.eps andPICS/FIX-XPM.

Blocks—Coupling between directories.Figure5.2 contains several blocks aligned to the di-
agonal, e.g., the source code block or pictures block in direatddy. These blocks
represent coupling within one directory.

But Figure5.2 also shows coupling between different directories, e.g., the block labeled
Testsrepresents coupling between tiestdirectory and the source code.

Concentrating on the absence of blocks, we will notice that most exti#oralies are
not coupled by evolution with the other parts@bD.

5.1.2 Coupling within ECLIPSE

Figure 5.3 on the following page shows a pixel-map for ti&/A debugging component of
ECLIPSE We can spot four independent parts that match different plug-iB€bfPSE

e theorg.eclipse.jdt.debug.jdi.tespdug-in:
Interestingly, almost no coupling exists within this plug-in.

¢ theorg.eclipse.jdt.debug.tegpdug-in.
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gcc/gec/dbxout.c gcc/gec/sdbout.c
dbx_debug_hooks sdb_debug_hooks
12
[12] [12]
4 10
10 >< 4
[10] [4]

xcoff_debug_hooks sdb_global_decl()

dbx. functions_end()

: dbx_symbol_name()

Figure 5.4: Evolutionary Coupling between Debugging Symbols&inC

¢ theorg.eclipse.jdt.debug.ylug-in:
This plug-in consists of two independent parts: itensand the actualser interface

e theorg.eclipse.jdt.debuglug-in:
Almost everything within this plug-in is coupled. But the strong (red) coupling appears
near the diagonal in subdirectories calkedl/, jdi interfaces/, andjdi/. Usually this is an
indicator for good architecture.

Note that there exists some coupling betweemtheel/ directory and theii/ directory of
theorg.eclipse.jdt.debug.uylug-in.

5.2 Association Rules Increase Clarity

5.2.1 Debugging Symbols in GCC

Consider Figuré.4, visualizing the coupling graph of some program entities indN& Com-
piler Collection GCC). We see two fileslbxout.c andsdbout.c (square rectangles) that issue
debugging symbols iDBX andSDB format, respectively.

Both files contain some entities, depicted as verticearablessuch aslbx_debug_hooks in
dbxout.c andmethodsuch asdb_global_decl(). The numbers in brackets show how frequently
the entity has been changed over the revision histo@Qf—xcoff _debug_hooks, for instance,
has been changed ten times. The number associated with each edge irtheatEtenthe
related entities have been changed together. So, we can see that

e In all 12 cases wherdbx_debug_hooks was changed, so waslb_debug_hooks, and
vice versa.

e In all 4 cases wheredb_global_decl() was changed, so were the othizbug_hooks
variables—in both files.
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i386.c i386.h

pentiumpro_cost

processor_cost

N\ /

Figure 5.5: Evolutionary Coupling between Processor Costs@C

e dbx_functions_end() anddbx_symbol_name() have been changed together, but never with
an entity insdbout.c.

However, such graphs are difficult to read, expecially if one is interested in multiple files. For in-
stance, we can express the relation between thedfbesut.c andsdbout.c using two unlimited
association rules instead of four binary rules:

changedbx_debug_hooks) A changefcoff_debug_hooks)
=- change¢db_debug_hooks) A change¢db_global_decl)
[frequency4, confidence0.40]

changeg¢db_debug_hooks) A change¢db_global_decl)
= changedbx_debug_hooks) A changefcoff_debug_hooks)
[frequency4, confidencel1.00]

5.2.2 Processor Costs in GCC

GCC has arrays that define the costs of different assembler operationsTiok processors:
i386_cost, i486_cost, pentium_cost, pentiumpro_cost, andké_cost. These have been changed
together in 11 transactions. In 9 of these 11 transactions, this change was triggered by a change
in the typeprocessor_costs. Figure5.5shows the corresponding binary relations.

With association rules the relation between the cost arrays and their type will be expressed more
clearly. For this example, three possible frequent itemsets are:

F; ={changéprocessor_cost)}

F, ={chang¢i386_cost), change¢i486_cost), changék6_cost),
changépentium_cost), changépentiumpro_cost) }

3 =FyUF,
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We can create the following association rule using the itemiSetad F3:

changéprocessor_cost) = chang¢i386_cost) A chang€i486_cost)
A changék6_cost) A changépentium_cost)
A changépentiumpro_cost)
[frequency= 9; confidence= 0.82]

So, whenever the costs type is changed (e.g., extended for a new opeRXiSEEUggests to
extend the appropriate cost instances,too.

