
Fast Data Mining For Programming Support

Thomas Zimmermann
Universiẗat des Saarlandes, Saarbrücken, Germany

zimmerth@cs.uni-sb.de

Abstract

We apply association rule mining to version his-
tories: “Programmers who changed these func-
tions also changed. . . ”. Such rules suggest and
predict likely further changes and prevent errors
due to incomplete changes. To deal with the re-
quired low support values we use constraints on
the rules and mine on the fly. The topmost three
suggestions of ourROSEprototype contain a cor-
rect location with a likelihood of 64%.

1 Introduction
Shopping for a book at Amazon.com, you may have come
across a section that reads “Customers who bought this
book also bought. . . ”, listing other books that were typ-
ically included in the same purchase. Such information is
gathered bydata mining— the automated extraction of hid-
den predictive information from large data sets. In this pa-
per, we apply data mining toversion histories:“Program-
mers who changed these functions also changed. . . ”. Just
like the Amazon.com feature helps the customer browsing
along related items, ourROSEtool guides the programmer
along related changes, with the following aims:

Suggest and predict likely changes.Suppose a program-
mer has just made a change. What else does she have
to change?

Prevent errors due to incomplete changes.A program-
mer has missed a change and wants to commit her
work. If there are still related changes,ROSE issues
a warning.

Detect coupling undetectable by program analysis.As
ROSEoperates uniquely on the version history, it is
able to detect coupling between items that cannot be
detected by program analysis.

ROSE is the first tool that uses fully-fledgeddata mining
techniquesto obtain association rules from version histo-
ries. SinceROSErequires very low support thresholds, tra-
ditional data mining techniques are too slow. Therefore,
ROSE mines for rules withconstraintsto the actual user
changes. These changes are not known in advance, thus
the mining has to take placeon the fly.
The remainder of this paper is organized as follows. Sec-
tion 2 gives a short overview onROSE. Section 3 shows
how to gather changes and their effects from version
archives, especiallyCVS. Section 4 describes the mining
approaches for these data, including examples for associa-
tion rules. In Section 5, we briefly evaluateROSE’s ability

to predict future changes, based on earlier history: How of-
ten canROSEsuggest further changes, and, if so, how pre-
cise is it? Section 6 discusses related work and Section 7
closes with conclusion and consequences.

2 ROSE in a Nutshell
2.1 The “Improve Navigation” Scenario
A major application forROSE is to guide users through
source code: The user changes some entity andROSEauto-
matically recommends possible future changes in a view.

Figure 1 on the following page shows ourROSEtool as
a plug-in for theECLIPSEprogramming environment. The
programmer is inserting a new preference, and has added
an element to thefKeys[] array.ROSEnow suggests to con-
sider further changes, as inferred from the version history.
First come the locations with the highestconfidence—that
is, the likelihood that further changes be applied to the
given location.

Position 3 on the list is anHTML documentation file
with a confidence of 0.75—suggesting that after adding the
new preference, the documentation should be updated, too.
Such a dependency is undetectable by program analysis.

2.2 The “Prevent Errors” Scenario
Besides supporting navigation,ROSEshould alsoprevent
errors. The scenario is that when a user decides to com-
mit all her changes to the version archive,ROSEchecks if
there are related changes with ahigh confidencethat have
not been changed. If there are, like in Figure 1 the top two
locations,ROSEissues a pop-up window with a warning. It
also suggests the “missing” entities that should be consid-
ered (see Figure 2).

2.3 The Architecture of ROSE
ROSEconsists of two parts:
Preprocessing takes a complete version archive as input.

The archive is mirrored in a database (data collection),
changes are mapped to entities and transactions (data
preparation), and finally noise, caused by large trans-
actions, is removed (data cleaning). Preprocessing
ensures a fast access to all necessary information.

Mining creates rules from the preprocessed data. Rules
describe implications between software entities, e.g.,
“If fKeys[] is changed, theninitDefaults() is changed,
too”. It is possible to mine for all rules, but typically
ROSEmines only for rules with a particular left-hand
side. Thus, mining is speeded up and rules are always
up-to-date.

More details about preprocessing and mining are described
in Sections 3 and 4.

A) The user inserts
a new preference
into the field fKeys[]

B) ROSE suggests locations
for further changes, e.g., the
function initDefaults().

Figure 1: After the programmer has made some changes to the source (above), ROSE suggests locations (below) where, in
similar transactions in the past, further changes were made.

3 Preprocessing
The main purpose of version control systems likeCVS1 is
to store and provide different versions of files or software
products. Besides versions and log information, aCVS
repository contains a huge amount of additional informa-
tion, e.g., what are the most frequently changed files, or
what is the maximal gap between two subsequent checkins
by the same author and the same log message. Unfortu-
nately, it requires some effort, namelydata preprocessing,
to access such information—in other words to make a ver-
sion control system “talkative”.

Why is CVS so silent? We identified four limitations of
CVS that require preprocessing:

1. CVShas limited query functionality and is slow.
As mentioned above accessing information other than
log information for single files is difficult inCVS. Fur-
thermore, access is very slow becauseCVSuses a pro-
prietary file format. The solution is to copy the whole
CVS repository into a database. Thus, a multitude of
queries are enabled and can be evaluated very fast.

2. CVShas no atomic transactions.
If a developer commits several files simultaneously,
CVS checks them in individually discarding the rela-
tions between them. AsROSErelies on such relations,
we have to infer transactions. Usually, a transaction
corresponds to exactly one commit operation.

1http://www.cvshome.org/

3. CVSknows only files—but what about functions?
The usefulness ofROSEdepends on the granularity of
its recommendations. This granularity is restricted by
CVS to the file level. In order to suggest functions or
declarations, we need to analyze changes and detect
the affected fine-grained entities.

