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Abstract 
 

In any software project, developers need to be 

aware of existing dependencies and how they affect 

their system. We investigated the architecture and de-

pendencies of Windows Server 2003 to show how to 

use the complexity of a subsystem’s dependency graph 

to predict the number of failures at statistically signifi-

cant levels. Such estimations can help to allocate soft-

ware quality resources to the parts of a product that 

need it most, and as early as possible. 

 

1. Introduction 
 

Software dependencies are often spread across bina-

ries that are developed by different teams. These teams 

have to be aware of existing dependencies and how 

they affect (or should affect) their development 

process. More dependencies generally result in more 

complex code that is harder to manage. There has been 

scant empirical evidence of this very common problem 

in the software development industry. Further, with 

recent trends in the global nature of software develop-

ment teams, it becomes more crucial to understand 

software dependencies to make sound design and busi-

ness decisions. 

In this paper, we use dependency and system archi-

tecture data to identify their relation to failures. More 

specifically, we focus on the level of subsystems (as 

defined by the system’s architecture) and compute the 

complexity of the subsystem’s dependency graphs us-

ing concepts adapted from classical graph theory. We 

hypothesize that these complexities correlate with fail-

ures—as code complexity metrics do. (We use the 

IEEE definition of a failure as the inability of a system 

or component to perform its required functions within 

specified performance requirements [13].) We also 

show how to use such graph complexities adapted from 

graph theory to predict the number of failures. Having 

reliable predictions of failures supports the following 

two tasks in software engineering. 

Resource allocation. Software quality assurance con-

sumes a considerable effort in any large-scale software 

development. To raise the effectiveness of this effort, it 

is wise to spend more attention on the components that 

are more likely to fail and need quality assurance most. 

Decision making. Predictions on the number of fail-

ures can also support other decisions such as choosing 

the correct requirements or design. However, for this 

case, one needs early indicators of failures. Many de-

pendencies are known early in the development, while 

code metrics cannot be used until implementation be-

gins or until a substantial part of the code is written. 

We studied the dependency data of the Windows 

Server 2003 operating system which is a large com-

mercial software project, with an analyzed code base of 

28.3 MLOC comprising 2252 compiled binaries.  

The outline of this paper is as follows: We motivate 

the relevance of dependencies with two observations 

and state our research hypotheses in Section 2. Next, 

we summarize related work in Section 3. In Section 4 

we discuss our data collection, i.e., how we obtained 

the architecture and dependency data and how we 

computed complexity. Section 5 presents several expe-

riments to support our hypothesis. We conclude the 

paper with our plans for future work in Section 6. 

 

2. Motivation 
 

When we analyzed failure data and dependency 

graphs for the binaries of Windows Server 2003, we 

made the following observations. 

 

Cycles had on average twice as many failures. We 

investigated whether dependency cycles have impact 

on failures. A simple example for a dependency cycle 

is a mutual dependency, i.e., binaries X and Y depend 

on each other; for this experiment, we considered 

cycles of any size, but ignored self-cycles such as X 
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depends on X. Based on whether binaries are part of a 

cycle, we divided them into groups. Binaries that were 

part of cycles had on average twice as many failures as 

the other binaries, at a significance of 99%.  

 

The larger a clique the more failure-prone are its 

binaries. A clique is a set of binaries for which be-

tween every pair of binaries (X, Y) a dependency ex-

ists—we neglect the direction, i.e., it doesn’t matter 

whether X depends on Y, Y on X, or both. Figure 1 

shows an example for an undirected clique; a clique is 

maximal if no other binary can be added without losing 

the clique property. We enumerated all maximal undi-

rected cliques in the dependency graph of Windows 

Server 2003 with the Bron-Kerbosch algorithm [7]. 

Next we grouped the cliques by size and computed the 

average number of failures per binary. Figure 2 shows 

the results, including a 95% confidence interval of the 

average. We can observe that the average number of 

failures increases with the size of the clique a binary 

resides in. Put another way, binaries that are part of 

more complex areas (cliques) have more failures. 

