Fast Data Mining For Programming Support

Thomas Zimmermann
Universiét des Saarlandes, Saartken, Germany
zimmerth@cs.uni-sbh.de

Abstract

We apply association rule mining to version his-
tories: “Programmers who changed these func-
tions also changed...”. Such rules suggest and
predict likely further changes and prevent errors
due to incomplete changes. To deal with the re-
quired low support values we use constraints on
the rules and mine on the fly. The topmost three
suggestions of oLROSEprototype contain a cor-
rect location with a likelihood of 64%.

to predict future changes, based on earlier history: How of-

ten canROSEsuggest further changes, and, if so, how pre-

cise is it? Section 6 discusses related work and Section 7
closes with conclusion and consequences.

2 ROSE in a Nutshell

2.1 The “Improve Navigation” Scenario

A major application forROSEis to guide users through

source code: The user changes some entityr®Eauto-

matically recommends possible future changes in a view.
Figure 1 on the following page shows oROSEtool as

a plug-in for theECLIPSEprogramming environment. The

programmer is inserting a new preference, and has added

an element to th&eys[] array. ROSEnow suggests to con-

ider further changes, as inferred from the version history.

1 Introduction

Shopping for a book at Amazon.com, you may have com

across a section that reads “Customers who bought this. i . . .
book also bought...”, listing other books that werg typ-! irst come the locations with the highesinfidence-that

ically included in the same purchase. Such information igS the likelihood that further changes be applied to the

gathered bylata mining— the automated extraction of hid- given location.

PSRN : : Position 3 on the list is amMTML documentation file
den predictive information from large data sets. In this pa- . , . .
ining teersi Ao _ 7" with a confidence of 0.75—suggesting that after adding the
per, we apply data mining teersion histories:Program ew preference, the documentation should be updated, too.

mers who changed these functions also changed...”. Jugg had d ; detectable b vei
like the Amazon.com feature helps the customer browsin uch a depenadency IS undetectable by program analysis.

along related items, olROSEtool guides the programmer 2 2 The “Prevent Errors”’ Scenario

along related changes, with the following aims: Besides supporting navigatioROSE should alsoprevent

Suggest and predict likely changesSuppose a program- errors. The scenario is that when a user decides to com-
mer has just made a change. What else does she hateit all her changes to the version archi®)SEchecks if

to change?
Prevent errors due to incomplete changesA program-

mer has missed a change and wants to commit h

work. If there are still related changeRQSEissues

€

there are related changes withigh confidencéhat have

not been changed. If there are, like in Figure 1 the top two
locations ROSEissues a pop-up window with a warning. It
Iso suggests the “missing” entities that should be consid-
ered (see Figure 2).

a warning.
Detect coupling undetectable by program analysisAs

2.3 The Architecture of ROSE

ROSE operates uniquely on the version history, it is ROSEconsists of two parts:
able to detect coupling between items that cannot b@reprocessingtakes a complete version archive as input.

detected by program analysis.

ROSE s the first tool that uses fully-fledgedata mining
techniquego obtain association rules from version histo-
ries. SinceROSErequires very low support thresholds, tra-
ditional data mining techniques are too slow. Therefore,
ROSE mines for rules withconstraintsto the actual user
changes. These changes are not known in advance, thus
the mining has to take plaamn the fly

The remainder of this paper is organized as follows. Sec-
tion 2 gives a short overview oROSE Section 3 shows
how to gather changes and their effects from version
archives, especiallgVvs. Section 4 describes the mining

The archive is mirrored in a databasiia collectiof),
changes are mapped to entities and transactiteits:
preparatior), and finally noise, caused by large trans-
actions, is removeddéta cleaning. Preprocessing
ensures a fast access to all necessary information.

Mining creates rules from the preprocessed data. Rules

describe implications between software entities, e.g.,
“If fKeys[] is changed, themitDefaults() is changed,
too”. It is possible to mine for all rules, but typically
ROSEmines only for rules with a particular left-hand
side. Thus, mining is speeded up and rules are always
up-to-date.

approaches for these data, including examples for associdore details about preprocessing and mining are described

tion rules. In Section 5, we briefly evaluaR©SEs ability

in Sections 3 and 4.

& Java - ComparePreferencePage. java - Eclipse Platform
File Edit Source Refactor Mavigste Search Project Run ‘Window Help

CEX

N-HRa -k -%- | dXPFSF- BB [3-0-% -

& || [[3] package Explorer L A b ComparePreferencef X

L‘": oo =3;_. private SelectionListener fCheckBoxListener: ~
& ﬂ ComparePreferencePage. java A

Preferencer. -~
ComparePreferencePage public final OverlayPreferenceStore.OverlayKe

new COverlayPreferenceStore. v yPreferenceStore. BOOLEAN, OPEN_STRUCTUR]
new COverlayPre &.0verlayKey (Over layPreferenceStore . BOOLEAN, SYNCHRONIZE_SI
ayPreferencedtore.OverlayKey (OverlayPreferenceStore . BOOLEAN, SHOW_PSEUDO_C¢
Over layPreferenceStore.OverlayKey (Over layPreferenceStore. BOOLEAN, INITIALLY SHOI
CverlayPreferenceitore.Over layKey (Over layPreferenceitore . BOOLEAN, SHOW_MNORE_INF¢
Cver layPreferenceitore. Over layKey (Over layPreferenceitore. BOOLEAN, IGNORE _WHITES]
CverlayPreferenceitore.Over layKey (Over layPreferenceStore . BOOLEAN, PREF_SAVE ALL_

fKeys= new OverlayPreferenceStore.Over.
A) The user inserts
a new preference |
into the field fKeys]]

new
new
new

new

new OverlayPreferenceStore.(OverlayKey |[OverlayPreferenceStore.STRING, AbstractTextEd:

% ugE RESOLVE_LI)
5 ulE smeie LinE new OverlayPreferenceStore.OverlayKey (Over layPreferenceStore.BOOLEAN, AbstractTextcEe
% e _seLINES
& et SavealEditors() new OverlayPreferenceStore.OverlayKey (OverlayPreferenceStore.BOOLEAN, USE_SPLINES) .
05 tDefaults(IPreferencestore) new OverlayPreferenceStore.OverlayKey (OverlayPreferenceStore,.BOOLEAN, USE_SINGLE LII
et savealedtorsthonlean) f//new OverlayPreferenceStore.OverlayKey(CverlayPreferenceStore.BOOLEAN, USE_RE /E_
fCheckBoxes I
fCheckBoxListener
i) .
:w;pare(:on iguration public static void initDefaults(ferencedt B) ROSE Suggests |OcatI0nS
A foiyerla crore store.setDefault (OPEN STRUCTURE C for furth h th
e ol store.setDefault (SYNCHRONIZE ScroLLing, t] 10F TUItNEr changes, e.g., the |«
referenceChangeListener ¢ f t . tD f It
. P | unction initDefaults().
k —_— — @ Related Entities (15 entities, Data Mining) F X

Packge Explorer Hierarchy

>

Symbaol] File: | Suppart | Confidence

anged Entities (1 entities) w X || [J]initDefaults(IPreferencestore store) k ComparePreferencePage.java & 1.0
la 2 g org.edipse.comparefplugin. properties plugin.properties 7 0.875
k |J] TextMergeViewer{Composite parert, int style, CompareConfiguration configuration) TextMergeViewer.java] 0.75
< freys Q propertyChange{PropertyChangeEvent event) TextMergeviewer. java [0.75
[V org.edlipse.comparejbuildnotes_compare. himl buildnotes_compare. html [0.75
|4 ereateGeneralPage(Compasite parent) ComparePreferencePage. java s 0.625
g createTextComparePage(Composite parent) ComparePreferencePage. java 5 0.625
| |41 handleDispose{DisposeEvent event) TextMergeViewer java 4 0.5 &
Related Entities Problems
‘Writable Smark Insert 90: 9

Figure 1: After the programmer has made some changes to the source (above), ROSE suggests locations (below) where, in
similar transactions in the past, further changes were made.

3 Preprocessing

The main purpose of version control systems likes! is
to store and provide different versions of files or software
products. Besides versions and log informationC\&s
repository contains a huge amount of additional informa-
tion, e.g., what are the most frequently changed files, or
what is the maximal gap between two subsequent checkins 4.
by the same author and the same log message. Unfortu-
nately, it requires some effort, namedgta preprocessing
to access such information—in other words to make a ver-
sion control system “talkative”.

Why is CVS so silent? We identified four limitations of
CVSthat require preprocessing:

1. cvshas limited query functionality and is slow.
As mentioned above accessing information other tha
log information for single files is difficult i€VvS. Fur- i iacts for test
thermore, access is very slow becaGss uses a pro- ISting projects for tes purposes. .
prietary file format. The solution is to copy the whole Note that all preprocessing steps can also be drure-
CVS repository into a database. Thus, a multitude ofmentally—it is only necessary to preprocess data for new

queries are enabled and can be evaluated very fast. revisions instead of working on the whole repository again.
CVS provides several mechanisms to determine new revi-

2. Cvshas no atomic transactions. _ sions: One can track commits on the server-side or query
If a developer commits several files simultaneously.for recent commits on the client-side.

CVS checks them in individually discarding the rela-
tions between them. AROSErelies on such relations,
we have to infer transactions. Usually, a transactio
corresponds to exactly one commit operation.

3. cvsknows only files—but what about functions?
The usefulness AB@OSEdepends on the granularity of
its recommendations. This granularity is restricted by
CVSto the file level. In order to suggest functions or
declarations, we need to analyze changes and detect
the affected fine-grained entities.

CVScontains unreliable data.

Not all transactions are actually relevant for mining.
For instance, merge transactions that connect two de-
velopment branches are createdds automatically.

Many of these problems are specific to the analysis of
CVS archives; more sophisticated version control systems,
like SUBVERSION, require less data preprocessing. How-
gver,Cvs is the leading version control system in open-
source software development and thus provides many ex-

The solution to the first three issues is straightforward
and discussed if20]. However, data cleaning is more so-
nphisticated and therefore discussed in the next subsection.

http://www.cvshome.org/ 2http://subversion.tigris.org/

_ . Changed
et E] ﬁles‘ AB ‘ ‘ ¢.b ‘ ‘ EF ‘ ‘ GH ‘ Branch can continue

There are 2 unchanged entities. Do you really want cormmit?

Branch, i

[<<oetets | Point F.G, 3

Wes Mo <« Details >

| | e Me; e More merges for™

) . "9 a single branch
Unchanged Entities O = Commit/Transaction Point are possible
Symbol | File: |

@ initDef aulks(IPreferenceStore stare) ComparePreferencePage.. .. F|g ure 3: Mel’geS Considered Harmful

m org.eclipse.compare/plugin. properties plugin. properties

Merge Transactions

A more sophisticated kind of noise are merges of develop-
ment branchesCVsS simply reproduces all changes made
Figure 2:ROSEpoints programmers to locations they have from one branch to the other—in one large transaction. One
likely missed. example taken fron&CCis

“mainline merge as of 2003-05-045874 files)

3.1 Da_ta Cleanln_g. .) i Figure 3 shows a smaller example. On the branch
Transactions that will likely induce or contribute to incor- ¢o,r transactions have been committeidd, B}, {C, D},
rect results are calledoise Such noise can contribute to {E,F}, and{G, H}. These files are now again changed
new irrelevant rules or falsify existing relevant rul®SE 5t the merge point within a transaction that contains all
performs two kinds of data cleaning: changes made on the brandbt, B, C, D,E, F, G, H}.
Explicit data cleaning identifies noisy transactiomefore Merge transactions are noise for two reasons:

mining (during preprocessing) and tags them so that | .y contain unrelated changes, eB.andC, thus
they can be ignored later on. contributing to new irrelevant rules.