4. CVScontains unreliable data.
Not all transactions are actually relevant for mining.
For instance, merge transactions that connect two de-
velopment branches are created byCVSautomatically.

Many of these problems are specific to the analysis of
CVS archives; more sophisticated version control systems,
like SUBVERSION2, require less data preprocessing. How-
ever, CVS is the leading version control system in open-
source software development and thus provides many ex-
isting projects for test purposes.

Note that all preprocessing steps can also be doneincre-
mentally—it is only necessary to preprocess data for new
revisions instead of working on the whole repository again.
CVS provides several mechanisms to determine new revi-
sions: One can track commits on the server-side or query
for recent commits on the client-side.

The solution to the first three issues is straightforward
and discussed in[20]. However, data cleaning is more so-
phisticated and therefore discussed in the next subsection.

2http://subversion.tigris.org/

Figure 2:ROSEpoints programmers to locations they have
likely missed.

3.1 Data Cleaning
Transactions that will likely induce or contribute to incor-
rect results are callednoise. Such noise can contribute to
new irrelevant rules or falsify existing relevant rules.ROSE
performs two kinds of data cleaning:
Explicit data cleaning identifies noisy transactionsbefore

mining (during preprocessing) and tags them so that
they can be ignored later on.

Implicit data cleaning is performedafter mining and is
based on the observation that rules induced by noisy
transactions usually are weak compared to regular
rules. In some cases, noise strengthens existing rules,
but it never makes rules disappear. Thus, concentrat-
ing on only strong rules filters out most noisy rules.

In CVS noise evolves from several kinds of transactions:

Large Transactions
Large transactions are very frequent and often originate
from infrastructure changes. Here are two examples from
OPENSSL:
• “Change #include filenames from<foo.h> [sigh] to

<openssl.h>.” (552 files)

• “Change functions to ANSI C.”(491 files)

As the log messages indicate, the files contained in these
transactions have been changed because of some infrastruc-
ture changes (a new compiler version), and not because of
logical relations. Often such changes are performed auto-
matically by some script.

ROSEignores all transactions of size greater than30 in
the analysis. This bound may sound low, however, a trans-
action of 30 files contributes to at least230 association rules
and increases the complexity for traditional mining algo-
rithms dramatically.

If desired, suspect transactions can be investigated man-
ually in order to guarantee that they are actually noise.

Import Transactions
An import transaction contains exclusively new files and
in many cases a complete subproject. Two examples taken
from GCCare:
• “Initial import of libgcj” (371 files)

• “initial import of Java front-end”(43 files)

Considering such transactions for mining induces many
relations between unrelated entities. It is straightforward
to detect such transactions: Simply check for each transac-
tion if all files are additions to theCVS repository. Another
possible approach is to ignore additions in general.

A,B,C,D,
E,F,G,H

Branch
Point

Merge
Point

Branch can continue

More merges for
a single branch

are possible

A,B C,D E,F G,H
Changed
files

= Commit/Transaction

Figure 3: Merges Considered Harmful

Merge Transactions
A more sophisticated kind of noise are merges of develop-
ment branches.CVS simply reproduces all changes made
from one branch to the other—in one large transaction. One
example taken fromGCC is

“mainline merge as of 2003-05-04”(5874 files).

Figure 3 shows a smaller example. On the branch
four transactions have been committed:{A,B}, {C,D},
{E,F}, and{G, H}. These files are now again changed
at the merge point within a transaction that contains all
changes made on the branch:{A,B,C, D,E, F,G,H}.

Merge transactions are noise for two reasons:

1. They contain unrelated changes, e.g.,B andC, thus
contributing to new irrelevant rules.

2. They rank changes on branches higher (those changes
are duplicated), e.g.,A andB. Thus existing rules are
falsified.

Taking such transactions into account has a significant
influence on the rules. Thus, transactions that resulted from
merges should be identified and ignored. Unfortunately,
CVS does not keep track of which revisions resulted from a
merge. Michael Fischer et al. proposed a heuristic to detect
these revisions[5]. However, their solution is very expen-
sive to implement.

A simple but powerfulmanualapproach is based on the
observation that merges are well-documented in log mes-
sages:

1. Identify transactions whose log message contains a
case-insensitive “merge”.

2. Check each suspect transaction manually and verify
that it is a merge transaction. This step is essential
to avoid errors for log messages that incidentally con-
tain a “merge”, like the transaction “New isMerge(),
isMergeWithConflicts(), and setMerge() methods”.

Although this approach sounds time-consuming, the veri-
fication usually takes only a few minutes, which is noth-
ing compared to the cost of designing and implementing an
equal automatic approach.

User-Created Noise
Detecting user-created noise, like unrelated changes within
one commit, is out of reach for any approach. Although
program analysis might be used, this conflicts with the goal
to recognize dependencies that are undetectable by pro-
gram analysis. (Program analysis would consider exactly
these dependencies as noise.)

3.2 The Output of Preprocessing
The output of the preprocessing phase are fine-grained
changes, represented by items and grouped to transactions.
All these results are linked in one database table called
Lineitems(see Figure 4 on the following page).