 

These observations suggest that certain properties of 

dependency graphs (such as the presence of cycles and 

cliques) correlate with failures. In this paper, we will 

therefore investigate whether dependency data predicts 

failures. Rather than using code complexity metrics for 

individual binaries, we will compute complexity meas-

ures for the dependency graphs of whole subsystems. 

By using graph theoretic properties we can take the 

interaction between binaries into account. Formally, 

our research hypotheses are the following. 

 

H1 For subsystems, the complexity of dependency 

graphs positively correlates with the number of 

post-release failures—an increase in complexity 

is accompanied by an increase in failures. 

H2 The complexity of dependency graphs can predict 

the number of post-release failures. 

H3 The quality of the predictions improves when 

they are made for subsystems that are higher in 

the system’s architecture. 

 

3. Related work 
 

In this section we discuss related work; it falls into 

three categories: software architecture and dependen-

cies, complexity metrics, and historical data.  

 

3.1. Architecture and dependencies 
 

There are many different ways to describe software 

architecture: relationships and properties of architec-

tural elements [2, 26], architectural style which means 

a set of design rules combined with local or global 

constraints [29], and of course architectural description 

languages [17]. Pinzger et al. [27] integrated informa-

tion on the evolution of software architecture from the 

source basis of a project and from the release history 

data such as modification and problem reports. The 

integrated architectural views show intended and unin-

tended couplings between architectural elements. This 

information can be used to highlight to software engi-

neers the locations in the system that may be critical 

for on-going and future maintenance activities. 

Schröter et al. [28] showed that the actual import 

dependencies (not just the count) can predict defects. 

Earlier work on at Microsoft [21] showed that code 

churn and dependencies can be used as efficient indica-

tors of post-release failures. The basic idea is that 

churn often will propagate across dependencies. Sup-

pose that component A has many dependencies on 

component B. If the code of component B changes 

(churns) a lot between versions, we may expect that 

component A will need to undergo a certain amount of 

churn in order to keep in synch with component B.   

Together, a high degree of dependence plus churn can 

cause errors that will propagate through a system, re-

ducing its reliability. 

 

 
Figure 2. Failure-proneness of cliques. 

 
Undirected clique of size 3 
(not maximal because of X) 

 
Undirected clique of size 4 

(maximal) 
 

Figure 1. Undirected cliques. 



3.2. Complexity metrics 
 

Typically, research on failure-proneness captures 

software complexity with metrics and builds models 

that relate these metrics to failure-proneness [9]. Basili 

et al. [3] were among the first to validate that OO me-

trics predict defect density. Subramanyam and Krish-

nan [31] presented a survey on eight more empirical 

studies, all showing that OO metrics are significantly 

associated with defects.  

Our experiments focus on post-release failures since 

they matter for the end-users of a program. Only few 

studies addressed post-release failures: Binkley and 

Schach [5] developed a coupling metric and showed 

that it outperforms several other metrics; Ohlsson and 

Alberg [24] used metrics to predict modules that fail 

during operation. Additionally, within five Microsoft 

projects, Nagappan et al. [23] identified metrics that 

predict post-release failures and reported how to sys-

tematically build predictors for post-release failures 

from history. In contrast to their work, we develop new 

metrics on dependency data from a graph theoretic 

point of view. 

 

3.3. Historical data 
 

Several researchers used historical data for predict-

ing defect density: Khoshgoftaar et al. [15] classified 

modules as defect-prone when the number of lines 

added or deleted exceeded a threshold. Graves et al. 

[12] used the sum of contributions to a module to pre-

dict defect density. Ostrand et al. [25] used historical 

data from up to 17 releases to predict the files with the 

highest defect density of the next release. Further, 

Mockus et al. [18] predicted the customer perceived 

quality using logistic regression for a commercial tele-

communications system  (of size seven million lines of 

code) by utilizing external factors like hardware confi-

gurations, software platforms, amount of usage and 

deployment issues. They observed an increase in prob-

ability of failure by twenty times by accounting for 

such measures in their prediction equations. 

