
“What Went Right and What Went Wrong”: An Analysis of
155 Postmortems from Game Development

Michael Washburn Jr.1, Pavithra Sathiyanarayanan1, Meiyappan Nagappan1,
Thomas Zimmermann2, Christian Bird2

1Rochester Institute of Technology, Rochester, NY, USA
2Microsoft Research, Redmond, WA, USA

{mdw7326, ps2908}@rit.edu, mei@se.rit.edu, {tzimmer, cbird}@microsoft.com

ABSTRACT
In game development, software teams often conduct post-
mortems to reflect on what went well and what went wrong
in a project. The postmortems are shared publicly on gam-
ing sites or at developer conferences. In this paper, we
present an analysis of 155 postmortems published on the
gaming site Gamasutra.com. We identify characteristics of
game development, link the characteristics to positive and
negative experiences in the postmortems and distill a set of
best practices and pitfalls for game development.

Keywords
Games, Postmortems, Qualitative analysis.

1. INTRODUCTION
Over the past thirty years, the importance and market-

share of video games in the world of software has grown by
leaps and bounds. In lockstep with this growth, the scale of
work required to develop games, whether in terms of bud-
get, size of codebase, or team makeup, has ballooned and is
on par with or exceeds any other software endeavors [13].
Games are arguably the most sophisticated and complex
forms of software [18].

Indeed, games have been the driving factors behind many
technological advances including high performance graphics
cards, virtual reality, and distributed computing [16, 13].
Games also represent a substantial portion of software rev-
enue; in 2013, video game revenue totaled over 93 billion
dollars [21]! As such, the money, manpower, and effort put
into video game development is likely to continue to increase
in the coming years.

From a development perspective, games differ from more
traditional software projects in a number of ways. Require-
ments are more subjective (e.g. “must be fun”), maintain-
ability is often sacrificed for performance, testing and qual-
ity assurance are approached completely differently (e.g. live
testers and few automated tests), most games require tools

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16 Companion, May 14-22, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4205-6/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2889160.2889253

created from scratch, and deadlines are incredibly tight [12].
Therefore it is important to understand both the chal-

lenges that game development efforts face as well as the
best practices that teams use to build games more effec-
tively. The challenges are real problems faced by complex
software efforts and represent avenues for research for our
community. Successes and best practices embody knowl-
edge that can aid future game development efforts and in
some cases may generalize to or can be adapted for software
development in non-game contexts. Because game devel-
opment makes up a large slice of commercial software, a
non-trivial proportion of students in computer science and
software engineering programs will work on games during
their careers. An understanding of game development can
help educate and prepare such students.

Interestingly, game development has received very little
attention in the academic community, as only three of the
116 open and closed source projects studied in the major
software engineering conferences in two years were games [15].
Thus, one might reasonably expect that getting an inside
view of game development is limited to a select few. Fortu-
nately, the game development community has a unique prac-
tice that belies this assumption. Development teams often
conduct postmortem retrospectives and share them publicly
on gaming sites such as Gamasutra.com and at gaming con-
ferences such as the Game Developers Conference (GDC).
These postmortems offer an open and honest window into
the development of games, often sharing the mistakes, set-
backs, and wasted effort just as much as the successes and
heroics that go into game building.

To address the limited study of this domain and shed light
on the practice of game development we qualitatively and
quantitatively analyze 155 retrospective postmortems pub-
lished on Gamasutra.com over 16 years. These postmortems
cover games for PCs, mobile devices, and consoles and range
from small independent efforts to large AAA game fran-
chises. As such, this represents the largest and most diverse
study of game development to date and this data allows us
to draw conclusions from a broad spectrum of game devel-
opment. We make the following contributions in this paper.

• We present an empirically derived taxonomy of char-
acteristics or dimensions of game development.

• We synthesize the best practices and commonly en-
countered challenges in game development and identify
those areas that impact project outcomes the most.

• We provide recommendations for future game devel-
opment based on the experiences shared in over one
hundred postmortems.



2. RELATED WORK
There are many books and articles which inspect the prac-

tices relating to the game development process [2, 5, 10, 11,
22, 3]. These studies primarily focus on how game devel-
opment should be in the industry and are primarily based
off the authors’ experience. However, our findings focus on
how game development is in practice based off of the post-
mortem reviews written by game developers and posted on
Gamasutra.com [1]. There have been several studies where
developers were interviewed or surveyed to understand sev-
eral specific characteristics of game development [4, 8, 20, 7,
14, 12]. These studies tend to focus more on software engi-
neering processes and methodologies in game development.
Additionally, these studies solicited information from game
developers by either conducting interviews or surveying de-
velopers. In contrast, we retrieved our data more organ-
ically by analyzing self reported postmortem reviews that
had already been written by developers. Similar to what we
do, there have been studies that examine what went wrong
during game development using bug data [9], and 20 post-
mortem reviews [17]. However, in this study, we not only
focus on what went wrong but also look at what went right
in order to distill best practices and pitfalls.