Implicit data cleaning is performedafter mining and is .
based on the observation that rules induced by noisy 2= 1€y rank changes on branches higher (those changes
are duplicated), e.g4 andB. Thus existing rules are

transactions usually are weak compared to regular falsified
rules. In some cases, noise strengthens existing rules, '
but it never makes rules disappear. Thus, concentrat- Taking such transactions into account has a significant
ing on only strong rules filters out most noisy rules. influence on the rules. Thus, transactions that resulted from
merges should be identified and ignored. Unfortunately,
] Cvsdoes not keep track of which revisions resulted from a
Large Transactions merge. Michael Fischer et al. proposed a heuristic to detect
Large transactions are very frequent and often originatghese revision§s]. However, their solution is very expen-
from infrastructure changes. Here are two examples frongive to implement.

In CVS noise evolves from several kinds of transactions:

OPENSSL A simple but powerfulmanualapproach is based on the
¢ “Change #include filenames fromfoo.h> [sigh] to ~ observation that merges are well-documented in log mes-
<openssl.b-." (552 files) sages:
e “Change functions to ANSI C {491 files) 1. Identify transactions whose log message contains a

As the log messages indicate, the files contained in these ~ CaSe-insensitive “merge”.
transactions have been changed because of some infrastruc2. Check each suspect transaction manually and verify
ture changes (a new compiler version), and not because of that it is a merge transaction. This step is essential
logical relations. Often such changes are performed auto- to avoid errors for log messages that incidentally con-
matically by some script. tain a “merge”, like the transaction “New isMerge(),
ROSEignores all transactions of size greater tt3@nn isMergeWithConflicts(), and setMerge() methods”.
the analysis. This bound may sound low, however, a tran

Sy
action of 30 files contributes to at le@s? association rules Although this approach sounds time-consuming, the veri-

and increases the complexity for traditional mining al O_fication usually takes only a few minutes, which is noth-
piexity g alg ing compared to the cost of designing and implementing an

rithms dramatically. .
If desired, suspect transactions can be investigated mar?—quaI automatic approach.

ually in order to guarantee that they are actually noise. User-Created Noise
Import Transactions Detecting user-created noise, like unrelated changes within

An import transaction contains exclusively new files andON€ commit, is out of reach for any approach. Although

in many cases a complete subproject. Two examples takdf09ram a_nalysis might b_e used, this conflicts with the goal
from GCCare: to recognize dependencies that are undetectable by pro-

« “Initial import of libgcj” (371 files) gram analysis. (Program analysis would consider exactly

these dependencies as noise.)
¢ ‘“initial import of Java front-end(43 files)

Considering such transactions for mining induces many3-2 T he Output of Preprocessing
relations between unrelated entities. It is straightforwardThe output of the preprocessing phase are fine-grained
to detect such transactions: Simply check for each transachanges, represented by items and grouped to transactions.
tion if all files are additions to thevSrepository. Another All these results are linked in one database table called
possible approach is to ignore additions in general. Lineitemg(see Figure 4 on the following page).

Files Transactions

For a set of item&, many possible rules exist: Each

PK

EilelD PK | TransactionlD

FK

N

of the 2/7l patterns contributes to one or more rules.
Thus, thresholds for supportn{in_supp and confidence
(min_conf are used to reduce the number of total rules. A
ruler is calledstrongif and only if supportr) > min_supp

QualifiedFileName
DirectoryName
FileName
FileExtension
KeywordExpansion

Author
Message
MessageMD5
BeginTime
EndTime

Lineitems 0.

IsNoise

PKFK1
| PKFK2

TransactionlD
EntitylD

andconfidencér) > min_conf

FK3
FK4

EntityTypelD
FilelD

4.2 Some Rule Examples

N Action
« - TxBeginTime

Entities

PK

e — Let us now illustrate our approach by a few actual rules.

EntitylD

FK2
FK1

EntityTypelD

0.*
PK
1

Coupling in GCC. GCC has arrays that define the cost of
different assembler operations fINTEL processors.

EntityName
FilelD
EntityTypelD

TypeName
TypeDescription

Figure 4:ROSEDatabase Schema: Tables for Mining

Lineitems contains for each transactidmnsaction|Dthe

These have been changed together in 11 transactions.
In 9 of these 11 transactions, this change was triggered
by a change in the typarocessorcost

(i386.h, processorcost)
= (i386.c, i386_cosh A (i386.c,i486.cosh A
(i386.c, k6_cost A (i386.c, pentiumcos) A
(i386.c, pentiumpracost)
[frequency= 9; confidence= 0.82]

items, represented by Action (typically “change”) and
EntitylD (a reference to the function, field or file). Ad-
ditionally, the typeEntityTypelDof each entity, the
enclosing fileFileID, and the start timestampxBe-
ginTimeof the transaction are stored. Most data of
Lineitemds redundant in order to avoid extensive join
operations.

So, whenever the cost type is changed (e.g., extended
for a new operationROSEsuggests to extend the ap-
propriate cost instances, téo.

ROSE always mines on the finest possible granularity:pyTHON and C files. Our approach is not restricted to a

for

tation on subsectionlevel, and for all other files, e.g.,
plugin.properties, onfile level. Thus, only those items are
inserted into tabld.ineitems We will discuss the mining

source-code omethodor field IeVel, for documen- Speciﬁc programming |anguage_ In fact, we can de-

tect coupling between program parts written in differ-
ent languages (including natural language). Here is an
example, taken from theYTHON library:

approaches in the next chapter.

4

4.1 Association Rules

Association rules represent sopeternin the version his-
tory. For instance, the following rule represents the pattern
{fKeys]], initDefaults(), plugin.properties} within the ver-
sion history ofECLIPSE

Such a rule has probabilisticinterpretation based on the
amount of evidenci the transaction® they are derived
from. This amount of evidence is measured by:

Frequency and Support. The frequency(or coun) gives

(_.Qdmodule.c, GrafObj getattr())
Mining = (qdsupport.py, outputGetattrHoo(())
[frequency= 10; confidence= 0.91]
Whenever the C fileQdmodule.c was changed, so
was thePYTHON file gdsupport.py—a classical cou-
pling between interface and implementation.