 

4. Data collection 
 

In this section we explain how we collect hierarchy 

information and software dependencies and how we 

measure the complexity of subsystems. For our expe-

riments we used the Windows Server 2003 operating 

system which is decomposed into a hierarchy of sub-

systems as shown in Figure 3. On the highest level are 

areas such as ―Multimedia‖ or ―Networking‖. Areas 

are further decomposed into components such as 

―Multimedia: DirectX‖ (DirectX is a Windows tech-

nology that enables higher performance in graphics and 

sound when users are playing games or watching video 

on their PC) and subcomponents such as ―Multime-

dia: DirectX: Sound‖. On the lowest level are the bi-

naries to which we can accurately map failures; we 

considered post-release failures because they matter 

most for end-users. Since failures are mapped to the 

level of binaries, we can aggregate the failure counts 

of the binaries of a subsystem (areas, components, 

subcomponents) to get its total subsystem failure 

count.  

We first generate a dependency graph for Windows 

Server 2003 at the binary level (Section 4.1). Then we 

divide this graph into different kinds of subgraphs us-

ing the area/component/subcomponent hierarchy (Sec-

tion 4.2). For the subgraphs, we compute complexity 

measures (Section 4.3) which we finally use to predict 

failures for subsystems. We placed our analysis on the 

level of binaries for two reasons: (1) Binaries are easier 

to analyze since one is independent from the build 

process and other specialties such as preprocessors. (2) 

Defects were collected on binary level; mapping them 

back to source code is challenging and might distort 

our study. 

 

4.1. Software dependencies 
 

A software dependency is a directed relation be-

tween two pieces of code (such as expressions or me-

thods). There exist different kinds of dependencies: 

data dependencies between the definition and use of 

values and call dependencies between the declaration 

of functions and the sites where they are called.  

Microsoft has an automated tool called MaX [30] 

that tracks dependency information at the function lev-

el, including calls, imports, exports, RPC, COM, and 

Registry accesses. MaX generates a system-wide de-

pendency graph from both native x86 and .NET ma-

Multimedia
(Area)

Networking
(Area)

...
...

...

DirectX
(Component)

Sound
(Subcomponent)

...

...

Binaries

 
Figure 3. Example architecture of Windows 

Server 2003 



naged binaries. This graph can be viewed as the low-

level architecture of Windows Server 2003. Within 

Microsoft, MaX is used for change impact analysis and 

for integration testing [30]. There are freely available 

tools like Dependency Finder or JDepend (for Java) 

and MakeDep (for C++) which can be used to repeat 

our study for other projects. 

For our analysis, we use MaX to generate a system-

wide dependency graph at the function level. Since we 

collect failure data for binaries, we lift this graph up to 

binary level in a separate post-processing step. Consid-

er for example the dependency graph in Figure 5. Cir-

cles denote functions and boxes are binaries. Each thin 

edge corresponds to a dependency at function level. 

Lifting them up to binary level, there are two depen-

dencies within A and four within B (represented by 

self-edges), as well as three dependencies where A 

depends on B. We refer to these numbers as multiplici-

ty of a dependency/edge.  

As a result of this lifting operation there may be 

several dependencies between a pair of binaries (like in 

Figure 5 between A and B), which results in several 

edges in the dependency graph. For our predictions, we 

will consider both regular graphs (where only one edge 

between two binaries is counted) and multigraphs 

(where every edge between two binaries is counted). 

Formally (for our experiments), a dependency graph 

is a directed multigraph G = (V, A) where  

 V is a set of nodes (binaries) and  

 A = (E, m) a multiset of edges (dependencies) for 

which E  V×V contains the actual edges and the 

function m: E  N returns the multiplicity (count) 

of an edge. 

The corresponding regular graph (without multiedges) 

is G’ = (V, A). We allow self-edges for both regular 

graphs and multigraphs. 

 

4.2. Dependency subgraphs 
 

We use hierarchy data from Windows Server 2003 to 

split the dependency graph G=(V,A) into several sub-

graphs; for a subsystem that consists of binaries B, we 

compute the following subgraphs (see also Figure 4): 

 

Intra-dependencies (INTRA). The subgraph (Vintra, 

Eintra) contains all intra-dependencies, i.e., dependen-

cies (u,v) that exist between two binaries u,vB within 

the subsystem. This subgraph is induced by the set of 

binaries B that are part of the subsystem.  