�����

�� ������

	
��������������

��� �������������

��������

��������	��
	

���
������	��
	

�	������

�� ��������

����������

��� ������

��� �	����������

�	���������

�� ������������

��������

�������������
	

���	�����
	�

�� �������������

�
����

�������

���������

!��������

������

���
���

��	������

��"��� �������������

��"��� ��������

��# ������������

��$ ������

����
	

�%!��������

�

�

�

�

����

����

����

����

Figure 4:ROSEDatabase Schema: Tables for Mining

Lineitems contains for each transactionTransactionIDthe
items, represented by Action (typically “change”) and
EntityID (a reference to the function, field or file). Ad-
ditionally, the typeEntityTypeIDof each entity, the
enclosing fileFileID, and the start timestampTxBe-
ginTimeof the transaction are stored. Most data of
Lineitemsis redundant in order to avoid extensive join
operations.

ROSE always mines on the finest possible granularity:
for source-code onmethodor field level, for documen-
tation on subsectionlevel, and for all other files, e.g.,
plugin.properties, on file level. Thus, only those items are
inserted into tableLineitems. We will discuss the mining
approaches in the next chapter.

4 Mining
4.1 Association Rules
Association rules represent somepatternin the version his-
tory. For instance, the following rule represents the pattern
{fKeys[], initDefaults(), plugin.properties} within the ver-
sion history ofECLIPSE:

fKeys[] ⇒ initDefaults() ∧ plugin.properties

Such a rule has aprobabilistic interpretation based on the
amount of evidencein the transactionsD they are derived
from. This amount of evidence is measured by:

Frequency and Support. The frequency(or count) gives
the number of transactions the rule has been derived
from. Assume that the fieldfKeys[] was changed in 8
transactions. Of these 8 transactions, 7 also included
changes of both the methodinitDefaults() and the file
plugin.properties. Then, the frequency for the above
rule is 7.
Thesupportrelates the frequency of a rule to the total
number of transactions. AsECLIPSEhas 44,786 trans-
actions the support for the above rule is7/44786 =
0.00016.
ROSE prefers frequency to support, because a fre-
quency of 8 is more imaginable to programmers than
a confidence of 0.00016. However, support and fre-
quency can be exchanged by each other.

Confidence. The confidencedetermines the certainty of
the consequence if the left hand side of the rule is
satisfied. In the above example, the consequence of
changinginitDefaults() andplugin.properties applies in
7 out of 8 transactions involvingfKeys[]. Hence, the
confidencefor the above rule is7/8 = 0.875.

For a set of itemsI, many possible rules exist: Each
of the 2|I| patterns contributes to one or more rules.
Thus, thresholds for support (min supp) and confidence
(min conf) are used to reduce the number of total rules. A
ruler is calledstrongif and only if support(r) ≥ min supp
andconfidence(r) ≥ min conf.

4.2 Some Rule Examples
Let us now illustrate our approach by a few actual rules.

Coupling in GCC. GCC has arrays that define the cost of
different assembler operations forINTEL processors.
These have been changed together in 11 transactions.
In 9 of these 11 transactions, this change was triggered
by a change in the typeprocessorcost:

(i386.h, processorcost)
⇒ (i386.c, i386 cost) ∧ (i386.c, i486 cost) ∧

(i386.c, k6 cost) ∧ (i386.c, pentiumcost) ∧
(i386.c, pentiumprocost)

[frequency= 9; confidence= 0.82]

So, whenever the cost type is changed (e.g., extended
for a new operation),ROSEsuggests to extend the ap-
propriate cost instances, too.3

PYTHON and C files. Our approach is not restricted to a
specific programming language. In fact, we can de-
tect coupling between program parts written in differ-
ent languages (including natural language). Here is an
example, taken from thePYTHON library:

(Qdmodule.c, GrafObj getattr())
⇒ (qdsupport.py, outputGetattrHook())

[frequency= 10; confidence= 0.91]

Whenever the C fileQdmodule.c was changed, so
was thePYTHON file qdsupport.py—a classical cou-
pling between interface and implementation.

POSTGRESQL documentation. Data mining can reveal
coupling between items that are not even programs,
as in thePOSTGRESQLdocumentation:

createuser.sgml ∧ dropuser.sgml
⇒ createdb.sgml ∧ dropdb.sgml
[frequency= 11; confidence= 1.0]

Whenever bothcreateuser.sgml and dropuser.sgml
have been changed, the filescreatedb.sgml and
dropdb.sgml have been changed, too.

4.3 From Rules to Recommendations
As soon as the programmer begins to make changes, the
ROSEclient suggests possible further changes. This is done
by applying matching rules. In general, two notions of
matching rules exist:

Weak matching. A rule A ⇒ B matchesa set of itemsΣ
(e.g., changed entities) if the antecedent is a subset of
Σ, i.e.,A ⊆ Σ.

Strong matching. A rule matchesa set of itemsΣ if this
set is equal to the antecedent of the rule, i.e., the rule
is Σ ⇒ B.

For both notions, the antecedent of a rule is satisfied, but
only for strong matching it is satisfied exactly. We refer to

3This rule also holds for the other direction, with the same
frequency and (incidentally) the same confidence.

the set of itemsΣ as thesituation in which ROSE makes
recommendations.

Considering weak matching rules for recommendations
is not reasonable because this bypasses support and confi-
dence thresholds. Suppose that we have three functionsf(),
g(), andh(). The functionsg() andh() exclude each other.
Thus, no strong rulef()∧ g() ⇒ h() exists because it has no
support. The user changesf() andg(). Using weak match-
ing, we would consider the rulef() ⇒ h() and falsely rec-
ommendh() —which is excluded by the occurrence ofg().
As ROSEusesstrongrules for recommendations, it also has
to usestrongmatching.

How doesROSE compute suggestions?
The set of suggestions for a situationΣ and a set of strong
rulesR is defined as theunion of the consequents of all
matching rules:

applyR(Σ) =
⋃

(Σ⇒B)∈R

B

4.4 The Apriori Approach for Mining
Association Rules

One of the most popular approaches for miningall strong
association rules is the Apriori algorithm[1; 12]. It takes
a min suppand amin conf threshold and the task-relevant
dataD as input.

