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Abstract

Predicting the time and effort for a software problem has
long been a difficult task. We present an approach that pre-
dicts the fixing effort for an issue. Our technique leverages
existing issue tracking systems: given a new issue report,
we search for similar, earlier reports and use their average
time as a prediction. Our approach thus allows for early
effort estimation, helping in assigning issues and schedul-
ing stable releases. We evaluated our approach on the
JBoss project data and found that we can estimate within
±7 hours of the actual effort.

1. Introduction
In this paper, we address the problem of estimating the

time it takes to fix an issue (an issue is either a bug, feature
request, or task) from a novel perspective. Our approach is
based on leveraging the experience from earlier issues—or,
more prosaic, to extract issue reports from bug databases
and to use their features to estimate fixing effort (in person-
hours) for new, similar problems. These estimates are cen-
tral to project managers, because they allow to plan the cost
and time of future releases.

Our approach is illustrated in Figure 1. As a new issue
report r is entered into the bug database (1), we search for
the existing issue reports which have a description that is
most similar to r (2). We then combine their reported effort
as as estimate for our issue report r (3).

2. Data Set
Most development teams organize their work around a

bug database. Essentially, a bug database acts as a big list
of issues—keeping track of all the bugs, feature requests,
and tasks that have to be addressed during the project. Bug
databases scale up to a large number of developers, users—
and issues. An issue report provides fields for the descrip-
tion (what causes the issue, and how can one reproduce it),
a title or summary (a one-line abstract of the description), as
well as a severity (how strongly is the user affected by the
issue?).

For our experiments, we use the JBoss project data that
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Figure 1. Predicting effort for an issue report

Table 1. Prerequisites for issues.

Count

Issues reported until 2006-05-05 11,185
Issues with
– effort data (timespent sec is available) 786
– valid effort data (timespent sec≤lifetime sec) 676
– type in (’Bug’, ’Feature Request’, ’Task’, ’Sub-task’) 666
– status in (’Closed, ’Resolved’) 601
– resolution is ’Done’ 575
– priority is not ’Trivial’ 574
Issues indexable by Lucene 567

uses the Jira issue tracking system to organize issue reports.
Jira is one of the few issue tracking systems that supports ef-
fort data. To collect issues from JBoss, we developed a tool
[3] that crawls through the web interface of a Jira database
and stores them locally. As inputs for our experiment, we
only use the title and the description of issues since they are
the only two available fields at the time the issue is reported.
In Table 1, we list the prerequisites for issues to qualify for
our study. In total, 567 issues met these conditions and fi-
nally became the inputs to our statistical models.

3. Predicting Effort for Issue Reports
To estimate the effort for a new issue report, we use the

nearest neighbor approach [2] to query the database of re-

mailto:weiss@st.cs.uni-sb.de
mailto:premraj@cs.uni-sb.de
mailto:tz@acm.org
mailto:zeller@acm.org


solved issues for textually similar reports. Analogous to
Figure 1, a target issue (i.e., the one to be estimated) is
compared to previously solved issues to measure similar-
ity. Only the title (a one-line summary) and the descrip-
tion, both of them are known a priori, are used to compute
similarity. Then, the k most similar issues (candidates) are
selected to derive a estimate (by averaging effort) for the tar-
get. Since the input features are in the form of free text, we
used Lucene [1] (an open-source text similarity measuring
tool) to measure similarity between issues.

We also use another variant of kNN (α-kNN) to improve
confidence in delivered estimates. Here, only predictions
for those issues are made for which similar issues exist
within a threshold level of similarity. Prosaically, all can-
didates lying within this level of similarity are used for es-
timation.

To evaluate our results, we used two measures of accu-
racy. First, Average Absolute Residuals (AAR), where resid-
uals are the differences between actual and predicted values.
Smaller AAR values indicate higher prediction quality and
vice versa. Second, we used Pred(x), which measures the
percentage of predictions that lie within ±x% of the actual
value, x taking values 25 and 50 (higher Pred(x) values in-
dicate higher prediction quality).

4. Results
Figure 2 shows the AAR, Pred(25) and Pred(50) values

for when varying the k parameter from 1 to 10. The AAR
values improve with higher k values, i.e., the average error
decreases. Since, the Pred(25) and Pred(50) values worsen
(i.e., decrease), there is no optimal k in our case. Overall
the accuracy for kNN is poor. On average, the predictions
are off by 20 hours; only 30% of predictions lie within a
±50% range of the actual effort, which we speculate to be
an artefact of diversity in issue reports.

The α-kNN approach does not suffer from diversity as
much as kNN. In Figure 3, we show the accuracy values for
α-kNN when incrementing the α parameter from 0 to 1 by
0.1. We used k = ∞ for this experiment to eliminate any
effects from the restriction to k neighbors. Note that Feed-
back indicates the percentage of issues that can be predicted
using α-kNN. The combination of k = ∞ and α = 0 uses
all previous issues to predict effort for a new issue (naı̈ve
approach without text similarity). It comes as no surprise
that accuracy is at its lowest, being off by nearly 35 hours
on average.

However, for higher α values, the accuracy improves: for
α = 0.9, the average prediction is off by only 7 hours and
almost every second prediction lies within ±50% of the ac-
tual effort value. Keep in mind that higher α values increase
the accuracy at the cost of applicability; for α = 0.9, our
approach makes only predictions for 13% of all issues. Our
future work will focus on increasing the Feedback values by
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Figure 2. Accuracy values for kNN.
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Figure 3. Accuracy for α-kNN with k=∞.

using additional data, such as discussions on issues.

5. Conclusions and Consequences
Given a sufficient number of earlier issue reports, our

automatic model makes predictions that are very close for
issues. As a consequence, it is possible to estimate effort
at the very moment a new bug is reported. This should re-
lieve managers who have a long queue of bug reports wait-
ing to be estimated, and generally allow for better allocation
of resources, as well for scheduling future stable releases.
The performance of our automated model is more surpris-
ing if one considers that our effort predictor relies only on
two data points: the title, and the description. However,
some fundamental questions remain to be investigated such
as what is it that makes software tedious to fix? To learn
more about our work in mining software archives, please
visit

http://www.st.cs.uni-sb.de/softevo/
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