𝑉intra = 𝐵 

𝐸intra =   𝑢, 𝑣   𝑢, 𝑣 ∈ 𝐸, 𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵   
𝐴intra = (𝐸intra , 𝑚) 

 

Outgoing dependencies (OUT). The subgraph (Vout, 

Eout) contains all outgoing inter-dependencies (u,v) that 

connect the subsystem with other subsystems, i.e., 

uB, vB. This subgraph is induced by the set of 

edges that represent outgoing dependencies. We focus 

on outgoing dependencies because they are the ones 

that can make code fail. 

𝐸out =   𝑢, 𝑣   𝑢, 𝑣 ∈ 𝐸, 𝑢 ∈ 𝐵, 𝑣 ∉ 𝐵   
𝐴out = (𝐸out, 𝑚) 

𝑉out =  𝑢  𝑢, 𝑣 ∈ 𝐸out ∪  𝑣  𝑢, 𝑣 ∈ 𝐸out  
 

Subsystem dependency graph (DEP). The subgraph 

(Vdep, Edep) combines the intra-dependencies and the 

outgoing dependencies subgraphs. Note that we addi-

tionally take edges between the neighbors of the sub-

system into account. 

𝑉dep = 𝑉intra ∪ 𝑉out 

𝐸out =   𝑢, 𝑣   𝑢, 𝑣 ∈ 𝐸, 𝑢 ∈ 𝑉dep, 𝑣 ∈ 𝑉dep
   

𝐴out = (𝐸out, 𝑚) 

Sample graph INTRA OUT DEP 

    
Figure 4. Different subgraphs for a subsystem that consists of binaries A, B, C, D, and E: 

intra-dependency (INTRA), outgoing dependency (OUT), and combined dependency graph (DEP). 

 
Figure 5. Lifting up dependencies. The edges 

are labeled by the multiplicity of a dependency 



Considering different subgraphs allows us to investi-

gate the influence of internal vs. external dependencies 

on post-release defects. We compute the dependencies 

across all the three subsystem levels (area, component, 

and subcomponent). 

 

4.3. Graph-Theoretic Complexity Measures 
 

On the subgraphs defined in the previous section, we 

compute complexity measures which we will later use 

to predict post-release failures. The complexity meas-

ures are computed for both regular graph and multi-

graphs with the main difference being the number of 

edges  𝐸  and  𝑚 𝑒 𝑒∈𝐸  respectively. Some of the 

measures are aggregated from values for nodes and 

edges by using minimum, maximum and average. The 

formulas are summarized in Table 1 and discussed 

below. 

Graph complexity. Besides simple complexity meas-

ures such as the number of nodes or number of edges, 

we compute the graph complexity and the density of a 

graph [32]. Although the graph complexity was devel-

oped for graphs in general, it is well known in the 

software engineering community for its use on control 

flow graphs (McCabe’s cyclomatic complexity).  

Degree-based complexity. We measure the number of 

ingoing and outgoing edges (degree) of nodes and ag-

gregate them by using minimum, maximum, and aver-

age. These values allow us to investigate whether the 

aggregated number of dependencies has an impact on 

failures. 

Distance-based complexity. By using the Floyd-

Warshall algorithm [8], we compute the shortest dis-

tance between all pairs of nodes. For regular graphs, 

the initial distance between two connected nodes is 1. 

For multigraphs, we assume that the higher the multip-

licity of an edge e, the closer the incident nodes are to 

each other; thus we set the initial distance to 1/m(e). 

From the distances we compute the eccentricity of a 

node v which is the greatest distance between v and 

any other node. We aggregate all eccentricities with 

minimum (=radius), maximum (=diameter), and aver-

age. With distance-based complexities we can investi-

gate if the propagation of dependencies has an impact 

on failures. 

Multiplicity-based complexity. For multigraphs, we 

measure the minimum, maximum and average multip-

licity of edges. This also allows us to investigate the 

relation between number of dependencies and failures. 

 

5. Experimental analysis 
 

In this section, we will support our hypotheses that 

complexity of dependency graphs predicts the number 

of failures for a subsystem, with several experiments. 