Internally, the Apriori algorithm represents patterns with
itemsets. A k-itemset is an itemset of sizek. An itemset
is calledfrequentif it satisfies the support (or frequency)
threshold. The set of all frequentk-itemsets is denoted as
Lk. TheApriori propertyhelps to reduce the search space
for frequent itemsets:

All nonempty subsets of a frequent itemset
must also be frequent.

This is obvious because the support increases, if itemsX
are removed from an itemsetI ⊆ I: P (I) ≤ P (I − X).
Thus, if I was frequent,min supp≤ P (I), thenI − X is
frequent, too:min supp≤ P (I) ≤ P (I −X).

The Apriori algorithm consists of two phases:
1. Find all frequent itemsets.

Frequent itemsets are generated level-wise: FirstL1 is
computed, thenL1 is used to findL2 which is used to
computeL3, and so on. This phase terminates if for a
k no more frequentk-itemsets are found. Each level,
i.e., the creation of a setLk, consists of four steps:

– The join step:
A candidatek-itemsetCk is generated by joining
Lk−1 with itself. The join condition is that the
firstk−1 items of two itemsetsl1 andl2 are equal
and only the last elements differ:l1[k] < l2[k].

– Theprunestep:
Remove itemsets fromCk that cannot be fre-
quent by means of the Apriori property.

– Thescanor countstep:
Scan the databaseD and count the frequency of
each remaining candidate inCk.

– Thecreatestep:
The frequentk-itemsetsLk are those sets inCk

that satisfy the frequency threshold.

Searching for frequent itemsets is the most time con-
suming part of the Apriori algorithm; each level re-
quires a full scan of the database. Thus, the support
(or frequency) threshold has a huge impact on running
time.

2. Generate association rules from frequent itemsets.

For each frequent itemsetl all nonempty subsetss are
created. Such a subset results in a rules ⇒ l − s if
and only if:

confidence(s ⇒ l − s) = P (l − s | s) ≥ min conf

The test for the support (or frequency) threshold can
be omitted because rules are created from frequent
itemsets. Therefore the following test is always true:

support(s ⇒ l−s) = P (l−s∪s) = P (l) ≥ min supp

Figure 5 on the next page shows an example for the Apri-
ori algorithm. The candidate1-itemsetC1 corresponds to
the set of all itemsI. The count step reveals that item-
set {E} is not frequent. Next, the candidate2-itemsets
C2 are generated by joiningL1 with itself (C2 is always
the cross product ofL1). For k = 2 it is never possi-
ble to prune any elements because all subsets are single-
tons and always contained inL1. The count step identifies
{B,D} and{C,D} as not frequent. Next, the candidate
3-itemsetsC3 are generated fromL2 using the join condi-
tion l1[1] = l2[1] ∧ l1[2] < l2[2]. This returns three item-
sets. Two of them are not frequent by the Apriori property
and pruned: For{A,B,D} the subset{B,D} is not fre-
quent and for the itemset{A,C, D} subset{C,D} is not
frequent. For the third candidate{A,B,C} a database scan
verified that it is frequent. After all frequent itemsets have
been computed, each itemset inL2 andL3 is used to create
rules. The confidence is computed for each rule and only
strong rules are returned.

Keep in mind, that the Apriori property can only tell that
an itemset isnot frequent. A check for an itemsetbeing
frequent always has to scan the database.

The Apriori algorithm has several drawbacks: The
databaseD is repeatedly scanned for each level of the fre-
quent itemset creation. Additionally, the creation of candi-
date sets is expensive. If there are104 frequent1-itemsets
then about108 candidate2-itemsets are generated. More-
over, to discover a pattern of size 100, the Apriori algorithm
must create more than2100 candidates in total.

It is possible to mine association rules without candidate
generation based on a divide-and-conquer strategy. The al-
gorithm is calledfrequent-pattern growthand also known
asFP-growth[8].

4.5 The ROSE Approach for Mining Association
Rules

The classical use of the Apriori algorithm is to compute all
rules above a minimum support and confidence. However,
computing all rules is useful for searching general patterns
but not for making recommendations:

The coverage of Apriori is too low. The coverageis di-
rectly proportional to the number of distinct an-
tecedents within a rule setR. A high coverage is
desirable becauseROSEcan then make recommenda-
tions in most cases. A low coverage means thatROSE
is often clueless.
The coverage can be increased by extending the rule
setR, e.g., bylowering the confidence and especially
the support thresholds. However, for too low support
thresholds Apriori may take months. The bottleneck
is not Apriori but the circumstance thatR gets too
large—greater than2|I| in worst case.

Transactions: D
TxID List of items
100 A, B, C
200 A, D
300 A, B, C
400 B, D
500 A, D
600 B, E
700 A, B