5.3 ROSE Mines Everything

ROSEalso detects coupling that is out of reach for most program analyes:

Coupling between different programming languages.

ROSEIs not restricted to a specific programming language. In fact, it can detect coupling
between program parts written in different languages. Here is an example, taken from the

PYTHON library:

changé(function GrafObj_getattr(), _Qdmodule.c))
= changé(function outputGetattrHook(), gdsupport.py))
[frequency= 10; confidence= 0.91]

Whenever the C fileQdmodule.c was changed, so was tR¥ THON file gdsupport.py—a
classical coupling between interface and implementatiB®SEeven detects the affected
functionsGrafObj_getattr() andoutputGetattrHook(). Detecting such coupling might be
possible with program analysis, but will be very complex.

Coupling between source code and non-source code.
Recall the preference example from the Chagter

changefKeys[]) = changeiqitDefaults()) A changeglugin.properties)
[frequency7; confidence0.875]

Whenever a programmer extengSLIPSEwith a new preference (ifKeys[]), she also
has to set a default value (initDefaults() and a description for the user interfacepio-
gin.properties.

Coupling between source code and text files (pkeyin.properties) is undetectable by
program analysis. More than 12,000 of the 27,8Q0QIPSEfiles are configuration, build,
documentation, and images files and thus out of reach for program analysis.

1This rule also holds for the other direction, with the same support and (incidentally) the same confidence.
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Coupling between documentation.
ROSEcan also reveal coupling between items that are not even programs, afd3ine
GRESQLdocumentation:

changécreateuser.sgml) A changédropuser.sgml)
= changécreatedb.sgml) A changédropdb.sgml)
[frequency= 11; confidence= 1.00]

Whenever botlreateuser.sgml and dropuser.sgml have been changed, the filegat-
edb.sgml anddropdb.sgml have been changed, too.

The next chapter will give empirical evidence for the usefulnessasE
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Chapter 6

Evaluation

After these rule examples, let us now give empirical evidence for the following objectives:

Navigation through source code.Given a single changed entity, CROSEpoint programmers
to entities that should typically be changed, too?

Error prevention. CanROSEprevent errors? Say, the programmer has changed many entities
but has missed to change one entity. ®@SEfind the missing one?

Closure. Suppose a transaction is finished and the programmer made all necessary changes.
How often doesROSEerroneously suggest that a change is missing?

Granularity. By default,ROSEsuggests changes tonctionsand other fine-grained entities.
What are the results ROSEsuggests changesfitesinstead?

6.1 Evaluation Setting

For our evaluation, we analyzed the archives of eight large open-source projectsq Iadle

the following page). For each archive, we chose a number of full months containing the
last 1,000 transactions, but not more than 50% of all transactions asvaluation period.

In this period, we check for each transactiBrwhether its items can bgredicted from earlier
history:

1. We create dest case) = (@, ) consisting of aquery@ C T and anexpected outcome
E=T-0Q.

2. We take all transactiorig; that have been completed befdirae(7") as atraining setand
mine a set of ruleg from these transactions.

3. To avoid having the user work through endless lists of suggeswsEonly shows the
top ten single-consequent rulég, C R ranked by confidence. In our evaluation, we

1Table6.1: Number of transactions Iseforedata cleaning.
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History (Training) Evaluation
Project (in CVS since)
Description #Txns | #Txns/Day| #Etys/Txn Period #Txns
ECLIPSE (2001-04-28) 46,843 56.0 3.17 | 2003-03-01 to 03-31 2,965
integrated environment
GCC (1997-08-11) 47,424 22.4 3.90 | 2003-04-01 to 04-30 1,083
compiler collection
GIMP (1997-01-01) 9,796 4.1 4.54 | 2003-02-01 to 07-31 1,305
image manipulation tool
JBOSS (2000-04-22) 10,843 9.0 3.49| 2003-04-01 to 07-31 1,320
application server
JEDIT (2001-09-02) 2,024 2.9 4.54 | 2003-02-01to 07-31 577
text editor
KOFFICE (1998-04-18) 20,903 11.2 4.25| 2003-02-01 to 05-31 1,385
office suite
POSTGRESQL (1996-07-09)| 13,477 5.4 3.27| 2003-01-01to 05-31 925
database system
PYTHON (1990-08-09) 29,588 6.2 2.62 | 2003-05-01to 07-31 1,201
language + library