We carried out the experiments on three different ar-

chitecture levels of Windows Server 2003: subcom-

ponents, components, and areas. Most of this paper 

will focus on the subcomponent level: we start with a 

correlation analysis of complexity measures and num-

ber of failures (Section 5.1) and continue with building 

regression models for failure prediction (Section 5.2). 

Next, we summarize the results for the component and 

Table 1. Complexity for a multigraph G=(V,(E,m)) and its underlying graph G’=(V,E). The set of 
weakly connected components is P; in(v) returns the ingoing and out(v) the outgoing edges of a node v. 

 Regular graph Multigraph  Aggregation 

Number of NODES  𝑉   𝑉  Not necessary 

Number of EDGES  𝐸   𝑚 𝑒 𝑒∈𝐸   Not necessary 

COMPLEXITY  𝐸 −  𝑉  +  𝑃   𝑚 𝑒 −  𝑉 +   𝑃 𝑒∈𝐸   Not necessary 

DENSITY 
 E 

 V ∙  V 
 

 𝑚 𝑒 𝑒∈𝐸

 V ∙  V 
 Not necessary 

DEGREE of node v  in 𝑣 ∪ out 𝑣    𝑚 𝑒 𝑒𝜖  in  𝑣 ∪out  𝑣    
Over nodes 𝑣𝜖𝑉 using 

min, max, avg. 

ECCENTRICITY of node v max dist v, w  wϵV    max multidist v, w  wϵV   
Over nodes 𝑣𝜖𝑉 using 

min, max, avg. 

MULTIPLICITY of edge e 1 𝑚(𝑒) 
Over edges 𝑒𝜖𝐸 using 

min, max, avg. 

 



area level and discuss the influence of granularity 

(Section 5.3). Finally, we present threats to validity. 

 

5.1. Correlation analysis 
 

In order to investigate our initial hypothesis H1, we 

determined the Pearson and Spearman rank correlation 

between the dependency graph complexities measures 

for each subcomponent (Sections 4.2 and 4.3) and its 

number of failures. For Pearson correlation to be ap-

plied the data requires a linear distribution, Spearman 

rank correlation can be applied even when the associa-

tion between values is non-linear [11]. The closer the 

value of correlation is to –1 or +1, the higher two 

measures are correlated—positively for +1 and nega-

tively for –1.  

The results for subcomponent level of Windows 

Server 2003 are shown in Table 2. The table shows the 

complexity measures in the rows (Section 4.3) and the 

different kinds of dependency graphs in the columns 

(Section 4.2). Correlations that are significant at 0.99 

are indicated with (*); note that the Multi_Edges and 

Multi_Complexity measures were strongly inter-

correlated, which resulted in almost the same correla-

tions with the number of failures. For space reasons we 

omit we the inter-correlations between the complexity 

measures; the correlation for the area and component 

level can be found in our technical report [33]. 

 

In Table 2 we can make the following observations. 

O1 For most measures the correlations are significant 

(indicated by *) and positive. This means that with 

an increase of such measures there an increase in 

the number of failures, though at different levels 

of strength. 

O2 The only notable negative correlation is for Densi-

ty, which means that with an increase in the densi-

ty of dependencies there is a decrease in the num-

ber of failures. This effect is strongest for DEP 

graphs, but vanishes when taking multiedges into 

account (Multi_Density). 

O3 When we neglect multiplicity and consider only 

presence of dependencies, we obtain the highest 

correlations for subgraphs that additionally contain 

the neighborhood of a subsystem (DEP).  

O4 When we take multiplicity of dependencies into 

account the correlations are highest for subgraphs 

that contain only dependencies within the subsys-

tem (INTRA). 

O5 The correlations were highest for Multi_Edges, 

and the inter-correlated Multi_Complexity, and for 

Multi_Degree_Max and Multi_Multiplicity_Max 

(highlighted in bold). All of these measures con-

sider multiedges, suggesting that the number of 

dependencies matters and not just the presence. 