Generate frequent 1-itemsetL1

count−−−−−→

C1

Itemset Count
{A} 5
{B} 5
{C} 2
{D} 3
{E} 1

create−−−−−→

L1

Itemset Count
{A} 5
{B} 5
{C} 2
{D} 3

Generate frequent 2-itemsetL2

join−−−−−→

C2

Itemset
{A, B}
{A, C}
{A, D}
{B, C}
{B, D}
{C, D}

prune−−−−−→

C2

Itemset
{A, B}
{A, C}
{A, D}
{B, C}
{B, D}
{C, D}

count−−−−−→

C2

Itemset Count
{A, B} 3
{A, C} 2
{A, D} 2
{B, C} 2
{B, D} 1
{C, D} 0

create−−−−−→

L2

Itemset Count
{A, B} 3
{A, C} 2
{A, D} 2
{B, C} 2

Generate frequent 3-itemsetL3

join−−−−−→

C3

Itemset
{A, B, C}
{A, B, D}
{A, C, D}

prune−−−−−→
C3

Itemset
{A, B, C}

count−−−−−→

C3

Itemset Count
{A, B, C} 2

create−−−−−→
L3

Itemset Count
{A, B, C} 2

Generate association rules fromL2 and L3

Frequent itemset Rule Confidence Strong
{A, B} A ⇒ B 3/5 = 0.60 yes

B ⇒ A 3/5 = 0.60 yes
{A, C} A ⇒ C 2/5 = 0.40 no

C ⇒ A 2/2 = 1.00 yes
{A, D} A ⇒ D 2/5 = 0.40 no

D ⇒ A 2/3 = 0.67 yes
{B, C} B ⇒ C 2/5 = 0.40 no

C ⇒ B 2/2 = 1.00 yes
{A, B, C} A ⇒ B ∧ C 2/5 = 0.40 no

B ⇒ A ∧ C 2/5 = 0.40 no
C ⇒ A ∧B 2/2 = 1.00 yes
A ∧B ⇒ C 2/3 = 0.67 yes
A ∧ C ⇒ B 2/2 = 1.00 yes
B ∧ C ⇒ A 2/2 = 1.00 yes

Figure 5: An Example for the Apriori Algorithm
(min freq = 2; min conf= 0.5)

Of course, too low support thresholds have a bad in-
fluence on the quality of recommendations. Neverthe-
less, the developer should be able to decide on support
thresholds independently from any technical bound-
aries imposed by the Apriori algorithm.

The search for matching rules is expensive.As men-
tioned above,R gets very large—for most projects
a multiple of the number of transactions. Thus, the
search for matching rules is expensive ifR does not
fit into memory and no suitable index structures are
available.

Therefore,ROSE uses its own mining algorithm that
minesonly requiredruleson the fly. This algorithm is based
on two optimizations:

Mine with constrained antecedents.In our specific case,
the antecedent is equal to the situation; hence, we only
mine ruleson the flywhichmatchthe situationΣ, i.e.,
rules that areΣ ⇒ I. Mining with such constrained
antecedents takes only a few seconds. An additional
advantage of this approach is that it is incremental in
the sense that it allows new transactions to be added
toD between two situations. Thus, recommendations
are always up-to-date.

Mine only single-consequents.To speed up the mining
process even more, we only compute rules with a sin-
gle item in their consequent. So, for a situationΣ, the
rules have the formΣ ⇒ {i}. For ROSE, such rules
are sufficient becauseROSEcomputes the union of the
consequents anyway. Therefore, considering multi-
consequents is superfluous: For each itemi ∈ I of
a multi-consequent ruleΣ ⇒ I [s; c] exists a single-
consequent ruleΣ ⇒ {i} [si; ci] with higher or equal
support and confidence valuessi ≥ s andci ≥ c be-
causefrequency(Σ∪{i}) ≥ frequency(Σ∪B). Thus,
for ROSEsingle-consequent rules have the same ex-
pressive power as multi-consequent rules.

TheROSEmining algorithm consists of three steps:

1. Find relevant transactions.
Find the set of all transactionsT that containall items
of the situationΣ, i.e.,T = {T | T ∈ D,Σ ⊆ T}.

2. Generate relevant frequent itemsets.
Group the items of these transactions (Lineitems./
T) by their entities (identified byEntityID), and sort
them by their descending count.

3. Create single-consequent rules.
Each group corresponds to exactly one single-
consequent rule.

– The frequencyof Σ is the maximal count of a
group (which is likely for an itemi ∈ Σ and is
always for the count of the first returned group).

– The frequencyfor the ruleΣ ⇒ {i} corresponds
to the count for group of the itemi.

– Theconfidenceof a ruleΣ ⇒ {i} is

frequency(Σ ⇒ {i})
frequency(Σ)

– Ignoretrivial rules—that are rulesΣ ⇒ {i} with
i ∈ Σ.

Return only rules that satisfy the support and confi-
dence thresholds (which means they are strong).

Situation Σ = {A, B} and k =| Σ |= 2

Find relevant transactionsT
TxID List of items
100 A, B, C
200 A, D
300 A, B, C
400 B, D
500 A, D
600 B, E
700 A, B

find−−−−−→

Relevant transactionsT
TxID List of items
100 A, B, C
300 A, B, C
700 A, B

Generate frequentk- and k + 1-itemsets that containΣ

generate−−−−−→
Item Frequency ⇒ Itemset
A 3 ⇒ {A, B }
B 3 ⇒ {A, B }
C 2 ⇒ {A, B, C }

Create single-consequent rules with antecedentΣ

Item Frequency Rule
A frequency(Σ) =3 {A,B} ⇒ {A} is trivial
B 3 {A,B} ⇒ {B} is trivial
C 2 {A,B} ⇒ {C} is strong

Figure 6: An Example for the ROSE Algorithm
(min freq = 2; min conf= 0.5)

Figure 6 shows an example for theROSEmining algorithm.
Suppose, the situation isΣ = {A,B}. First,ROSEsearches
all transactions that containΣ: 100, 300, and 700. Next, it
groups exactly those transactions by items and sorts them
by their descending count. The highest count is for itemA,
thus thefrequencyfor Σ is 3. The rules forA andB are
trivial (both are in the situationΣ), thus they are ignored.
For C, the ruleΣ = {A,B} ⇒ {C} is strong because the
thresholds formin freqandmin confare satisfied.