POSTGRESQL documentation. Data mining can reveal
coupling between items that are not even programs,

fKeys[] = initDefaults() A plugin.properties as in thePOSTGRESQldocumentation:

createuser.sgml A dropuser.sgml
= createdb.sgml A dropdb.sgml
[frequency= 11; confidence= 1.0]

Whenever bothcreateuser.sgml and dropuser.sgml
have been changed, the fileseatedb.sgml and
dropdb.sgml have been changed, too.

the number of transactions the rule has been derived
from. Assume that the fieltkeys[] was changed in 8
transactions. Of these 8 transactions, 7 also included

changes of both the methadtDefaults() and the file 4.3 From Rules to Recommendations

plugin.properties. Then, the frequency for the above

rule is 7. As soon as the programmer begins to make changes, the
Thesupportrelates the frequency of a rule to the total ROSEClient suggests possible further changes. This is done
number of transactions. AZCLIPSEhas 44,786 trans- PY @Pplying matching rules. In general, two notions of
actions the support for the above rule7igia7s6 = Matching rules exist:

0.00016. Weak matching. A rule A = B matchesa set of items

ROSE prefers frequency to support, because a fre-
guency of 8 is more imaginable to programmers than

(e.g., changed entities) if the antecedent is a subset of
¥, e, ACX.

a confidence of 0.00016. However, support and fre-strong matching. A rule matchesa set of itemsS if this

guency can be exchanged by each other.

Confidence. The confidencedetermines the certainty of

set is equal to the antecedent of the rule, i.e., the rule
is¥ = B.

the consequence if the left hand side of the rule is For poth notions, the antecedent of a rule is satisfied, but

satisfied. In the above example, the consequence Qfny for strong matching it is satisfied exactly. We refer to
changingnitDefaults() andplugin.properties applies in

7 out of 8 transactions involvinfKeys[]. Hence, the
confidencdor the above rule i§/8 = 0.875.

*This rule also holds for the other direction, with the same
frequency and (incidentally) the same confidence.

the set of items as thesituationin which ROSE makes
recommendations.

Considering weak matching rules for recommendations
is not reasonable because this bypasses support and confi-

dence thresholds. Suppose that we have three fundtjons
g(), andh(). The functiongy() andh() exclude each other.
Thus, no strong rul&) A g() = h() exists because it has no
support. The user changfsandg(). Using weak match-
ing, we would consider the rul® =- h() and falsely rec-
ommendh() —which is excluded by the occurrencegdj.

As ROSEusesstrongrules for recommendations, it also has

to usestrongmatching.

How doesROSE compute suggestions?
The set of suggestions for a situatiBrand a set of strong
rulesR is defined as thenion of the consequents of all
matching rules:

U

applyr (%)
(X=B)eR

B

4.4 The Apriori Approach for Mining

Association Rules
One of the most popular approaches for minaligstrong
association rules is the Apriori algorithi; 12. It takes
amin_suppand amin_confthreshold and the task-relevant
dataD as input.

2. Generate association rules from frequent itemsets.

For each frequent itemsgall nonempty subsetsare
created. Such a subset results in a wule- | — s if
and only if:

confidencés = | — s) = P(l — s | s) > min.conf

The test for the support (or frequency) threshold can
be omitted because rules are created from frequent
itemsets. Therefore the following test is always true:

support(s = l—s) = P(I—sUs) = P(l) > min_supp

Figure 5 on the next page shows an example for the Apri-
ori algorithm. The candidaté-itemsetC; corresponds to
the set of all item&Z. The count step reveals that item-
set{E} is not frequent. Next, the candidafeitemsets
C, are generated by joining; with itself (Cs is always
the cross product of.;). For k = 2 it is never possi-
ble to prune any elements because all subsets are single-
tons and always contained iny. The count step identifies
{B,D} and{C, D} as not frequent. Next, the candidate
3-itemset'; are generated from, using the join condi-
tion i1 [1] = l2[1] A l1[2] < I2[2]. This returns three item-
sets. Two of them are not frequent by the Apriori property
and pruned: FofA, B, D} the subse{ B, D} is not fre-

Internally, the Apriori algorithm represents patterns with quent and for the itemsdt4, C, D} subset{C, D} is not

itemsets A k-itemset is an itemset of size An itemset
is calledfrequentif it satisfies the support (or frequency)
threshold. The set of all frequehtitemsets is denoted as

frequent. For the third candidafel, B, C'} a database scan
verified that it is frequent. After all frequent itemsets have
been computed, each itemsetlinandLs is used to create

L. TheApriori property helps to reduce the search spacerules. The confidence is computed for each rule and only

for frequent itemsets:

All nonempty subsets of a frequent itemset
must also be frequent.

This is obvious because the support increases, if itAms
are removed from an itemsétC 7: P(I) < P(I — X).
Thus, if I was frequentminsupp< P(I), then] — X is
frequent, toomin_supp< P(I) < P(I — X).
The Apriori algorithm consists of two phases:
1. Find all frequent itemsets.
Frequent itemsets are generated level-wise: Eifss
computed, therd,; is used to findL, which is used to

strong rules are returned.

Keep in mind, that the Apriori property can only tell that
an itemset imot frequent. A check for an itemséeing
frequent always has to scan the database.

The Apriori algorithm has several drawbacks: The
databasé® is repeatedly scanned for each level of the fre-
guent itemset creation. Additionally, the creation of candi-
date sets is expensive. If there af¢ frequentl-itemsets
then aboutl0® candidate2-itemsets are generated. More-
over, to discover a pattern of size 100, the Apriori algorithm
must create more that® candidates in total.

It is possible to mine association rules without candidate

computeLs, and so on. This phase terminates if for a generation based on a divide-and-conquer strategy. The al-

k no more frequenk-itemsets are found. Each level,
i.e., the creation of a séty, consists of four steps:

— Thejoin step:
A candidatek-itemsetC', is generated by joining
L1 with itself. The join condition is that the
first k—1 items of two itemsets andl; are equal
and only the last elements diffdi:[k] < I2[k].