 

To summarize we could observe significant correla-

tions for most complexity measures, and most of them 

Table 2. Correlation between failures and complexity measures (on subcomponent level) 

 Pearson  Spearman  

 INTRA OUT DEP  INTRA OUT DEP  

NODES .325(*) .497(*) .501(*) O3 .338(*) .579(*) .580(*) O3 
EDGES .321(*) .454(*) .485(*)  .353(*) .586(*) .567(*)  

COMPLEXITY .319(*) .322(*) .481(*)  .346(*) .387(*) .564(*)  

DENSITY O2 -.312(*) -.292(*) -.418(*)  -.294(*) -.506(*) -.519(*)  

DEGREE_MIN .168(*) .054(*) .014(*)  .182(*) .030(*) .145(*)  

DEGREE_MAX .332(*) .409(*) .496(*)  .347(*) .533(*) .569(*)  

DEGREE_AVG .386(*) .377(*) .366(*)  .332(*) .516(*) .526(*)  

ECCENTRICITY_MIN .293(*) .164(*) .009(*)  .314(*) .305(*) .079(*)  

ECCENTRICITY_MAX .307(*) .201(*) .094(*)  .323(*) .337(*) .370(*)  

ECCENTRICITY_AVG .303(*) .193(*) .099(*)  .317(*) .471(*) .527(*)  

MULTI_EDGES O4 .728(*) .432(*) .393(*) O4 .667(*) .671(*) .524(*)  

MULTI_COMPLEXITY .728(*) .432(*) .393(*)  .667(*) .671(*) .524(*)  

MULTI_DENSITY .290(*) .116(*) -.108(*)  .455(*) .282(*) -.138(*)  

MULTI_DEGREE_MIN .376(*) .006(*) .177(*)  .296(*) -.298(*) .045(*)  

MULTI_DEGREE_MAX .637(*) .395(*) .356(*)  .643(*) .654(*) .511(*)  

MULTI_DEGREE_AVG .538(*) .247(*) .148(*)  .597(*) .597(*) .364(*)  

MULTI_MULTIPLICITY_MIN .300(*) .005(*) -.020(*)  .201(*) -.355(*) -.328(*)  

MULTI_MULTIPLICITY_MAX .640(*) .389(*) .249(*)  .640(*) .634(*) .418(*)  

MULTI_MULTIPLICITY_AVG .454(*) .178(*) .013(*)  .571(*) .505(*) .102(*)  

MULTI_ECCENTRICITY_MIN .267(*) .136(*) -.010(*)  .311(*) .313(*) .015(*)  

MULTI_ECCENTRICITY_MAX .267(*) .141(*) -.010(*)  .312(*) .346(*) .060(*)  

MULTI_ECCENTRICITY_AVG .267(*) .137(*) -.010(*)  .311(*) .302(*) .016(*)  
 



were positive and high (O1, O5). This confirms our 

initial hypothesis that the complexity of dependency 

graphs positively correlates with the number of post-

release failures (H1). The only exception we observed 

was the density of a dependency graph (O2). This is 

surprising, especially since cliques tend to have a high 

failure-proneness (see Section 2) and a high density at 

the same time. One possible explanation for the poor 

correlation of density might be that normalizing the 

number of dependencies |E| by the squared number of 

binaries |V|·|V| is too strong. This is supported by the 

Degree_Avg measure which normalizes |E| only by |V| 

and has a rather high positive correlation (up to 0.527 

for Spearman). 

The different results for complexity measures with 

and without multiplicity (O3 and O4), might suggest 

that one should consider both, the multiplicity of de-

pendencies and the neighborhood of a subsystem—

however, dependencies across subsystems should be 

weighted less. In our future work, we will investigate 

whether this actually holds true. 

 

5.2. Regression analysis 
 

So since complexity of dependency graphs corre-

lates with post-release failures, can we use complexity 

to predict failures? To answer this question, we build 

multiple linear regression (MLR) models where the 

number of post-release failures forms the dependant 

variable and our complexity measures form the inde-

pendent variables. We build separate models for every 

type of subgraph (INTRA, OUT, and DEP) and a com-

bined model that uses all measures from Table 2 as 

independent variables (COMBINED). We carried out 

24 experiments: one for each combination out of two 

kinds of regression (linear, logistic), three granularities 

(areas, components, subcomponents,) and four differ-

ent sets of complexities (INTRA, OUT, DEP, COM-

BINED. 