The optimizations above make mining very efficient:
The average runtime of a query is about 0.5s for large
version histories likeGCC with more than 45,000 transac-
tions.4

4.6 Binary Association Rules
ROSE provides another mining algorithm forsingle-
antecedent single-consequentrules{a} ⇒ {b}. Such rules
are less precise for recommendations, but valuable for mea-
surement and visualization of coupling between entities
[19]. The algorithm is exactly like the Apriori algorithm
presented in Subsection 4.4, except that only frequent2-
itemsets are generated and used for rule creation.

5 Evaluation
In [21] we evaluated the predictiveness of association rules
for programming support. This section summarizes some
of the results for the following issues:

Navigation through source code.Given a single changed
entity, canROSE point programmers to entities that
should typically be changed, too?

Error prevention. CanROSEprevent errors? Say, the pro-
grammer has changed many entities but has missed to
change one entity. DoesROSEfind the missing one?

4Measured on a PC Intel 2.0 GHz Pentium 4 with 1 GB RAM.

Transactions
Project, Description evaluated total
ECLIPSE, integrated environment 2,965 46,843
GCC, compiler collection 1,083 47,424
GIMP, image manipulation tool 1,305 9,796
JBOSS, application server 1,320 10,843
JEDIT, text editor 577 2,024
KOFFICE, office suite 1,385 20,903
POSTGRESQL, database system 925 13,477
PYTHON, language + library 1,201 29,588

Table 1: Analyzed projects

Closure. Suppose a transaction is finished—the program-
mer made all necessary changes. How often does
ROSEerroneously suggest that a change is missing?

5.1 Evaluation Setup
For our evaluation, we analyzed the archives of eight large
open-source projects (Table 1). For each archive, we chose
a number of full months containing the last 1,000 trans-
actions, but not more than 50% of all transactions as our
evaluation period.In this period, we check for each trans-
actionT whether its items can bepredicted from earlier
history:

1. We create atest caseq = (Q,E) consisting of aquery
Q ⊂ T and anexpected outcomeE = T −Q.

2. We take all transactionsTi that have been completed
before time(T) as a training set and mine a set of
rulesR from these transactions.

3. To avoid having the user work through endless lists
of suggestions,ROSEonly shows thetop ten single-
consequent rulesR10 ⊂ R ranked by confidence. In
our evaluation, we applyR10 to get the result of the
queryAq = applyR10

(Q). So, the size ofAq is always
less or equal than ten.

4. The resultAq of a test caseq consists of two parts:

• Aq ∩Eq are the items thatmatchedthe expected
outcome and are consideredcorrectpredictions

• Aq − Eq are unexpected recommendations that
are considered aswrong predictions and called
false positives.

Additionally, ROSEmay have missed items:

• Eq − Aq are themissingpredictions and called
false negatives.

For the assessment of a resultAq, we use two measures
from information retrieval[15]: TheprecisionPq describes
which fraction of the returned items was actually expected
by the user. Therecall Rq indicates the percentage of ex-
pected items that were returned.

Pq =
|Aq ∩ Eq|
|Aq|

Rq =
|Aq ∩ Eq|
|Eq|

In case no items are returned (Aq is empty), we define the
precision asPq = 1, and in case no items are expected, we
define the recall asRq = 1.

For each queryqi, we get a precision-recall pair
(Pqi

, Rqi
). We usemicro-evaluationto summarize these

pairs into a single average precision-recall pair:

Pµ =
∑N

i=1 |Aqi
∩ Eqi

|∑N
i=1 |Aqi |

Rµ =
∑N

i=1 |Aqi
∩ Eqi

|∑N
i=1 |Eqi |

One can think of micro-evaluation as summarizing all
queries into one large query and then computing preci-
sion and recall for this large query. It therefore allows
statements onsingle suggestionslike “every nth sugges-
tion is wrong/correct”. For example, the precisionPµ

for PYTHON is 0.50: Every second suggestion is correct,
which means that the recommended entity was actually
changed later on. In contrast, macro-evaluation makes
statements per query.

Keep in mind thatROSEusually provides several sug-
gestions for a query. In order to assess the actual useful-
ness for the programmer, we thus checked thelikelihood
whether the expected location would be included inROSE’s
top threenavigation suggestions (assuming that a program-
mer won’t have too much trouble judging the first three
suggestions).

Formally, L3 is the likelihood that for a queryq =
(Q,E), at least one of the first three recommendations is
correct:

L3 = L(|apply(Q, R3) ∩ E| > 0)

whereL(p) stands for the probability of the predicatep.

One can either haveprecisesuggestions ormanysugges-
tions, but not both.

5.2 Results: Improve Navigation
We evaluated the predictive power ofROSEin the “Improve
Navigation” scenario. For each transactionT , and each
item i ∈ T , we queriedQ = {i}, and checked whether
ROSEwould predictE = T − {i}. For each transaction,
we thus tested

∣∣T ∣∣ queries, each with one element.
The results formin freq = 1 and min conf = 0.1 are

shown in Table 2 (columnNavigation):

• The averagerecall of 0.15 means thatROSE’s sugges-
tion correctly included 15% of all changes that were
actually carried out in the given transactions.

• The averageprecision of 0.26 means that 26% of
all recommendations were correct—every fourth sug-
gested change was actually carried out (and thus pre-
dicted correctly byROSE).

• The averagelikelihood L3 of the three topmost sug-
gestions predicting a correct location is 0.64. This
means for 64% of all transactions one ofROSE’s pre-
dictions took place.