— Theprunestep:
Remove itemsets frond,, that cannot be fre-
guent by means of the Apriori property.

— Thescanor countstep:
Scan the databage and count the frequency of
each remaining candidate @,.

— Thecreatestep:
The frequent-itemsetsL; are those sets i@y,
that satisfy the frequency threshold.

gorithm is calledfrequent-pattern growtland also known
asFP-growth[8].

4.5 The ROSE Approach for Mining Association
Rules

The classical use of the Apriori algorithm is to compute all
rules above a minimum support and confidence. However,
computing all rules is useful for searching general patterns
but not for making recommendations:

The coverage of Apriori is too low. The coverageis di-
rectly proportional to the number of distinct an-
tecedents within a rule sé®. A high coverage is
desirable becaugseOSEcan then make recommenda-
tions in most cases. A low coverage means R@SE
is often clueless.

The coverage can be increased by extending the rule

Searching for frequent itemsets is the most time con-
suming part of the Apriori algorithm; each level re-
quires a full scan of the database. Thus, the support
(or frequency) threshold has a huge impact on running
time.

setR, e.g., byloweringthe confidence and especially
the support thresholdsHowever, for too low support
thresholds Apriori may take months. The bottleneck
is not Apriori but the circumstance th& gets too
large—greater thaglZ! in worst case.

Transactions: D
TXID | List of items
100 | A,B,C
200 | A,D
300 | A,B,C
400 | B,D
500 | A,D
600 | B,E
700 | A/B
Generate frequent 1-itemset’;
Ci
ltemset| Count L1
47 5 Iltemset| Count
ot | (B} | 5 | _ceae | A} | 5
{c > {B} 5
(D} 3 {C} 2
(£} 1 {D} 3
Generate frequent 2-itemsetlL»
Ca
[temset [Ttemset |
{A, B} {A, B}
join A C prune {A7 C} count
{A,D} {A,D}
{B,C} {B,C}
{B,D} {B,D}
{C, D} {C,D}
Ca
Iltemset | Count Lo
{A, B} 3 Itemset | Count
{A’ C} 2 create {A7 B} 3
{A,D} 2 ,C} 2
{B,C} 2 {A, D} 2
{B, D} 1 {B,C} 2
{C, D} 0
Generate frequent 3-itemsetlLs
ltemset Cs
join {4,B,C} prune ltemset count
{A, B, D} {(A,B,C}
{A,C, D}
Cg L3
ltemset | Count create Itemset | Count
{A,B,C} {A,B,C} 2
Generate association rules fromL; and L3
Frequent itemsef Rule Confidence| Strong
{A, B} A= B 3/5=10.60 yes
B=A 3/5 =0.60 yes
{A,C} A=C 2/5=0.40 no
C=A 2/2=1.00 yes
{A,D} A= D 2/5=10.40 no
D= A 2/3 =0.67 yes
{B,C} B=C 2/5=0.40 no
C=B 2/2=1.00 yes
{4, B,C} A= BAC | 2/5=0.40 no
B=AANC | 2/5=040 no
C=AAB | 2/2=1.00 yes
AANB=C | 2/3=0.67 | yes
ANC =B | 2/2=1.00 yes
BAC = A |2/2=100| yes
Figure 5: Example for the Apriori Algorithm

(min_freq = 2; min_conf= 0.5)

Of course, too low support thresholds have a bad in-
fluence on the quality of recommendations. Neverthe-
less, the developer should be able to decide on support
thresholds independently from any technical bound-
aries imposed by the Apriori algorithm.

The search for matching rules is expensiveAs men-
tioned above,R gets very large—for most projects
a multiple of the number of transactions. Thus, the
search for matching rules is expensiveiifdoes not
fit into memory and no suitable index structures are
available.

Therefore, ROSE uses its own mining algorithm that
minesonly requiredruleson the fly This algorithm is based
on two optimizations:

Mine with constrained antecedents.In our specific case,
the antecedent is equal to the situation; hence, we only
mine ruleson the flywhich matchthe situationt, i.e.,
rules that are&c = I. Mining with such constrained
antecedents takes only a few seconds. An additional
advantage of this approach is that it is incremental in
the sense that it allows new transactions to be added
to D between two situations. Thus, recommendations
are always up-to-date.

Mine only single-consequents.To speed up the mining
process even more, we only compute rules with a sin-
gle item in their consequent. So, for a situationthe
rules have the fornt = {i}. For ROSE such rules
are sufficient becaus®SEcomputes the union of the
consequents anyway. Therefore, considering multi-
consequents is superfluous: For each item I of
a multi-consequent rul® = I [s; ¢] exists a single-
consequent rul® = {i} [s;; ¢;] with higher or equal
support and confidence valugs> s andc¢; > ¢ be-
causdrequencyX U {i}) > frequency> U B). Thus,
for ROSE single-consequent rules have the same ex-
pressive power as multi-consequent rules.

TheROSEmMining algorithm consists of three steps:

1. Find relevant transactions.
Find the set of all transactiors that contairall items
of the situation®, i.e.,7 ={T' | T € D, X C T}.

2. Generate relevant frequent itemsets.
Group the items of these transactiohsngitems<
7T) by their entities (identified b¥ntitylD), and sort
them by their descending count.

3. Create single-consequent rules.
Each group corresponds to exactly one single-
consequent rule.

— The frequencyof X is the maximal count of a
group (which is likely for an item € ¥ and is
always for the count of the first returned group).

— Thefrequencyfor the ruleX = {i} corresponds
to the count for group of the iter

— Theconfidencef aruleX = {i} is
frequency® = {i})
frequency)

— Ignoretrivial rules—that are rulex = {i} with
1€ M.

Return only rules that satisfy the support and confi-
dence thresholds (which means they are strong).