Table 6.1: Analyzed Projects (Txn = Transaction; Ety = Entity)
apply Ry to get the result of the query, = apply;  (Q). Thus, the size ofi, is always
less or equal than ten.
4. The result4, of a test case consists of two parts:

o A,NE, are the items thahatchedhe expected outcome and are consideatect
predictions.
e A, — E, are unexpected recommendations that are considergmbag predictions
and calledalse positives
Additionally, ROSEmay have missed items:
o E,— A, aremissingpredictions and callethlse negatives

The sets4, and £, are illustrated in Figuré.1on the next page.

For the assessment of a resdlt we use two measures from information retriev@if79]: The
precision P, describes which fraction of the returned items was actually correct, i.e., expected
by the user—the higher the precision the fewer the false positivesrethd R, indicates the
percentage of correct predictions—the higher the recall the fewer false negatives.

|44 N By
p, =1 —al
! |Aq|

|Aq N E,|
and Ry =——=
! | Eq]

In the case that no entities are returndg (s empty), we define the precision &= 1, and in
the case that no entities are expected, we define the redall asl.
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What ROSE finds What it should find

/

False positives False negatives
Correct prediction

Figure 6.1: Precision and Recall

Our goal is to achievhigh precisionas well ashigh recall values—that is to recommerall
(recall of 1) andonly expected entities (precision of 1).

In practice, though, recall and precision correlate negatively with each other. For a high recall,
one could return many or even all items resulting in a low precision. On the other hand only
recommending a few certain items results in a high precision, but a low recall.

For each query; we get a precision-recall pai’,, R, ). We summarize these pairs into a
single pair using two different averaging techniques from information retrieval.

Macro-evaluation simply takes the mean value of the precision-recall pairs:

1 & 1 &
Py =— P, and = — _
M NZZI i RM N;qu

This approach uses the precision and recall values that have been computed for each
guery. As users usually think in queries, macro-evaluation is sometimes referred to as a
user-orientedapproach. It determines the predictive strerghquery.

Micro-evaluation in contrast builds an average precision-recall pair based on items. It does
not use the precision and recall values of single queries, bgutimsof returned, correct,
and expected items.
N N
P o Zi:l ‘qu N qu‘ and R _ Zi:l ‘qu N qu'
22 N (2 N
Zz‘:l Ath‘ Zi:l E

qi
One can think of micro-evaluation as summarizing all queries into one large query, and
then computing precision and recall for this large query. It therefore allows statements
thatsummarize all queriebke “every n-th suggestion is wrong/correct”. For example,
the precision?, for PYTHON is 0.50: Every second suggestion is correct which means,
that the recommended entity was actually changed later. Micro-evaluation is sometimes
referred to as aystem-orientedpproach because it focuses on tiverall performance
of the system and not on the average query performance.
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The difference between macro-evaluation and micro-evaluation is important. Micro-evaluation
computes average precision and regal itemandnot per query This is illustrated in the
following examplée?

Suppose we have two lectures:

e Lecture A with 100 students of which 25 wear glasses. The ratio for this
lecture is thus 25%.

e Lecture B with 20 students of which 15 wear glasses; resulting in a ratio of
75%.

Averaging these figures with macro- and micro-evaluation we get:
e Macro-evaluatiortakes the average of both ratios:

25% + 75%

5 = 50%

The average value is calculatedlenturelevel. This means that a lecture has
on average 50% students that were glasses.

e Micro-evaluation in contrast, calculates the average-valusmmuentlevel:

100 -25% +20-75% 25+ 15
= =33.3
100 + 20 120 3337

If the students ofA and B are disjoint, this means that every third student of
these two lectures wear glasses.