The work most similar to ours is that of Ara Shirinian who
conducted a study in which he analyzed 24 postmortem re-
views written between 2008 and 2010 from Gamasutra.com
in order to see if there were any interesting trends occurring
in game development [19]. Also like this study, he analyzed
the postmortems and grouped them into categories to de-
termine what went right and what went wrong while devel-
oping games. In contrast, we analyzed a much larger set
of postmortem reviews, spanning from 1998 until 2015. In
addition to this, Shirinian categorized items from the post-
mortems into 7 categories of what went right and what went
wrong, while we had a total of 22 categories in order to more
precisely determine the trends in game development (which
could be because of the increased set of postmortem reviews
that we analyzed).

3. METHODOLOGY
To conduct this case study, we analyzed 215 postmortem

reviews listed before Jan 2014 on Gamasutra.com, a game
development news website. These reviews contain an intro-
duction with some context, sections describing what went
right and what went wrong during the development process,
and finally some more contextual information in a table.
An example of a postmortem is shown in Figure 1. We
(Michael Washburn and Pavithra Sathiyanarayanan) ana-
lyzed each postmortem review, categorizing items discussed
in the what went right and what went wrong sections into
groups of common themes. We used the contextual informa-
tion to determine which platform the game was designed for,
how many people were in the development team, how much
time did it take to develop the game among other things.

Ignoring Off-Topic Reviews: While analyzing the post-
mortem reviews, we found that some reviews were off-topic.
For example, some cases were just reviews of an individual’s
experience at the Game Developers Conference. Sometimes
the case only described a specific tool or technology used
during development, rather than how development went. In
other cases, authors focused on a particular aspect of their
process, rather than their experience as a whole. Cases clas-
sified as off-topic were ignored in our study.

Figure 1: Screenshot of the first of a six page post
mortem for Pangalore’s Knightly Adventure on Gama-

sutra.com
If a case was in fact a postmortem review for a game,

and detailed what went right and what went wrong during
development, then it was used in this study. Out of the
original 215 post-mortem reviews, 60 cases were ignored,
leaving 155 postmortem reviews to be analyzed.

Identifying Categories: Initially, we started with 12
categories of common aspects of development. These cate-
gories were based on the categories Ara Shirinian identified
in his analysis of postmortem reviews [19].

In order to identify additional categories, we performed 3
iterations of analysis and identification. The first week, we
each read and analyzed 3 postmortem reviews each, classi-
fying the items discussed in each section into the 12 prede-
termined categories of common aspects that impact devel-
opment. While analyzing these reviews, we identified addi-
tional categories of items that went right or wrong during
development, and revisited the reviews we had already ana-
lyzed to update the categorization of items. For the next two
weeks we repeated this process of analyzing postmortems
and identifying categories, analyzing 10 postmortems each
in week 2, and 15 postmortems each in week 3. After each it-
eration, we discussed the additional categories we identified,
and determined if they were viable.

Analysis: After our initial iterations for identifying addi-
tional categories, we had completed the analysis of 60 post-
mortem reviews. We then stopped identifying new cate-
gories, and began analyzing postmortems at a combined rate
of about 40 postmortem reviews per week. After each week
we reviewed what we had done to ensure we both had the
same understanding of each category. This continued until
we had analyzed all the postmortem reviews.

4. CONTEXTUAL INFORMATION
The characteristics of the games mentioned in the post-

mortem reviews we inspected were diverse in areas such as
their supported platforms, the size of the development team,
the amount of time it took to develop them, the type of
publisher they had, and more. We will further describe the
context of these games, based on data we gathered, which
is available in our online appendix [6].



Platforms Used: The majority of the games created in
these postmortem reviews were developed for the PC plat-
form, with the next most common platforms being the Xbox
360, followed by the PlayStation 2 (PS2). Of the post-
mortem reviews we analyzed, 87% of them included the
platforms they were developed for. Games can be devel-
oped for a single platform or for multiple platforms. Of the
postmortems that indicated platform information, 37.86%
of them were developed for a single platform, while 62.14%
were developed for multiple platforms.

Length of Development: The majority of projects were
developed in less then 2 years. Of the 73% of developers who
put the length of development in their postmortem reviews,
39% of the games were developed in 1-2 years and 38% were
developed in 1 year or less.

Team Size: Out of the 81% of postmortems which stated
the number of developers the team had, 74% of the teams
contained 20 team members or less. The remaining 26% of
the teams were of various sizes greater than 20.

Publishers: Developers often have to make a choice be-
tween whether they want to, or can, publish their game
themselves, or whether they should sign with a publisher.
90% of developers listed the publisher of their game in their
postmortem. Out of these 74.4% used a third party pub-
lisher, while 25.6% decided to publish the game themselves.

5. IDENTIFIED CATEGORIES
We identified the following categories as common aspects

of things that go right or wrong for teams during game de-
velopment. Each of these categories are further divided into
sub-categories. In each sub-category, we give a description
of them and an example. Note that all the categories are
present in both best practices and pitfalls. This is because a
developer could talk about doing an activity like testing as
a best practice, or talk about the lack of testing as a pitfall.

5.1 Product
In this category, we present and discuss seven sub-categories

that are related to the artifacts that make the game.
(a) Art: Game art is a contributing factor to the overall
quality of a game. Items that can go right or wrong within
this category include artist skill, art development process,
art quality, the effect of art on gameplay, and the effect of
art on user experience.