Situation ¥ = {A, B} and k =| ¥ |= 2 Transactions
Project, Description evaluated] total
Find relevant transactions 7 ECLIPSE integrated environment 2,965 | 46,843
TXID | List of items GCC, compiler collection 1,083 | 47,424
100 | A B, C . GIMP, image manipulation tool 1,305| 9,796
200 | A,D $§|Igvantit sr?gf ﬁg"rﬁf JBOSS applic:_;ttion server 1,320 10,843
300 | A/B,C find 100 TAB.C JEDIT, text editor 577 | 2,024
400 | B,D | 30 | ABC KOFFICE, office suite 1,385| 20,903
500 | A D 700 | A.B POSTGRESQLdatabase system 925 | 13,477
ggg i- E PYTHON, language + library 1,201 | 29,588

.) Table 1: Analyzed projects
Generate frequentk- and k + 1-itemsets that containX

Closure. Suppose a transaction is finished—the program-

generate Itim Freq; ency N ?ifnéit mer made all necessary changes. Hovy ofpen dc;es
B 3 = {A B} ROSEerroneously suggest that a change is missing?
C 2 = {A,B,C}

5.1 Evaluation Setup

Create single-consequent rules with antecedeit For our evaluation, we analyzed the archives of eight large
open-source projects (Table 1). For each archive, we chose

'tim - T:gg;zn)c{3 ?X'g} . (A} is trivia a number of full months containing the last 1,000 trans-
B q 3 {A’B} — B} is trivial actions, but not more than 50% of all transactions as our
c 2 {A:B} — {C} is strong eva_LIuatlon penod.lln th|s period, we check for each trans-

actionT" whether its items can bpredicted from earlier
history:

Figure 6: An Example for the ROSE Algorithm

(min_freq — 2; min_conf= 0.5) 1. We create dest casg = (Q, F) consisting of ajuery

@ C T and arexpected outcomg =T — Q.

) . . 2. We take all transactions; that have been completed
Figure 6 shows an example for tR&SEmining algorithm. beforetime(T) as atraining setand mine a set of
Suppose, the situation¥ = {4, B}. First,ROSEsearches rules R from these transactions.
all transactions that contai: 100, 300, and 700. Next, it . . .
groups exactly those transactions by items and sorts them3: T0 avoid having the user work through endless lists

by their descending count. The highest count is for itém of suggestionsROSEonly shows thetop ten single-
thus thefrequencyfor ¥ is 3. The rules ford and B are consequent ruleg,, C R ranked by confidence. In
trivial (both are in the situatiox), thus they are ignored. our evaluation, we apply,, to get the result of the
For C, the ruleX = {A, B} = {C} is strong because the queryA, = applyg,, (Q). So, the size ofl, is always
thresholds fomin_freqandmin_confare satisfied. less or equal than ten.

The optimizations above make mining very efficient: 4. The result4, of a test case consists of two parts:
The_aver_age_run'glme of a query is about 0.5s for large o A,N E, are the items thahatchedhe expected
version histories likesCC with more than 45,000 transac-

outcome and are consideredrrectpredictions

e A, — E, are unexpected recommendations that
are considered asrong predictions and called

tions?

4.6 Binary Association Rules

i h o loorithm fosingl false positives

ROSE provides another mining algorithm fosingle- ” . .)
antecedent single-consequeules{a} = {b}. Such rules Additionally, ROSEmay have missed items:

are less precise for recommendations, but valuable for mea- o B, — A, are themissingpredictions and called
surement and visualization of coupling between entities false negatives

[19]. The algorithm is exactly like the Apriori algorithm For the assessment of a resulj, we use two measures
presented in Subsection 4.4, except that only freq@ent from information retrieval15]: TheprecisionP, describes
itemsets are generated and used for rule creation. which fraction of the returned items was actually expected

by the user. Theecall R, indicates the percentage of ex-
5 Evaluation pected items that were returned.

In [21] we evaluated the predictiveness of association rules |A, N E,| |Ag N Ey|
for programming support. This section summarizes some a= 1A, Ry = E,|
of the results for the following issues: _ a _ e _
L) , In case no items are returned (is empty), we define the
Navigation through source code.Given a single changed yrecision as?, = 1, and in case no items are expected, we
entity, canROSE point programmers to entities that gefine the recall ai, = 1.
should typically be changed, too? For each queryg;, we get a precision-recall pair
Error prevention. CanROSEpreventerrors? Say, the pro- (Fy,, Rq;). We usemicro-evaluationto summarize these
grammer has changed many entities but has missed airs into a single average precision-recall pair:
change one entity. Dog®SEfind the missing one? N N
_ Zi:l |qu N Eqi _ Zi:l |qu N Eqi

4 ; ; W= N W= N
Measured on a PC Intel 2.0 GHz Pentium 4 with 1 GB RAM. Zi:l Ay, Zi:l E,,

One can think of micro-evaluation as summarizing all Navigation | Prevention| Closure
queries into one large query and then computing preci- | Frequency 1 3 3
sion and recall for this large query. It therefore allows | Confidence 0.1 0.9 0.9
statements omsingle suggestionkke “every nth sugges- Project R, | P, | Ls | R, | P.| Pu
tion is wrong/correct”. For example, the precisidh ECLIPSE |[0.15]0.26|0.53| 0.02|0.48] 0.979
for PYTHON is 0.50: Every second suggestion is correct, | GCC 0.28]0.39/0.89| 0.20|/ 0.81| 0.953
which means that the recommended entity was actually| GIMP 0.12| 0.25/0.91| 0.03|0.71| 0.978
changed later on. In contrast, macro-evaluation makes| JBOSS 0.16/0.38/ 0.69| 0.01]|0.24| 0.981
statements per query. JEDIT 0.07| 0.16| 0.52| 0.004| 0.59| 0.986
Keep in mind thatROSE usually provides several sug- | KOFFICE |0.08|0.17|0.46|0.003| 0.24| 0.990
gestions for a query. In order to assess the actual useful{ POSTGRES 0.13| 0.23| 0.59| 0.03|0.66| 0.989
ness for the programmer, we thus checkedlikaihood PYTHON |0.14]0.24|0.51| 0.01| 0.50| 0.986
whether the expected location would be includeB@BEs Average |0.15/0.26/0.64| 0.04| 0.50| 0.980

top threenavigation suggestions (assuming that a program-
mer won't have too much trouble judging the first three Table 2: ResultsR = recall; P = precision; L = likelihood)
suggestions).