However, one difficulty associated with MLR is 

multicollinearity among the independent variables. 

Multicollinearity comes from inter-correlations such as 

between the aforementioned Multi_Edges and Multi_-

Complexity. Inter-correlations can lead to an inflated 

variance in the estimation of the dependant variable. 

To overcome this problem, we use a standard statistical 

approach called Principal Component Analysis (PCA) 

[14]. With PCA, a small number of uncorrelated linear 

combinations of variables are selected for use in re-

gression (linear or logistic). These combinations are 

independent and thus do not suffer from multicollinear-

ity, while at the same time they account for as much 

sample variance as possible—for our experiments we 

selected principal components that account for a cumu-

lative sample variance greater than 95%. We ended up 

with 5 principal components for INTRA, 7 for OUT, 6 

for DEP, and 14 for the COMBINED set of measures 

(for the composition of components we refer to our 

technical report [33]). The principal components are 

then used as the independent variables. 

To evaluate the predictive power of graph com-

plexities we use a standard evaluation technique: data 

splitting [20]. That is, we randomly pick two-thirds of 

all binaries to build a prediction model and use the 

remaining one-third to measure the efficacy of the built 

model. For every experiment, we performed 50 random 

splits to ensure the stability and repeatability of our 

results—in total we trained 1200 models. Whenever 

possible, we reused the random splits to facilitate com-

parison of results. 

We measured the quality of trained models with: 

 The R
2
 value is the ratio of the regression sum of 

squares to the total sum of squares. It takes values 

between 0 and 1, with larger values indicating 

more variability explained by the model and less 

unexplained variation—a high R
2
 value indicates 

good explanative power, but not predictive power. 

 The adjusted R
2
 measure also can be used to 

evaluate how well a model fits a given data set [1]. 

It explains for any bias in the R
2
 measure by tak-

ing into account the degrees of freedom of the in-

dependent variables and the sample population. 

The adjusted R
2
 tends to remain constant as the R

2
 

measure for large population samples. 

Additionally, we performed F-tests on the regression 

models. Such tests measure the statistical significance 

of a model based on the null hypothesis that its regres-

sion coefficients are zero. In our case, every model was 

significant at 99%. 

For testing, we measured the predictive power with 

the Pearson and Spearman correlation coefficients. The 

Spearman rank correlation is a commonly-used robust 

correlation technique [11] because it can be applied 

even when the association between elements is non-

linear; the Pearson bivariate correlation requires the 

data to be distributed normally and the association be-

tween elements to be linear. For completeness we 

compute the Pearson correlations also. As before, the 

closer the value of a correlation is to –1 or +1, the 

higher two measures are correlated—in our case we are 

correlating the predicted number of failures with the 

actual number of failures (for MLR); and failure-

proneness probabilities with actual number of failures 

(logistic regression), thus values close to 1 are desira-

ble. In Figures 6 to 8, we report only correlations that 

were significant at 99%. 



Linear regression 

 

Figure 6 shows the results of four experiments on 

subcomponent level for linear regression modeling, 

each of them consisting of 50 random splits. Except for 

OUT graphs, we can observe the consistent R
2
 and 

adjusted R
2
 values. This indicates the efficacy of the 

models built using the random split technique. The 

values for Pearson are less consistent, still we can ob-

serve high correlations, especially for INTRA and 

COMBINED (around 0.70). The values for Spearman 

correlation (0.60) are very consistent and highest for 

OUT and COMBINED subgraphs. These values indi-

cate the sensitivity of the predications to estimate fail-

ures—that is an increase/decrease in the estimated val-

ues is accompanied by a corresponding in-

crease/decrease in the actual number of failures. 