Example of what went right: Nicole Goodfellow of Torus
Games said that while they were developing Scooby-Doo!
First Frights they made the decision to pair level designers
with artists during development. According to Nicole, “They
would sit together, eat together, live and breathe their level.”
The entire team was impressed with the quality of the levels,
and each pair took great pride in the levels they created.

Example of what went wrong: Søren Lund of Deadline
Games said that they decided to focus less on creating unique
art content and had their artists focus on small areas of the
game instead when making Chili Con Carnage. The team
recycled much of the game art from their previous title To-
tal Overdose, under the assumption that few people would
play both games. However, the reviewers had played both
games, and gave the game bad reviews due to the lack of
unique content.
(b) Creativity: The creativity of the development team is
often a main factor in the success or failure of a game.

Example of what went right: According to Wim Coveliers,

during the making of American McGee’s Grimm Spicy Horse
did“a great job at keeping creative thinking alive throughout
the whole project.” They were able to inject large amounts
of creative content into their game by encouraging an open
dialog within their company. They encouraged anyone with
an idea come forward and lead a discussion. Decisions were
made by a democratic vote, to prevent any one person from
taking control of the game.

Example of what went wrong: Tim Turner, of developer
Intergalactic Crime Prevention Unit, said that they chose
to build an improvement of an existing game mechanic as
their debut title, and while it was “not a knockoff,” it was
not “groundbreaking” either. He stated that they “wasted
many months on a title that, ultimately, we decided would
not serve us well as our initial commercial release.”
(c) Features: Many developers listed features as something
that went right when they had a lot of very unique and fun
content in their games, or they had one feature that went
very well and drastically contributed to the quality of their
game. Developers typically listed features as going wrong
when they poorly implemented a feature, discovered after
implementation that a feature was a bad idea, or when they
experienced feature creep.

Example of what went right: Lionhead Studios’ Peter Mol-
yneux stated that while they were developing Black & White
they were able to create an AI that was actually able to learn
from the user and develop a personality such that no two
users’ AIs would ever have the same personalities. Molyneux
described the AI as an “astonishing piece of work.”

Example of what went wrong: John Cutler, of Cutler Cre-
ative, said that in Last Call, “Feature creep ruled our roost.”
They kept adding features to their game even though they
had a deadline and budget to meet, which resulted in tension
between them and their publisher.
(d) Game Design: Developers listed this as something
that went right or wrong when they had made good or bad
design decisions that impacted the quality of their game.

Example of what went right: Stuart Denman of Surreal
Software stated that “A good design will not only sell a
game – it can also help smooth the development process.”
During the making of Sanitarium, Surreal Software was able
to create a game design that was unique, kept the team
interested, offered many possibilities for new features, and
allowed some freedom for artists and designed to work with,
according to Denman.

Example of what went wrong: Søren Lund of Deadline
Games wrote that during the making of Chili Con Carnage,
they designed a game under the assumption that “players
would ‘get’ the game and [the developers’] desire to make
players perfect their score.” Upon release they discovered
players weren’t interested in perfecting scores, but wanted
more depth to the game. They stated that they should spent
more time to lengthen the story of the game.
(e) Gameplay: How players interact with the game often
determines how easily they will learn the controls as well as
how entertaining it is for them.

Example of what went right: According to Prithvi Viras-
inghe and Jeremy Mahler of Pipeworks Software, while cre-
ating The Deadliest Warrior game (based on the popular
TV show), they actually had some members of the team
train with the weapons featured in the game. Additionally,
they said “The show also weighed in on the warrior and
weapons designs, as well as gameplay itself.”



Example of what went wrong: According to Bong Koo
Shin of Gamevil, while developing Nom 2, they wanted to
make the game very intense for the user in order to keep
them interested in the game. However, many users com-
plained that the gameplay was too intense, going as far as
to say that “their eyes hurt because the game is so fast.”
(f) Product Evolution: Software evolution in general in-
dicates the changes happening in the software over time. In
our study we link product evolution to those cases where the
games evolve from one idea into another idea.

Example of what went right: Tom Leonard of Looking
Glass Studios said that the Thief: The Dark Project game
was originally called The Dark Project, but was renamed
during development. Leonard stated that the renaming was
“a seemingly minor decision that in truth gave the team a
concrete ideological focus.”

Example of what went wrong: Alyssa Finley of 2K Games
stated that while developing BioShock “The spec of BioShock
changed so much over the course of development that we
spent the majority of the time making the wrong game.” The
game also changed from being a RPG first person shooter to
being just a first person shooter. Finley said that “the real
turning point for BioShock came when we had to present
the game to the outside world, which forced us to carefully
consider the story and takeaway message.” She concluded
by stating that they should have taken some time to develop
those ideas sooner.
(g) Scope: The set of features that developers choose to
include in their product is always going to make a difference
in the quality of their product, and whether or not they will
complete it on time.

Example of what went right: Brad Wardell of Stardock
Entertainment stated that in Galactic Civilizations, they de-
cided not to include a multiplayer mode. By limiting their
scope they were able add more advanced features to single
player mode. Wardell said “it’s much easier to add features
to a game when you don’t have to worry about how they’ll
impact issues like synchronization, latency, and game flow.”
User feedback from beta testing also played a role in this
decision. They concluded that making this decision made
Galactic Civilizations a much better game.