While KOFFICE andJEDIT have lower recall, precision,
and likelihood values,GCC strikes by overall high values.
The reason is thatKOFFICE andJEDIT are projects where
continuously many new features are inserted (which cannot
be predicted from history) whileGCC is a stable system
where the focus is on maintaining existing features.

When given one initial changed entity,ROSEcan predict
15% of all entities changed later in the same transaction.
In 64% of all transactions,ROSE’s topmost three sugges-
tions contain a correct location.

5.3 Results: Error Prevention
We determined in how many casesROSE can predict a
missing entity in the “Error Prevention” scenario. For this
purpose, we took each transaction, left out one item and
checked ifROSEcould predict the missing item. In other
words, the query was the complete transaction without the
missing item. So, for each single transactionT , and each

Navigation Prevention Closure
Frequency 1 3 3
Confidence 0.1 0.9 0.9
Project Rµ Pµ L3 Rµ Pµ PM

ECLIPSE 0.15 0.26 0.53 0.02 0.48 0.979
GCC 0.28 0.39 0.89 0.20 0.81 0.953
GIMP 0.12 0.25 0.91 0.03 0.71 0.978
JBOSS 0.16 0.38 0.69 0.01 0.24 0.981
JEDIT 0.07 0.16 0.52 0.004 0.59 0.986
KOFFICE 0.08 0.17 0.46 0.003 0.24 0.990
POSTGRES 0.13 0.23 0.59 0.03 0.66 0.989
PYTHON 0.14 0.24 0.51 0.01 0.50 0.986
Average 0.15 0.26 0.64 0.04 0.50 0.980

Table 2: Results (R = recall;P = precision;L = likelihood)

entityi ∈ T , we queriedQ = T−{i}, and checked whether
ROSEwould predictE = {i}. For each transaction, we
thus again ran

∣∣T ∣∣ tests.
As too many false warnings might undermineROSE’s

credibility, ROSE is set up to issue warnings only if the
high confidence thresholdof 0.9 is exceeded. The results
are shown in Table 2 (columnPrevention):

• The averagerecall is about 4%. This means that in
only one out of 25 queries (inGCC: every 5th query),
ROSEcorrectly predicted the missing item.

• The averageprecisionis above 50%. This means that
if a warning occurs, every second recommendation of
ROSEis correct.

Given a transaction where one change is missing,ROSE
can predict 4% of the entities that need to be changed.
On average, every second recommended entity is correct.

5.4 Results: Closure
The final question in the “Error Prevention” scenario is how
many false alarmsROSEwould produce in case no entity is
missing. We simulated this by testingcomplete transac-
tions. For each transactionT , we queriedQ = T , and
checked whetherROSEwould predictE = ∅; we thus had
one test per transaction.

We measured the percentagePM of transactions where
ROSEhas not issued a warning.5 Thus1 − PM is the per-
centage of false alarms.

The results are shown in Table 2 (columnClosure). One
can see that the precision is very high for all projects, usu-
ally around 0.98. This means thatROSEissues a false alarm
in only every 50th transaction.

ROSE’s warnings about missing changes should be taken
seriously: Only 2% of all transactions cause a false
alarm. In other words:ROSEdoes not stand in the way.

6 Related Work
Independently from us, Annie Ying developed an approach
that also uses association rule mining onCVS version
archives[18]. She especially evaluated the usefulness of
the results, considering a recommendation most valuable
or “surprising” if it could not be determined by program
analysis, and found several such recommendations in the
MOZILLA and ECLIPSE projects. In contrast toROSE,

5In this case the percentage corresponds to the precision of
macro-evaluation. Therefore we denote it asPM .

though, Ying’s tool can only suggest files, not finer-grained
entities, and does not support mining-on-the-fly.

Gall et al. were the first to use release data to detect log-
ical coupling between modules[6]. The CVS history al-
lows to detect more fine-grained logical coupling between
classes[7], files and functions[19]. None of these works
on logical coupling did address its predictive power.

Jelber Sayyad-Shirabad et al. use inductive learning to
learn different concepts of relevance between logically cou-
pled files[16; 17]. A concept is a relevance relation, for
example whether two files have been updated simultane-
ously. Instances of concepts are described in terms ofat-
tributes such as file name, extension and simple metrics
like number of routines defined. Jelber Sayyad-Shirabad
thoroughly evaluated the predictive power of the concepts
found, but none of the papers give a convincing example of
such a concept.

Amir Michail used data mining on the source code of
programming libraries to detect reuse patterns in form of
association[13] or generalized association rules[14]. The
latter takes inheritance relations into account. The items
in these rules are (re-)use relationships like method invo-
cation, inheritance, instantiation, or overriding. Both pa-
pers lack an evaluation of the quality of the patterns found.
However, Michail mines a single version, whileROSEuses
the changes between different versions.

To guide programmers, a number of tools have exploited
textual similarityof log messages[3] or program code[2].
HIPIKAT [4] improves on this by taking also other sources
like mail archives and online documentation into account.
In contrast toROSE, all these tools focus on high recall
rather than on high precision, and on relationships between
files or classes rather than between fine-grained entities.

7 Conclusion and Consequences
ROSEcan be a helpful tool in suggesting further changes
to be made, and in warning about missing changes. But
the more there is to learn from history, the more and better
suggestions can be made:

• For stable systems likeGCC, ROSEgives many and
precise suggestions: 28% of related entities can be
predicted, with a precision of about 40% for each sin-
gle suggestion, and a likelihood of over 90% for the
three topmost suggestions.

• For rapidly evolving systems likeKOFFICEor JEDIT,
ROSE’s most useful suggestions are at the file level.
Overall, this is not surprising, asROSEwould have to
predictnew functions—which is probably out of reach
for any approach.