This example shows that one has to use and interpret average values very carefully.

As macro-evaluation is misleading in some cases, all averages are given by micro-evaluation,
unless otherwise noted. We will also determine the likelihood that the topmost three recom-
mendations contain at least one correct prediction (see Sdéx8dor details).

6.2 Precision vs. Recall

A major application forROSEis to guide users through source code: The user changes some
entity, andROSE automatically recommends possible future changes in a view (Fiyde

We evaluated the predictive power ROSEin this situation. For each transacti@in and each
item: € T, we queriedy = {i}, and checked wheth&®OSEwould predictt = 7" — {i}. For

each transaction, we thus testéd queries, each with one element.

Figure 6.2 on the facing page shows a so-callgecision-recall graphwith the results for

the ECLIPSE project. For each combination of minimum support and minimum confidence
the resulting precision-recall pair is plotted. Additionally, subsequent confidence thresholds
that have the same support are connected with lines. As a result we geprbceston-recall

2inspired by BM83
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Figure 6.2: Varying Support and Confidence

curves one for each investigated support. (The connecting lines between measured values are
for the sake of clarity and not for interpolation.)

In Figure6.2, ROSEachieves for a support dfand a confidence df.1 a recall of0.15 and a
precision of0.26:

e Therecall of 0.15 states thaROSEs suggestion correctly included 15% of all changes
that were actually carried out in the given transaction.

e Theprecisionof 0.26 means that 26% of all recommendations were correct—every fourth
suggested change was actually carried out (and thus predicted corre®ysg. On
average, the programmer has to check about four suggestions in order to find a correct
one.

Figure 6.2 also shows thaincreasingthe support threshold aldocreaseshe precision, but
decreaseshe recall aROSEgets more cautious. However, using the highest possible thresh-
olds does not always yield the best precision and recall values: If we increase the confidence
threshold above.80, bothprecision and recall decrease.

Furthermore, Figuré.2 shows that high suppoand confidence thresholds are required for a
high precision. Still, such values result in a very low recall and thus indicate a trade-off between
precision and recall.

In practice, a graph such as the one in Figiu2is thus necessary to select the “best” support
and confidence values for a specific project. In the remainder of this paper, though, we have
chosen values that are common across all projects in order to facilitate comparison.

One can either havprecisesuggestions omanysuggestions, but not both.
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6.3 Likelihood

A precision like 26% sounds low, but keep in mind that this is the likelihoodauh single
recommendatiopredicting a specific location. If some changedimesults in eithe3, C', or D
being changedROSEsuggests3, C, and D, resulting in an average precision of only 33% per
recommendation.

To assess the actual usefulness for the programmer, we checkékietiemod whether the
expected location would be includedROSEs top threenavigation suggestions (assuming that
a programmer won't have too much trouble judging the first three suggestions). Formally,
is the likelihood that for a query = (@, E) at least one of the first three recommendations is
correct:

Ly = L(]appIyRS(Q) N E‘ >0),
whereL(p) stands for the probability of the predicate

If, in the example aboveROSEalways suggeste#, C', and D as topmost suggestions =
100% would hold.

6.4 Results: Navigation through Source Code

We repeated the experiment from Sect®afor all eight projects with a support threshold of

1 and a confidence threshold @fl—such that for navigation, the user gets several recommen-
dations. The results are shown in Tabl@ on pages6 (columnNavigatior). For these settings

the average recall is 15%, and the average precision is 26%; these values are also found for
ECLIPSE(Section6.2). The average likelihood ; of the three topmost suggestions predicting

a correct location is 64%.

While KOFFICE andJEDIT have lower recall, precision, and likelihood values;C strikes by
overall high values. The reason is th&FFICE and JEDIT are projects where continuously
many new features are inserted (which cannot be predicted from history),®@iés a stable
system where the focus is on maintaining existing features.

1%
o

When given one initial changed entiBQSEcan predict 15% of all entities chang
later in the same transaction. In 64% of all transactioR)SEs topmost threg
suggestions contain a correct location.