Example of what went wrong: Schadenfreude Interactive
was developing Age Of Ornithology and kept increasing the
size of their scope. They stated that “Despite our attempts
to cut back, the programmers were sneaking in Easter eggs
until the last minute.” This lack of control led to some player
confusion after the game was released.

5.2 Development
In this category, we present six sub-categories that are

related to the development process in building the game.
(a) Development Process: The process teams use while
developing always affects the quality of the product. This
was one of the more common categories that developers often
listed in their postmortems.

Example of what went right: Jeferson Valadares and Mikko
Kodisoja of Sumea Games stated that in Tower Bloxx, they
needed to improve their game mechanics and design. Their
solution was to pair their Senior Developer and Senior De-
signer together, and do small, rapid iterations. In these
iterations the developer would make a change, then the de-
signer would give them feedback and say how it should be
fixed in the next iteration. Each iteration lasted less than 3
hours, and allowed a rapid evolution of the game. They said

that this “allowed us [the developer] to get the core game
mechanics to the point where we wanted [them] to be.”

Example of what went wrong: Naked Sky Entertainment
dove right into the development of RoboBlitz with almost
no work done planning or designing the product. Accord-
ing to them, “When we started development on RoboBlitz,
we jumped into the level creation process with very little
pre-production.” Unfortunately, this led to them designing
their levels before they had fully decided what they wanted
the game mechanics to be like. Additionally, when the game
was nearly finished, the team had trouble making even mi-
nor design changes. They stated that “it became extremely
burdensome whenever we had to add new features or tweak
character movements.”
(b) Documents: Generally, developers who listed some-
thing in the documentation category as going right when
they produced designs and other documentation which ben-
efited the project in the long run. When developers listed
documentation as going wrong, they usually suffered from a
lack of proper documentation.

Example of what went right: Wu Dong Hao of Ubisoft said
that they dedicated 3 months to preparing for the develop-
ment of Tom Clancy’s Splinter Cell. During this time, one of
the things they did was create technical design documents.
The team stated that “One of the most important steps we
took during the pre-production stage was to create Techni-
cal Design Documents (TDD), into which we poured all the
knowledge we gleaned from our prototype.” The documents
also helped everyone to understand the major technical is-
sues of their game. However, one team did mention that
they spent as little time doing documentation as possible,
and “As long as the documentation provided a high-level
idea of the game and how it would play, we [the developers]
dropped it like a hot potato and got back to work.” They
could do this because they they strongly emphasized verbal
communication during development, and used a very itera-
tive, agile approach to development.

Example of what went wrong: According to Marek and
Ondrej Spanel of Bohemia Interactive Studio, in Operation
Flashpoint they didn’t document their design or have any
documentation on what features had already been built dur-
ing development. This led to problems in the late stages
of development. At one point they said that “hours were
spent trying to investigate how something had originally
been meant to work.” However, some teams also suffered
from over-documentation. Paul Jobling of Eutechnyx stated
that during the development of Big Motha Truckers they
tried producing documentation that also doubled as an in-
house marketing tool in order to get people interested in the
game. Jobling stated that “As a result, instead of concen-
trating on the ‘hows’ and ‘whys’ of the game’s production,
it was instead focused on the ‘whos’ and the ‘wheres.”’
(c) Obstacles: Teams often face obstacles during devel-
opment. A situation will arise which makes it difficult for
the team to continue development, and how the team reacts
when faced with obstacles will impact their product for bet-
ter or for worse. Obstacles are more likely to have a negative
impact on a team.

Example of what went right: Alberto Moreno and Carlos
Abril of Crocodile Entertainment stated that they didn’t
have proper office space for the development of Zack Zero, so
they were forced to improve their process, communication,
and task organization, which benefited them in the long run.



Example of what went wrong: John Li of Pixelogic stated
that during the development of The Italian Job game, their
team member Rob was in a car accident and was unable to
work. After the injured team member was able to work, the
team sent his PC to his home, so that he could work when
he was feeling up to it. Overall, they said their schedule was
delayed 2 weeks because of this incident.
(d) Team: Generally, developers had positive experiences
with their teams. However, some teams do have trouble
during development.

Example of what went right: During the development of
Dungeon Siege, Bartosz Kijanka of Gas Powered Games de-
scribed the development team as “the single best thing thing
about Dungeon Siege.” They attribute this to the individu-
als’ strong values, personalities, and respect.

Example of what went wrong: Scott Bilas of Sierra Studios
said that the team who developed Gabriel Knight 3 suffered
from bad role casting. The original team was not experi-
enced enough to implement the advanced features of the
game, and so there was a lot of turnover within the team.
Bilas said “Many of the problems with GK3 resulted from
developers being badly cast in their roles, usually because
the project requirements were so severely underestimated.”
(e) Testing: Developers put testing down under what went
right when they performed some kind of testing during de-
velopment such as unit/alpha/beta/usability testing, etc.
When developers listed testing as something that went wrong,
they generally suffered from a lack of testing.

Example of what went right: Paul Dennen of Nayantara
Studios said that in Star Chamber they performed alpha
and beta testing. This allowed them to make adjustments
that they wouldn’t have identified otherwise. Specifically,
Dennen said “Long, meticulous early testing periods allowed
players to acquire deep understanding of the gameplay, and
they were then able to provide well-informed feedback that
was invaluable in balancing the game.”