 

Binary logistic regression 

 

We repeated our experiments with the same 50 ran-

dom splits using a binary logistic regression model. In 

contrast to linear regression, logistic regression pre-

dicts a value between 0 and 1. This value can be inter-

preted as failure-proneness, i.e., the likelihood to con-

tain at least one failure. Figure 7 shows the results of 

our random split experiments. All results are consis-

tent, except the Pearson values. Compared to linear 

regression, the Pearson correlations are lower because 

the relation between predicted failure-proneness and 

actual number of failures is obviously not linear. Thus, 

using logistic regression did not make much difference 

in our case. Still, the results for both linear and logistic 

regression support our hypothesis, that the complexity 

of dependency graphs can predict the number of post-

release failures (H2). 

 

5.3. Granularity 
 

The previous results were for subcomponent level. 

Figure 8 shows how the results for linear regression 

change when we make predictions for component and 

area level. We can observe that for both the maxima of 

correlation increases: for Pearson up to 0.927 (compo-

nents) and 0.992 (areas); for Spearman up to 0.877 

(components) and 0.961 (areas). While for component 

 
Figure 6. Linear regression. 

 

 
Figure 7. Logistic regression results. 

 

 
Figure 8. Correlations for different levels of 

granularity (subcomponent/component/area) 



level the results are stable, we can observe many fluc-

tuations for area level. 

To summarize, the results for component level show 

that the quality of the predications improves when they 

are made for subsystems that higher in the system’s 

architecture (H3)—the results for area level also sup-

port this hypothesis, however, they additionally dem-

onstrate that the gain in predictive power can come 

with a decreased stability. Thus it is important to find a 

good balance between the granularity of reliable pre-

dictions and stability. 

 

5.4. Threats to validity 
 

In this section we discuss the threats to validity of 

our work. We assumed that fixes occur in the same 

location as the corresponding failure. Although this is 

not always true, this assumption is frequently used in 

research [10, 19, 23, 25]. As stated by Basili et al., 

drawing general conclusions from empirical studies in 

software engineering is difficult because any process 

depends on a potentially large number of relevant con-

text variables [4]. For this reason, we cannot assume a 

priori that the results of a study generalize beyond the 

specific environment in which it was conducted.  

Since this study was performed on the Windows oper-

ating system and the size of the code base and devel-

opment organization is at a much larger scale than 

many commercial products, it is likely that the specific 

models built for Windows would not apply to other 

products, even those built by Microsoft. This threat in 

particular is frequently misunderstood as a criticism on 

empirical studies. However, data on defects is rare and 

a common empirical research practice is to carry out 

studies for one project and replicate them on others. 

However, we are confident that dependency data has 

predictive power for other projects—we will repeat our 

experiments for other Microsoft products and invite 

everyone to do the same for other software. 

 

6. Conclusion and consequences 
 

We showed that for subsystems, one can use the com-

plexity of dependency graphs for predicting failures. 

This helps for resource allocation and decision making. 

With respect to this, our lessons learned are as follows. 

 

 Most dependency graph complexities can predict 

the number of failures (Sections 5.1 and 5.2). 

 Validate any complexity measure before using it 

for decisions (Section 5.1). 

 Find a balance between the granularity, reliability, 

and stability of predictions (Section 5.3). 

 

We do not claim that dependency data is the sole 

predictor of post-release failures—however, our results 

are another piece in the puzzle of why software fails. 

Other effective predictors include code complexity 

metrics [23] and process metrics like code churn [22]. 

In our future work, we will identify more predictors 

and work on assembling the pieces of the puzzle. Also 

we plan to look at more non-linear regression and other 

machine learning teachniues. More specifically, we 

will focus on the following topics. 

 

Evolution of dependencies. We will combine code 

churn and dependencies. More precisely, we will com-

pare the dependencies of different Windows releases to 

identify churned dependencies and investigate their 

relation to failures.  

 

Development process. How can we include the devel-

opment process in our predictions? There are many 

different characteristics to describe the process, rang-

ing from size of personnel to criticality, dynamism, and 

culture [6]. How much difference do agile and plan-

driven development processes make with respect to 

failures? And how much impact has global develop-

ment? 

 

The human factor. Last but not least, humans are the 

ones who introduce failures. How can we include the 

human factor [16] into predictions about future fail-

ures? This will be a challenge for both software engi-

neering and human computer interaction—and ulti-

mately it will reveal why programmers fail and show 

ways how to avoid it. 
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