3%

6.5 Results: Error Prevention

Besides supporting navigatioROSEshould alsgorevent errors. The scenario is that when a

user decides to commit all her changes to the version ardR@8Echecks if there are related
changes that have not been changed. If there are, it issues a pop-up window with a warning; it
also suggests one or more “missing” entities that should be considered—in Bi§ue the

facing page the developer has missed to chaivgekfaults() andplugin.properties.
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= Commit anyway? @
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Figure 6.3: Error Prevention irROSE

We determined in how many case®SEcan predict such a missing entity. For this purpose,
we took each transaction, left out one item and checkB®8Ecould predict the missing item.

In other words, the query was the complete transaction without the missing item. So, for each
single transactiof’, and each item € 7', we queried) = T — {i}, and checked wheth@OSE

would predictE = {i}. For each transaction, we thus again f&ptests.

As too many false warnings might undermiR®SEs credibility, ROSEis set up to issue warn-
ings only if thehigh confidence thresholaf 0.9 is exceededl Still, we wanted to get as many
missing entities as possible, which resulted in a support threshold of 3.

The results are shown in Tale2 (columnPrevention:

e The averageecall is about 4%. This means that in only one out of 25 querieS@T.
every 5th query)ROSEcorrectly recognizednd predicted the missing entity.

e The averagerecisionis above 50%. This means that every second recommendation
of ROSEis correct, or: If a warning occurs, aiRDSErecommends further entities, it
predicts in every second case the missing entity.

Given atransaction where one change is missR@SEcan predict 4% of the entities
that need to be changed. On average, every second recommended entity is correct.

6.6 Results: Closure

The final question in the “Error Prevention” scenario is how many false al&@&Ewould
produce in the case that no entity is missing. We simulated this by testimglete transactions.
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Navigation Prevention| Closure

Support 1 3 3
Confidence 0.1 0.9 0.9
Project R, | P, | Ly | R, | P, |Ry| Py
ECLIPSE |0.15/0.26/0.53| 0.02/0.48| 1.0|/0.979
GCC 0.28/0.39/0.89| 0.20/0.81| 1.0|0.953
GIMP 0.12/0.25/0.91| 0.03/0.71| 1.0|/0.978
JBOSS 0.16/0.38/0.69| 0.01/0.24| 1.0|0.981
JEDIT 0.07|0.16| 0.52| 0.004| 0.59| 1.0|0.986

KOFFICE |0.08/0.17{0.46|/0.003|0.24| 1.0|{0.990
POSTGRES 0.13|0.23|0.59| 0.03|0.66| 1.0(0.989
PYTHON |0.14|0.24/0.51| 0.01/0.50| 1.0|0.986
Average 0.15/0.26| 0.64| 0.04|0.50| 1.0|0.980

Table 6.2: Results for Fine Granularity® = Recall; P = Precision; L = Likelihood)

For each transactiofl, we queried? = 7', and checked wheth&®OSEwould predictE = ().
Thus, we had one test per transaction.

As the expected outcome is the empty set, the recall is alway® measure the number of

false warnings, we cannot use micro-evaluation anymore as one single false alarm results in a
summarized precision df. We thus turn tanacro-evaluatiorprecision: The precision for a
single query in this setting is eithérif at least one entity is recommended, loif no entities

are recommended;,, is the percentage of commits whé&@®SEhas not issued a warning, and

1 — Py, is the percentage of false alarms.

The results are shown in Tal#e2 (columnClosurg. We see that precision is very high for all
projects, usually around 0.98. This means tRa@SEissues a false alarm in only every 50th
transaction.

ROSEs warnings about missing changes should be taken seriously: Only 2%|of all
transactions cause a false alarm. In other wor@®©SEdoes not stand in the way,

6.7 Results: Granularity

By default,ROSErecommends entities at a fine granularity level, e.g., variables or funttions
This results in a low coverage of the rules for a project as most functions are rarely changed.

Our hypothesis was that, if we applied mining exclusivelyikes rather than to variables or
functions, we would get a higher support (and thus a higher recall).