Example of what went wrong: Ichiro Lambe, Dan Brain-
erd, and Leo Jaitley of Dejobaan Games stated that they
didn’t test Aaaaa! – A Reckless Disregard for Gravity enough.
Additionally, even though they did eventually bring in beta
testers, they said “when we did bring testers in to toss the
game around, we underused the feedback we received.”
(f) Tools: The tools you utilize to develop a game often im-
pact the ease of development, the complexity of the features,
and the quality of the end product.

Example of what went right: Eric Peterson, Wayne Har-
vey, Mike Pearson, and Dave Ellis of Vicious Cycle Software
said that while developing Dead Head Fred they had previ-
ously developed their own tool, the Vicious Engine. They
were able to implement all the game features for Dead Head
Fred using preexisting code in the Vicious Engine, allowing
them not to write any game specific engine code.

Example of what went wrong: Alexander Seropian of Wide-
load Games said that in Stubbs the Zombie they decided to
use the Halo engine. However, the Halo engine had never
been licensed before, and therefore had little documenta-
tion. Additionally, Seropian stated that “the learning curve
slowed us [the developers] down and wasted time.”

5.3 Resources
In this subsection, we present four things that develop-

ers talk about in their postmortems that are related to the
resources required to develop a game.

(a) Budget: A team’s budget can play a huge role dur-
ing the development of any software. Often times in game
development, the budget affects other aspects of the game
such as marketing, which contractors get hired, and technol-
ogy choices. Typically when developers listed the budget as
something that went right, it wasn’t because they had mas-
sive budgets, but rather they had average or limited budgets
which they were able to stick to during development. Con-
versely, developers listed the budget as one of the things that
went wrong when it was so limited that it hurt the quality
of the game, or they were unable to stay on budget.

Example of what went right: Mike Goslin of VR Studios
said that they were operating under a tight budget to min-
imize risk during the creation of Toontown. They were still
able to release the quality MMORPG by designing it to be
as low cost as possible. Goslin said “No in-game support is
required, which eliminates a significant component of tra-
ditional customer service costs for this genre of game. In
addition, we consume a fraction of the bandwidth of other
MMORPGs. Both of these costs scale with the number of
players, so they are important ones to minimize.”

Example of what went wrong: During the development of
RoboBlitz, Naked Sky Entertainment ran out of money mid-
way through developing a game because they incorrectly es-
timated their schedule. Additionally they said “Because we
weren’t willing to put out an inferior product, we just kept
going until we were satisfied with the quality.” The develop-
ers were forced to borrow money from family members and
close friends in order to continue development.
(b) Hardware: Developers listed hardware as something
that went right or wrong when either they were able to work
with very good hardware, allowing them access to advanced
features, or they were working with very limited hardware,
which hindered development. Developers were more likely
to list this as something that went right or wrong if they
were working on a single platform. In fact, about 90% of
the developers who listed this as something that went right
or wrong were working on a single platform.

Example of what went right: Motohideo Eshiro and Ku-
niomi Matsushita of Capcom described some of the Nintendo
DS hardware features they benefited from during the devel-
opment of Okamiden. In the PlayStation 2 and Wii prequels,
Okami, users had some difficulty using the drawing feature
of the game because of the limitations of the PlayStation
controller and Wii Remote. Additionally, Eshiro and Mat-
sushita stated that “with the Nintendo DS stylus, not only
is one able to draw even more complex lines precisely, but
we were able to create even better puzzles and missions that
utilize the celestial brush mechanic.”

Example of what went wrong: Bong Koo Shin of Gamevil
described the hardware limitations they encountered on Ko-
rean mobile devices for Nom 2. At the time, it was very
difficult for the devices to play two sounds at once. The
only way they were able to get this to work was to cut the
background music, then play the game sound, and resume
the music. They were forced to cut the sound effects, and
just stick with background music, which had a small nega-
tive effect on the experience of playing the game.
(c) Publisher Relations: If a developer chose to work
with a publisher, then they often experienced benefits or
drawbacks from that relationship. In general, those who
listed items in this category in their postmortems had good
relationships with their publisher.



Example of what went right: Linda Currie of Blue Fang
Games said that the team had a great relationship with Mi-
crosoft during the development of Zoo Tycoon 2: Marine
Mania. Currie said that “the time we [Blue Fang Games]
spent with them [Microsoft] both in person and in [dialog-
ging] via phone and email really paid off with both parties
being on the same page about product decisions.” Currie
also expressed that they were able to convey ideas to Mi-
crosoft openly and freely, and concluded that “Throughout
[Zoo Tycoon 2: Marine Mania] we felt like we were working
with a helpful partner.”

Example of what went wrong: David McQueen of The
Games Kitchen described the development of Wireless Pets
under Digital Bridges. While McQueen did say that “DB
[Digital Bridges] is not at all bad to work with,” there was
some friction at times. Use of intellectual property, and dif-
ferences of opinion of decisions about the game strained their
relationship. They overcame this in the future by laying out
very specific ground rules and processes to adhere to, and
stated that they now work with Digital Bridges regularly.
(d) Schedule: Most developers who listed the schedule as
something that went right did it because they were able to
meet their milestones, or because they were granted extra
time to complete their milestones. Conversely, those who
listed the schedule as something that went wrong usually
missed milestones or delivered them late.