Formally, L3 is the likelihood that for a query =
(Q, E), at least one of the first three recommendations i
correct:

entityi € T, we queried) = T—{:}, and checked whether
RoSEwould predictE = {i}. For each transaction, we
thus again rafT’| tests.

Ls = L(Japply(@, Rs) N E| > 0) As too many false warnings might undermiR®SEs
credibility, ROSEis set up to issue warnings only if the
high confidence thresholdf 0.9 is exceeded. The results
are shown in Table 2 (colunirevention:

whereL(p) stands for the probability of the predicate

One can either havprecisesuggestions omanysugges

tions, but not both. e The averageecall is about 4%. This means that in
only one out of 25 queries (iBCC. every 5th query),

5.2 Results: Improve Navigation ROSEcorrectly predicted the missing item.

We evaluated the predictive powerRBSEin the “Improve e The averagerecisionis above 50%. This means that

Navigation” scenario. For each transactién and each if a warning occurs, every second recommendation of

itemi € T, we queriedQ = {i}, and checked whether ROSEis correct.

ROSEwould predictE = T — {i}. For each transaction,

we thus testeqﬂ"\ queries, each with one element. Given a transaction where one change is missRQSE
The results fominfreq = 1 andmin.conf = 0.1 are can predict 4% of the entities that need to be changed.

shown in Table 2 (columiNavigatior): On average, every second recommended entity is cofrect.

e The averageecall of 0.15 means thaOSEs sugges- .
tion correctly included 15% of all changes that were -4 Results: Closure
actually carried out in the given transactions. The final question in the “Error Prevention” scenario is how
« The averageprecision of 0.26 means that 26% of many false alarmROSEwould produce in case no entity is

all recommendations were correct—every fourth sug—gizm%or"g%:g':gﬂge;cttig'; bv)\/letesltjlgﬁ)ergget_e tTran:r?cci:-
gested change was actually carried out (and thus pre-, ™ ! 4 A
; checked whetheROSEwould predictE = (); we thus had
dicted correctly byROSE. X
o one test per transaction.

e The averagdikelihood L3 of the three topmost sug- We measured the percentaBg of transactions where
gestions predicting a correct location is 0.64. ThisrosEhas not issued a warnifigThus1 — Py, is the per-
means for 64% of all transactions oneRPSES pre- centage of false alarms.
dictions took place. The results are shown in Table 2 (colu@tosurd. One

While KOFFICE andJEDIT have lower recall, precision, C€an see that the precision is very hlg_h for all projects, usu-
and likelihood valuesGCC strikes by overall high values. ally around 0.98. This means tHROSEissues a false alarm
The reason is thatOFFICE and JEDIT are projects where in only every 50th transaction.
continuously many new features are inserted (which cann
be predicted from history) whil&CC is a stable system
where the focus is on maintaining existing features.

ROSEsS warnings about missing changes should be taken
seriously: Only 2% of all transactions cause a false
alarm. In other wordsROSEdoes not stand in the way

When given one initial changed entiBQSEcan predict
15% of all entities changed later in the same transaction. 6 Related Work
In 64% of all transactionsROSEs topmost three sugges-

.) . Independently from us, Annie Ying developed an approach
tions contain a correct location. P y 9 P bp

that also uses association rule mining GN'S version

5.3 Results: Error Prevention archives[18§]. She es_pecially evaluated t_he usefulness of
. . . the results, considering a recommendation most valuable
We determined in how many cas@OSE can predict @ o “surprising” if it could not be determined by program

missing entity in the “Error Prevention” scenario. For this 5n)ysis, and found several such recommendations in the
purpose, we took each transaction, left out one item ang,oZ | LA and ECLIPSE projects. In contrast t&ROSE
checked ifROSEcould predict the missing item. In other

words, the query was the complete transaction without the ®In this case the percentage corresponds to the precision of
missing item. So, for each single transactibpand each macroevaluation. Therefore we denote it Bg;.

though, Ying’s tool can only suggest files, not finer-grainedSequence rules.Right now, we are only relating changes
entities, and does not support mining-on-the-fly. that occur in thesametransaction. In the future, we
Gall et al. were the first to use release data to detect log- also want to detect rules across multiple transactions:
ical coupling between moduld$]. The CVS history al- “The system is always tested before being released”
lows to detect more fine-grained logical coupling between (as indicated by appropriate changes).
classed7], files and function$19]. None of these works Fyrther data sources. Archived changes contain more
on logical coupling did address its predictive power. than just author, date, and location. One could scan
Jelber Sayyad-Shirabad et al. use inductive learning to |Jog messageéincluding the one of the change to be
learn different concepts of relevance between logically cou- committed) to determine the concern the change is

pled files[16; 17. A concept is a relevance relation, for more likely to be related to (say, “Fix” vs. “New fea-
example whether two files have been updated simultane- tyre”).

ogsly. Instances _of concepts are Qescrlbed in termﬁ—of. We are currently makinROSE available as a plug-in for
tributes such as file name, extension and simple metric CLIPSE For more information and download. visit

like number of routines defined. Jelber Sayyad-Shiraba _) '
thoroughly evaluated the predictive power of the concepts http://www.st.cs.uni-sb.de/softevo/

four;]d, but nonf of the papers give a convincing example 0IAcknowIedgments.This project is funded by the Deutsche
suc gconchepl. . h 1EForschungsgemeinschaft, grant Ze 509/1-1. Special thanks
Amir Michail used data mining on the source code o {o the project members Michael Burch, Stephan Diehl, Pe-

programming libraries to detect reuse patterns in form ok, \weirgerber, and Andreas Zeller for their support. Olaf
associatiori13] or generalized association ruleil]. The pargen gave helpful comments on earlier revisions of this
latter takes inheritance relations into account. The 'tem?Japer.

in these rules are (re-)use relationships like method invo-
cation, inheritance, instantiation, or overriding. Both Pa-References
pers lack an evaluation of the quality of the patterns found

However, Michail mines a single version, whiR®SEuses [1]
the changes between different versions.