Therefore, we repeated the experiments from Sec#oh$o 6.6 with a coarse granularity—
e.g., mining and applying rules betwei#asrather than between entities. The results are shown
in Table6.3 on the next page. It turns out that the coarser granularity increases readll in

4By default, ROSErecommends only complete files if it cannot look inside a file, likgglaigin. properties.
For source code the preferred granularity idmctionsandfields and for EX files onsubsections
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Navigation | Prevention Closure

Support 1 3 3
Confidence 0.1 0.9 0.9
Project R, | P, | Ly | R, | Py |Ry| Py
ECLIPSE |0.17/0.26/0.54|/0.03| 0.48| 1.0|0.980
GCC 0.44|0.42|0.87/0.29| 0.82| 1.0|0.946
GIMP 0.27{0.26|0.90| 0.08| 0.74| 1.0/ 0.963
JBOSS 0.25/0.37|0.64|0.05| 0.44| 1.0|0.980
JEDIT 0.250.22|0.68/0.01| 0.44| 1.0/0.984

KOFFICE |0.24|0.26/0.67|0.04| 0.61| 1.0/ 0.971
POSTGRES0.23] 0.24/ 0.68| 0.05| 0.59| 1.0|0.978
PYTHON |0.24|0.36/0.60/0.03| 0.67| 1.0|0.991
Average 0.26{0.30| 0.70|0.07| 0.66| 1.0/0.973

Table 6.3: Results for Coarse Granularit® (= Recall; P = Precision;L = Likelihood)

cases (sometimes even dramatically, as the factors 3<8HFICE show). The precision stays
comparable or is even increased.

If ROSEthus suggests only a file rather than an entity, the suggestions become more frequent
and more precise. However, each single suggestion becomes less useful as it suggests a less
specific location—namely only a file rather than a precise entity.

A possible consequence of this result is to hB@SEstart with rather vague suggestions (say,
regarding files or packages), which become more and more specific as the user progresses.
We plan to apply and extergeneralized association ruldSA95 (also known agnultilevel
association rule$HF95)) such thaROSEcan suggest thigtnest granularitywherever possible.

When given one changdite, ROSEcan predict 26% of the files actually changed in
the same transaction. In 70% of all transactioRQSES topmost three suggestions
contain a correct location.

6.8 Threats to Validity

We have studied 10,761 transactions of eight open-source programs. Although the programs
themselves are very different, we cannot claim that their version histories wouépl@sen-

tative for all kinds of software projectdn particular, our evaluation does not allow any con-
clusions about the predictive power for closed-source projects. However, a stricter software
process would result in higher precision and higher recall—and hence, a better predictability.

Transactions do not record tleder of the individual changes involved. Hence, our evaluation
cannot take the order into account in which the changes were made—and treats all orderings
equal. In practice, we expect specific orderings of changes to be more frequent than others,
which may affect results for navigation and prevention.

SThis is a general trade-off: If all entities were contained within one file, then any suggestion regarding this
one file would yield a precision of 100% and a recall of 100%—and be totally useless at the same time.



68 Chapter 6. Evaluation

We have made no attempt to assessohality of transactions-ROSElearned from past trans-
actions, regardless of whether they may be desired or not. Consequently, the rules learned and
evaluated may reflect good as well as bad practices. However, we believe that competent pro-
grammers make more “good” than “bad” transactions; and thus, there is more good than bad to
learn from history.

We have examined the predictive powerR®DSEand assumed that suggesting a change, nar-
rowed down to a single file or even a single entity, wouldibeful. However, it may well be that
missing related changes could be detected during compilation or tests (in whicR@aEs
suggestions would not harm), or may be known by trained programmers anyway (who may find
ROSES suggestions correct, but distracting). Eventually, usefulness for the programmer can
only be determined by studies with real users, which we intend to accomplish in the future.
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Related Work

7.1 Data Preprocessing

Data extraction fronCVS is very well covered, and many tools are available for free: Daniel
German and Audris Mockus creat8FTCHANGE[Sof04—a tool that extracts and summa-
rizes information fromCVS and bug tracking databaseSMO03]. Dirk Draheim and Lukasz
Pekacki developeBLOOF [Blo04] which extractsCVS log data into a database, and visualizes
the software evolution using metrid3iP03.

Michael Fischer et al. demonstrated how to populatel@ase history databadeking data
from CVS and BUGZILLA [FPGO3B. In [FPG034they also combined their approach with
features. Another project that considers multiple data sourdesI&AT by DavorCubrang
and Gail Murphy f3M03]. They integrate information fron@VS, BUGZILLA, and developer
mailing lists using text similarity.