Example of what went right: Wu Dong Hao of Ubisoft
described their unique experience of having to port Tom
Clancy’s Splinter Cell from the Xbox to the PlayStation
2 within a 4 month schedule. Hao said they were able to
make this work because “the company was willing to dedi-
cate people and spend money to gain time.” They also did a
lot of preparation prior to when they were handed the Xbox
version of the game, which helped to organize the team.

Example of what went wrong: Brian Reynolds of Big Huge
Games described the developing of Rise of Nations. They
underestimated their schedule, which made them work long
hours later on in the project. Reynolds stated that“We un-
derestimated the amount of coding time necessary, which re-
sulted in an extremely overworked programming staff.” Ad-
ditionally, overloaded their lead programmer, making him a
bottleneck for development. They also did not hire enough
programmers to start. They stated that the root of their
mistake was not listening to the postmortem reviews they
had read in the Game Developer magazine.

5.4 Customer facing
Here we present four themes that are related to customer

facing issues that developers discussed in their postmortems.
(a) Community Support: The support of a community
can greatly benefit any game, whether it be an online com-
munity spreading the word about your game, or a group of
outside individuals who lend a helping hand during devel-
opment. Other aspects of community support that can go
right or wrong for a team are the presence or lack of an on-
line community, publicity by users of message boards, a loyal
fan base. We found that developers listed this as something
that went well during development rather than something
that went wrong.

Example of what went right: Art Min of game developer
Multitude said that they created tools for the community to
utilize such within their game lobby and community website
during the making of Fireteam. They stated that “Players
are not only a source of revenue for a project, but they are

a feature of your game.” They argue that when players of a
game develop a sense of community, it’s like adding a whole
other feature to that game.

Example of what went wrong: Jamie Cheng of Klei En-
tertainment said that they had a thriving online commu-
nity when they released their first preview of their game
Eets: Hunger. It’s emotional. during development, which
was merely a throwaway prototype of their game designed
to gather feedback from users. However, the community
was begging for more content and when Klei Entertainment
could not deliver, the community died and their game lost
popularity before it was even released. Cheng also said “A
large part of the problem was we didn’t know what to tell
them. Were we going to be on handheld? Self-published
online? Retail PC?”
(b) Feedback: In most cases developers listed feedback as
something that went right when they actively sought feed-
back during development to make sure they were building
the right product, or when they received good feedback after
release. In general, developers listed feedback as something
that went wrong when they received bad or insufficient feed-
back upon release.

Example of what went right: Alyssa Finley of 2K Games
stated that while developing BioShock, 2K Games conducted
tests with a focus group to see how they reacted to the game.
They described the feedback as “brutal.” Finley also said
that “Based on this humbling feedback, we came to the re-
alization that our own instincts were not serving us well,”
and they were able to make the necessary corrections.

Example of what went wrong: Ethan Einhorn of Other
Ocean stated that after the release of Super Monkey Ball 2,
the team realized that players were not interested in their
game’s multiplayer mode when all of the players’ feedback
was on the single-player mode. Einhorn stated “if we had
known that interest in the multiplayer would be so limited,
we may have dropped it.” If they had sought feedback prior
to release, they could have avoided this situation.
(c) Marketing: Typically, developers who published their
own game listed marketing more than those who had pub-
lishers. About 70% of the developers that listed marketing
as going right or wrong published their game themselves.
This is because in most cases where a publisher is present,
the developer won’t deal with the marketing aspect.

Example of what went right: Frank Wilson and Josh Bear
of Twisted Pixel Games described after developing Splosion
Man, they were able to take their game to Microsoft’s Sum-
mer of Arcade promotional event. Attending the event defi-
nitely helped get the word out about their game, they said.
They stated that “The extra attention the game received
was something that would have been very hard for a small
company like ours to get recognition for on our own.”

Example of what went wrong: Dave Gilbert of Wadjet
Eye Games stated that after releasing The Blackwell Con-
vergence on various game portals (online game distribution
websites), the game was not getting noticed. Gilbert later
said “I learned my lesson very quickly: I could no longer rely
on the game portals to sustain the majority of my income,”
and that in the future he would have to do some marketing
and PR work for his games.
(d) Piracy/Licensing: Piracy and licensing has always
been an issue in the gaming industry. Whether it be a game
losing sales because of piracy, or a lack of quality music
because the developer couldn’t get the license.



Figure 2: What went right

Example of what went right: Blair Fraser and Brad Wardell
of developer Ironclad said that they chose to release Sins of a
Solar Empire without any CD/DVD copy protection. They
calculated that users would still buy the game to avoid the
inconvenience of pirating it. Therefore, they were able to
ignore the issue, and save a little time and money.

Example of what went wrong: Alex Austin of Chronic
Logic stated that when they released Gish, many players
started pirating their software after release. This took away
from their profits and they expressed much frustration at
watching so many users steal their game. They even said
that in some cases there were “people even writing to us
[Chronic Logic] for tech support when their stolen keycode
[didn’t] work with the newest patch.”