• In about 4% of all erroneous transactions,ROSEcor-
rectly detects the missing change. If such a warning
occurs, it should be taken seriously, as only 2% of all
transactions cause false alarms.

What havewe learned from history, and what are our
suggestions? Here are our plans for future work:

Taxonomies. Every change in a method implies a change
in the enclosing class, which again implies changes
in the enclosing files or packages. We want to ex-
ploit suchtaxonomiesto identify patterns such as “this
change implies a change in this package” (rather than
“in this method”) that may be less precise in the loca-
tion, but provide higher confidence.

Sequence rules.Right now, we are only relating changes
that occur in thesametransaction. In the future, we
also want to detect rules across multiple transactions:
“The system is always tested before being released”
(as indicated by appropriate changes).

Further data sources. Archived changes contain more
than just author, date, and location. One could scan
log messages(including the one of the change to be
committed) to determine the concern the change is
more likely to be related to (say, “Fix” vs. “New fea-
ture”).

We are currently makingROSEavailable as a plug-in for
ECLIPSE. For more information and download, visit

http://www.st.cs.uni-sb.de/softevo/

Acknowledgments.This project is funded by the Deutsche
Forschungsgemeinschaft, grant Ze 509/1-1. Special thanks
to the project members Michael Burch, Stephan Diehl, Pe-
ter Weißgerber, and Andreas Zeller for their support. Olaf
Herden gave helpful comments on earlier revisions of this
paper.

References
[1] R. Agrawal and R. Srikant. Fast algorithms for min-

ing association rules. InProceedings of the 20th Very
Large Data Bases Conference (VLDB), pages 487–
499. Morgan Kaufmann, 1994.

[2] D. L. Atkins. Version sensitive editing: Change his-
tory as a programming tool. In B. Magnusson, ed-
itor, Proceedings of System Configuration Manage-
ment SCM’98, volume 1439 ofLNCS, pages 146–
157. Springer-Verlag, 1998.

[3] A. Chen, E. Chou, J. Wong, A. Y. Yao, Q. Zhang,
S. Zhang, and A. Michail. CVSSearch: searching
through source code using CVS comments. In ICSM
2001[9], pages 364–374.

[4] D. Čubraníc and G. C. Murphy. Hipikat: Recom-
mending pertinent software development artifacts. In
Proc. 25th International Conference on Software En-
gineering (ICSE), pages 408–418, Portland, Oregon,
May 2003.

[5] M. Fischer, M. Pinzger, and H. Gall. Populating a
release history database from version control and bug
tracking systems. In ICSM 2003[10].

[6] H. Gall, K. Hajek, and M. Jazayeri. Detection of log-
ical coupling based on product release history. In
Proc. International Conference on Software Mainte-
nance (ICSM ’98), pages 190–198, Washington D.C.,
USA, Nov. 1998. IEEE.

[7] H. Gall, M. Jazayeri, and J. Krajewski. CVS release
history data for detecting logical couplings. In IW-
PSE 2003[11], pages 13–23.

[8] J. Han, J. Pei, and Y. Yin. Mining frequent pat-
terns without candidate generation. InProceedings of
the 2000 ACM SIGMOD International Conference on
Management of Data, pages 1–12. ACM Press, 2000.

[9] Proc. International Conference on Software Main-
tenance (ICSM 2001), Florence, Italy, Nov. 2001.
IEEE.

[10] Proc. International Conference on Software Mainte-
nance (ICSM 2003), Amsterdam, Netherlands, Sept.
2003. IEEE.

[11] Proc. International Workshop on Principles of Soft-
ware Evolution (IWPSE 2003), Helsinki, Finland,
Sept. 2003. IEEE Press.

[12] H. Mannila, H. Toivonen, and A. I. Verkamo. Ef-
ficient algorithms for discovering association rules.
In U. M. Fayyad and R. Uthurusamy, editors,AAAI
Workshop on Knowledge Discovery in Databases
(KDD-94), pages 181–192, July 1994.

[13] A. Michail. Data mining library reuse patterns in
user-selected applications. InProc. 14th Interna-
tional Conference on Automated Software Engineer-
ing (ASE’99), pages 24–33, Cocoa Beach, Florida,
USA, Oct. 1999. IEEE Press.

[14] A. Michail. Data mining library reuse patterns us-
ing generalized association rules. InInternational
Conference on Software Engineering, pages 167–176,
2000.

[15] C. J. V. Rijsbergen.Information Retrieval, 2nd edi-
tion. Butterworths, London, 1979.

[16] J. Sayyad-Shirabad, T. C. Lethbridge, and S. Matwin.
Supporting maintainance of legacy software with data
mining techniques. In ICSM 2001[9], pages 22–31.

[17] J. Sayyad-Shirabad, T. C. Lethbridge, and S. Matwin.
Mining the maintenance history of a legacy software
system. In ICSM 2003[10].

[18] A. T. T. Ying. Predicting source code changes by
mining revision history. Master’s thesis, University
of British Columbia, Canada, Oct. 2003.

[19] T. Zimmermann, S. Diehl, and A. Zeller. How history
justifies system architecture (or not). In IWPSE 2003
[11], pages 73–83.

[20] T. Zimmermann and P. Weißgerber. Preprocessing
CVS data for fine-grained analysis. InProc. Inter-
national Workshop on Mining Software Repositories
(MSR 2004), pages 2–6, Edinburgh, Scotland, UK,
May 2004.

[21] T. Zimmermann, P. Weißgerber, S. Diehl, and
A. Zeller. Mining version histories to guide software
changes. InProc. 26th International Conference on
Software Engineering (ICSE), Edinburgh, Scotland,
May 2004.