To our knowledge, transaction recovery has been used by many approaches but has nowhere
been covered in detail: Harald Gall, Daniel German, and Audris Mockus used fixed time win-
dows in the pastGJK03 GMO03, MFHO02], and we used sliding time windows in our previous

work [ZDZ03, ZWDZ04]. Commit mails have not been used in recent work to restore transac-
tions.

Up to now, only a few approaches have considered fine-grained changes: Harald Gall et al.
[GIKO3 and James Bieman et aBAY 03] both analyzed relations between classes. In our pre-
vious work we applied the approach presented in Se@&idéand mined for relationsgDZ03]

and association ruleZyWDZ04] between functions, sections, and other fine-grained building
blocks.

Michael Fischer et al. also proposed an algorithm for detecting merges of revisions in their
release history database papeP{503h. Lijie Zou and Michael Godfrey showed how to use
origin analysis to detect merging and splitting of functionsd®p3. Nonetheless, data clean-

ing is often neglected, and there is still much room for improvement.
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7.2 Mining in Software Engineering

Independently from us, Annie Ying developed an approach that also uses association rule min-
ing on CVS version archivesYin03, YMNCCO04]. She especially evaluated the usefulness of
the results, considering a recommendation most valuable or “surprising” if it could not be de-
termined by program analysis. She found several such recommendationsvioziied A and
ECLIPSEprojects. In contrast tROSE though, Ying’s tool can only suggest files, not finer-
grained entities, and does not support mining on the fly. A similar work has been done by
Ahmed Hassan$S04.

Change data has been used by various researchers for quantitative analyses. Word frequency
analysis and keyword classification of log messages can identify the purpose of changes and
relate it to change size and time between chang®&p]. Various researchers computed met-

rics on the module or file leveBKPS97 GJKT97, GKMSO00, HHO3] or orthogonal to these

per feature MWZ03], and investigated the change of these metrics over time, i.e., for different
releases or versions of a system.

Harald Gall et al. were the first to use release data to detect logical coupling between mod-
ules [GHJ9§. The CVS history allows to detect more fine-grained logical coupling between
classes GJK0J, files, and functionsZDZ03]. None of these works on logical coupling did
address its predictive power. Jelber Sayyad-Shirabad et al. use inductive learning to learn dif-
ferent concepts of relevance between logically coupled f8& M01, SSLM03 SSLM04. A
concept is a relevance relation, for example whether two files have been update simultaneously.
Instances of concepts are described in termattoibutessuch as file name, extension and sim-

ple metrics like number of routines defined. Jelber Sayyad-Shirabad thoroughly evaluated the
predictive power of the concepts found, but none of the papers gives a convincing example of
such a concept.

Amir Michail used data mining on the source code of programming libraries to detect reuse
patterns in form of associatioM]c99] or generalized association ruledlig00]. The latter

take inheritance relations into account. The items in these rules are (re-)use relationships like
method invocation, inheritance, instantiation, or overriding. Both papers lack an evaluation of
the quality of the patterns found. However, Amir Michail mines a single version, VROIBE

uses the changes between different versions.

In order to guide programmers, a number of tools have expltéedal similarityof log mes-
sages CCW'01] or program codeAtk98]. HIPIKAT [CMO03] by Davor Cubrané improves

that by taking also other sources like mail archives and online documentation into account.
In contrast toROSE all these tools focus on high recall rather than on high precision, and on
relationships between files or classes rather than between fine-grained entities.

7.3 Workshop on Mining Software Repositories (MSR)

Mining software repositories is an emerging research area. Therefore, it has been the topic of
the MSR workshop that has been co-located with ICSE 2004.
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Filip Van Rysselberghe et al. mined fisequently applied changessing clone detection tech-
ngiues RD04], and Mohammad EIl-Ramly et al. mined software usage data, like system-user
interaction datalERS04. In the area oflefect analysisChadd Williams et al. discussed how to
used bug data to find new bug&/H04], and Thomas Ostrand et al. tried to predict fault-prone
files [OWO04]. In order to analysiproject communitied_uis Lopez-Fernandez et al. applied so-
cial network analysis teVvS archives L[FRGB04, and Kevin Schneider et al. focused on local
interaction data$GPPO4 Mining for reuseseems to be a hot topic in future: Frank McCarey

et al. applied collaborative filtering to recommend reug€K04], and Yuhanis Yusof et al.
mined for code template¥ R04].