5.5 Other
We categorized things into this category when they didn’t

quite fit into the other categories. Examples include - teams
believing in themselves, a team self funding their own project,
luck, and risks paying off.

6. RESULTS

6.1 Best Practices
Figure 2 shows the percentage of postmortem reviews which

list each category as something that went right during de-
velopment. These percentages do not add up to 100% be-
cause each postmortem lists multiple categories that went
right during development. The four categories that most
frequently went right were game design, development pro-
cess, team, and art.
(a) Game Design: As shown in Figure 2, Game Design
was stated to have went right in 50% of postmortems. In
general, teams who marked game design as something that
went right emphasized having a “hook” to capture player
interest, and having a clear vision. Having a complete story,
and developed characters were less prevalent themes.

Example of game hook: Dan Marshall stated that when
making Gibbage, he emphasized variety in the different levels
of Gibbage, which helped maintain the player’s attention.
Marshall said“It’s this variety that keeps the gameplay fresh
throughout each of its levels.”

Example of clear vision: Paul Dennen of Nayantara Stu-
dios stated that “Focusing the design down one clearly plot-
ted path from start to finish resulted in a game with strength
of clarity and identity”during the creation of Start Chamber.

Takeaway: Game developers should create a well-defined
concept before beginning development as opposed to an ad
hoc method of game design. Developers should also focus
the design around capturing the attention of the player.
(b) Development Process: Development process was mar-
ked as something that went right in 43% of the postmortem
reviews, according to Figure 2. Among the teams that listed
the development process as something that went right when
making a game, there were 3 common practices teams did:
First, they spent time planning and preparing for the game
prior to development. Additionally, they often created pro-
totypes which they would use as a proof of concept for the
game in general, or a specific feature of the game. Many
teams also used their prototypes as a basis of development.
It was also common for these teams to use an iterative de-
velopment process.

Example of planning: Brian Gilman of Full Sail described
how before starting development on Romeo and Juliet, they
were able to spend an extra month planning how they were
going to complete the project. They said that“a single addi-
tional month in pre-production can make all of the difference
in the world.”

Example of prototyping: Wu Dong Hao of Ubisoft stated
that they made a prototype for their title Tom Clancy’s
Splinter Cell which“helped determine resources and schedul-
ing” for the whole project. They also said that the prototype
helped them organize the production schedule and proved
that they could overcome the technical issues of the prob-
lem. Additionally, they were able to use the prototype as a
base for production.

Takeaway: For a better development process, game de-
velopers should invest time in the beginning of the project
planning and designing. Game developers should also build
prototypes during development, and if possible continue build-
ing off of these prototypes using an iterative process.
(c) Team: The team was listed as something that went
right in 40% of the postmortem reviews that we analyzed,
as depicted in Figure 2. Of the developers that listed the
team as going right during development, many of them cred-
ited their experienced team members. Many developers also
stated that their team members were very motivated.

Example of experienced team: According to Rade Sto-
jsavljevic, the team who built Command and Conquer: Tibe-
rian Sun was extremely experienced with real time strategy
games. Many of the members had worked on at least 4 real
time strategy games before, and according to Stojsavljevic
“This level of experience was key in allowing the team to
conquer all the obstacles thrown in their path.”

Example of motivated team: Deng Yi Wen of Ubisoft de-
scribed how the team of Music Up – Summer Rainbow was
highly motivated. He stated that“A willing crew is the most
important factor shipping a title on time, and we had a team
who [was] highly motivated by the chance to finally make a
game for local players”

Takeaway: Game developers should spend more time
training their team members in the environment they will
be developing in. However, game development companies
should focus on recruiting not only talented individuals, but
they have to be motivated as well.



Figure 3: What went wrong

(d) Art: In Figure 2 it is shown that art went right in 39%
of the postmortem reviews. Those developers who marked
art as something that went right in development typically
had creative artists on their teams, or were able to contract
creative artists.

Example of creative artists: Brad Wardell of Stardock En-
tertainment described their method of improving the quality
of art in Galactic Civilizations 2: Dread Lords. According to
Wardell, “Anyone who’s followed Gamasutra for a long time
and seen Stardock’s games mentioned in the past knows one
simple fact: Stardock’s games look like crap.” To improve
the art in the new Galactic Civilizations, they began work-
ing with popular artists like Paul Boyer and Mike Bryant.
Additionally, they increased the size of their in-staff art de-
partment. Wardell stated that “The result was that we were
able to make a game that had competitive graphics for any
AAA strategy title.”

Takeaway: In order to build a higher quality game, game
studies should seek the help of professional artists in order
to make visuals that will capture the attention of the player.

6.2 Pitfalls
The percentages of each categories that went wrong in

the postmortem reviews can be seen in Figure 3. These per-
centages do not add up to 100% because each postmortem
mentions multiple categories that went wrong during devel-
opment. The 4 most occurring categories that went wrong
for teams during development are obstacles, schedule, devel-
opment process, and game design.
(a) Obstacles: Teams reported facing various obstacles in
37% of the postmortem reviews, as shown in Figure 3. While
there was a large variety in the types of obstacles faced by
developers, a significant number of the teams and sometimes
companies were newly formed, and faced obstacles related
to lack of team dynamic and unfamiliarity among the team.