To guide programmers, a number of tools have exploited
textual similarityof log messagek3] or program cod¢2].
HIPIKAT [4] improves on this by taking also other sources|[2]
like mail archives and online documentation into account.
In contrast toROSE all these tools focus on high recall
rather than on high precision, and on relationships between
files or classes rather than between fine-grained entities.

(3]

R. Agrawal and R. Srikant. Fast algorithms for min-
ing association rules. IRroceedings of the 20th Very
Large Data Bases Conference (VLDRjgges 487—
499. Morgan Kaufmann, 1994.

D. L. Atkins. Version sensitive editing: Change his-
tory as a programming tool. In B. Magnusson, ed-
itor, Proceedings of System Configuration Manage-
ment SCM’98 volume 1439 ofLNCS pages 146—
157. Springer-Verlag, 1998.

A. Chen, E. Chou, J. Wong, A. Y. Yao, Q. Zhang,
S. Zhang, and A. Michail. CVSSearch: searching
through source code using CVS comments. In ICSM
2001[9], pages 364-374.

D. Cubrant and G. C. Murphy. Hipikat: Recom-

mending pertinent software development artifacts. In
Proc. 25th International Conference on Software En-
gineering (ICSE)pages 408-418, Portland, Oregon,

7 Conclusion and Consequences

ROSEcan be a helpful tool in suggesting further changes
to be made, and in warning about missing changes. B
the more there is to learn from history, the more and bette 4]
suggestions can be made:

e For stable systems likeCC, ROSE gives many and

precise suggestions: 28% of related entities can be
predicted, with a precision of about 40% for each sin-[5]
gle suggestion, and a likelihood of over 90% for the
three topmost suggestions.

For rapidly evolving systems likeOFFICE or JEDIT, 6]
ROSEs most useful suggestions are at the file level.
Overall, this is not surprising, &0SEwould have to
predictnew functions—which is probably out of reach

for any approach.

In about 4% of all erroneous transactioRQSEcor- [7]
rectly detects the missing change. If such a warning
occurs, it should be taken seriously, as only 2% of all
transactions cause false alarms.

(8]

What havewe learned from history, and what are our
suggestions? Here are our plans for future work:

Taxonomies. Every change in a method implies a change

in the enclosing class, which again implies changeslg]
in the enclosing files or packages. We want to ex-
ploit suchtaxonomieso identify patterns such as “this
change implies a change in this package” (rather tharh10]
“in this method”) that may be less precise in the loca-
tion, but provide higher confidence.

May 2003.

M. Fischer, M. Pinzger, and H. Gall. Populating a
release history database from version control and bug
tracking systems. In ICSM 20430].

H. Gall, K. Hajek, and M. Jazayeri. Detection of log-

ical coupling based on product release history. In
Proc. International Conference on Software Mainte-
nance (ICSM '98)pages 190-198, Washington D.C.,

USA, Nov. 1998. IEEE.

H. Gall, M. Jazayeri, and J. Krajewski. CVS release
history data for detecting logical couplings. In IW-
PSE 200311], pages 13-23.

J. Han, J. Pei, and Y. Yin. Mining frequent pat-
terns without candidate generation.Rroceedings of

the 2000 ACM SIGMOD International Conference on
Management of Datgages 1-12. ACM Press, 2000.

Proc. International Conference on Software Main-
tenance (ICSM 2001)Florence, Italy, Nov. 2001.
IEEE.

Proc. International Conference on Software Mainte-
nance (ICSM 2003)Amsterdam, Netherlands, Sept.
2003. IEEE.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Proc. International Workshop on Principles of Soft-
ware Evolution (IWPSE 2003)Helsinki, Finland,
Sept. 2003. IEEE Press.

H. Mannila, H. Toivonen, and A. |. Verkamo. Ef-
ficient algorithms for discovering association rules.
In U. M. Fayyad and R. Uthurusamy, editosAAl
Workshop on Knowledge Discovery in Databases
(KDD-94), pages 181-192, July 1994.

A. Michail. Data mining library reuse patterns in
user-selected applications. Proc. 14th Interna-
tional Conference on Automated Software Engineer-
ing (ASE’'99) pages 24-33, Cocoa Beach, Florida,
USA, Oct. 1999. |IEEE Press.

A. Michail. Data mining library reuse patterns us-
ing generalized association rules. limternational
Conference on Software Engineerjipgges 167-176,
2000.

C. J. V. Rijsbergen.Information Retrieval, 2nd edi-
tion. Butterworths, London, 1979.

J. Sayyad-Shirabad, T. C. Lethbridge, and S. Matwin.
Supporting maintainance of legacy software with data
mining techniques. In ICSM 2008], pages 22-31.

J. Sayyad-Shirabad, T. C. Lethbridge, and S. Matwin.
Mining the maintenance history of a legacy software
system. In ICSM 200310].

A. T. T. Ying. Predicting source code changes by
mining revision history. Master’s thesis, University
of British Columbia, Canada, Oct. 2003.

T. Zimmermann, S. Diehl, and A. Zeller. How history
justifies system architecture (or not). In IWPSE 2003
[11], pages 73-83.

T. Zimmermann and P. Weil3gerber. Preprocessing
CVS data for fine-grained analysis. Rroc. Inter-
national Workshop on Mining Software Repositories
(MSR 2004) pages 2-6, Edinburgh, Scotland, UK,
May 2004.

T. Zimmermann, P. Weil3gerber, S. Diehl, and
A. Zeller. Mining version histories to guide software
changes. IrProc. 26th International Conference on
Software Engineering (ICSEEdinburgh, Scotland,
May 2004.