Most of this work is out of scope faROSEat the moment. However, it will be important for
future improvements oROSE
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Chapter 8

Conclusion

Imagination is more important than knowledge.
Knowledge is limited. Imagination encircles the world.
— Albert Einstein

ROSEcan be a helpful tool to suggest further changes to be made and to warn about missing
changes. However, the more there is to learn from history, the more and better suggestions can
be made:

e For stable systems likeCC, ROSEgives many and precise suggestions: 44% of related
files and 28% of related entities can be predicted, with a precision of about 40% for each
single suggestion, and a likelihood of over 90% for the three topmost suggestions.

e For rapidly evolving systems likkOFFICE or JEDIT, ROSEs most useful suggestions
are at the file level. Overall, this is not surprising,RESEwould have to predichew
functions which is probably out of reach for any approach.

e In about 4-7% of all erroneous transactioR§SEcorrectly detects the missing change.
If such a warning occurs, it should be taken seriously as only 2% of all transactions cause
false alarms.

What havewvelearned from history, and what are our suggestions? Here are our plans for future
work:

Aspect identification. If program entities have been changed together several times, the com-
mon abstractions behind the individual changes may be candidatesgects(as in
aspect-oriented programming). An evolutionary coupling would then be turned into a
single syntactic entity, such that future changes can be made in one place only.

Rule presentation. The rules detected blROSEdescribe the evolutionary software process—
which may or may not be the intended process. Consequently, these rules can and should
be made explicit. In previous workPZ03], we used visual mining to detect regularities
and irregularities of logically coupled items. Such visualizations could further explain the
recommendations to programmers and managers.
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Taxonomies. Every change in a method implies a change in the enclosing class, which again
implies changes in the enclosing files or packages. We want to exploitaxahomies
to identify patterns such as “this change implies a change in this package” (rather than “in
this method”). They may be less precise in the location, but provide higher confidence.

Sequence rules.Right now, we only relate changes that occur in $henetransaction. In the
future, we also want to detect rules across multiple transactions: “The system is always
tested before being released” (as indicated by appropriate changes).

Further data sources. Archived changes contain more than just author, date, and location.
One could scatog message@including the one of the change to be committed) to deter-
mine the concern the change is more likely to be related to (say, “Fix” vs. “New feature”).

Program analysis. Another yet unused data source is program analysis; although our approach
can detect coupling between items that are not even programs. Knowledge about the
semantics of programs could also help to separate related changes into likely and non-
likely. Furthermore, coupling that can be found via analy¥ia()3] need not be repeated
in ROSEs suggestions.

From locations to actions. By combining version histories and program analysis it will be
possible to learn patterns, like whenever a developer uses a logger she first imports the
logger class and declares an instance.

In other words, after the user typleg.info("Hello World") we recommend to inseirhport
logger.Logger andLogger log = Logger.createLogger(#className). Such recommenda-
tions can be integrated in IDEs and executed at the touch of one button.

Currently, some simple code assist features based on program analysis exist. Leveraging
version archives we can automatically learn more complex features and additionally ver-
ify existing ones. The learning can take place at the user’s place thus enabling developer
or project specific patterns.

However,ROSEwill move closer tovisdom but never actually will be wise. Thus it will relieve
programmer’s work, but not make them unemployed. (For the difference between information,
knowledge, and wisdom read the cartoon in Figgu®.

At the dawn of the last century, the philosopher George Santayana famously remarked that
those who do not learn from history would be condemned to repeat it. Those who do learn from
history, though, get thehanceto repeat it—and this is what our approach provides.
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The information-knowledge-wisdom hierarchy. The caveman (left) has lots of information (facts and ideas); he selects and organizes
useful information into knowledge (center), but he does not achieve wisdom until he has integrated his knowledge into a whole that is
more useful than the sum of its parts.

Figure 8.1: The Information-Knowledge-Wisdom Hierarchy (taken froGid82)
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