Example of newly formed team: Scott Alden of Dream-
Forge Entertainment described the troubles in their newly
formed team during the development of Sin. Alden said
“Our newly formed tribe felt little sense of cohesion, as most
members were basically strangers to each other.” He went
on to say that their team had trouble agreeing with each
other, which led to problems making decisions during the
project.

Takeaway: Developers working in newly formed teams
should participate in team building in order to minimize
risks during development related to unfamiliar teams. Ad-
ditionally, new companies and teams should subscribe to a
method of risk management, because they are more likely
to face obstacles than more seasoned teams.
(b) Schedule: In 25% of the postmortem reviews, develop-
ers said that the schedule was something that went wrong,
as show in Figure 3. These games faced common problems
in estimation and optimistic scheduling. Some teams also
faced problems with design changes late in development.

Example of bad estimation: Linda Currie of Blue Fang
Games described the scheduling problems surrounding their
game Zoo Tycoon: Marine Mania. According to Currie,
“we [Blue Fang Games] overlooked the fact that the young
guests needed their own specific animations.” Currie also
described additional scheduling problems, saying that “We
also underestimated some of the difficulty in transitioning
to 3D movement through water.”

Example of bad optimistic scheduling: Peter Molyneux of
Lionhead Studios described the scheduling difficulties they
encountered during the creation of Black & White. Molyneaux
admitted “I have a reputation for being, shall we say, opti-
mistic about when the projects I’m working on will be com-
pleted.” Molyneaux also stated that there were many people
who didn’t believe him when he finally told them the game
was finished, and that they “were only convinced when they
saw a box with a CD in it.”

Takeaway: To avoid schedule slippage, game develop-
ers need to spend more time to plan out all the work that
needs to be done so that no tasks are overlooked when giv-
ing estimates. By planning out tasks, you can also estimate
each task individually, and give a more accurate prediction,
instead of an optimistic one.
(c) Development Process: The development process was
listed as something that went wrong in 24% of postmortem
reviews. Many teams listed this as something that went
wrong when they did not spend a significant amount of time
planning before beginning development. There was a large
variety of things that went wrong in the development pro-
cesses, however, another less common theme within these
postmortems was mismanagement.

Example of lack of planning: Wayne Imlach of Muckyfoot
Productions described a lack of up-front design work during
the making of Startopia. The result was a lot of confusion
among the team during development. Imlach said that they
dove in to development as soon as possible but that “we
[Muckyfoot Productions] failed to realize at the time that
everybody was carrying a slightly different picture in his
head of what the final game would be.”

Example of poor project management: Leonard Paul of
Moderngroove stated that Modern Groove – The Ministry
of Sound Edition suffered from poor project management
because they had no dedicated project manager. Most of
those responsibilities were given to the lead programmer,
which resulted in an over burdened team. Paul said “I be-
lieve hiring a good manager early in the project and having
clearer deadlines would have definitely helped the project.”

Takeaway: In order to avoid conflicts during the devel-
opment process, teams need to have proper management.
Developers also need to invest time upfront planning before
beginning development.
(d) Game Design: According to Figure 3, game design



is something that went wrong in 22% of the postmortem
reviews. Many teams fell victim to overly ambitious game
designs which could not be implemented, or caused them to
go over their planned schedule. In addition to this, many
other teams designed games with concepts that confused the
player.

Example of ambitious design Jim Napier of Sierra Studios
described how the design for SWAT 3: Close Quarters Bat-
tle was extremely ambitious. Specifically, Napier said that
“Most of the individual features seemed doable, but added
up they represented a tremendous amount of work.” They
were able to release the game on time still by cutting out
some of the features, which “was painful for everyone be-
cause we felt the game wouldn’t be nearly as fun without
the missing features.”

Example of confusing design Bruce Chia and Desmond
Wong of Singapore-MIT GAMBIT Game Lab described the
confusion surrounding their original prototypes for a game.
The game was based around the concept that players would
be rewarded by failing to complete an action. However, they
said that “testers didn’t understand the logic behind these
design decisions, and we spent a lot of time making a game
that was not well thought-out and was boring to play.”

Takeaway: For a better game design, developers should
keep implementation in mind while creating a design, and
if a implementation cannot be pictured for a part of the
design, contingencies should be made. Key game concepts
should also be testing before release so the reactions of the
players can be verified.

7. DISCUSSION
As described in Section 4, we collected the metadata avail-

able in each postmortem as well. Based on this metadata,
we split our postmortems based on team size, the presence or
absence of publisher, and single or multiplatform, to analyze
our results further.

7.1 Small Team vs. Big Team
When looking at what went right and wrong in teams

of 20 or less team members, and teams of more than 20
team members separately, we can see some clear differences
between the two sets.

Firstly, 61% of teams with 20 or less members listed game
design as something that went right during development,
while only 50% of teams with more than 20 members listed
this as something that went right during development. Con-
versely, 25% of both small and large teams listed the team as
having gone wrong during development. This may indicate
that smaller teams also produce a better game design.

When looking at gameplay and different team sizes, we
found that 42% of large teams listed gameplay as something
that went right during development, while only 27% of small
teams listed gameplay as having gone right. Supporting this,
16% of small teams listed gameplay as something that went
wrong, and only 9% of large teams listed this as something
that went wrong. This indicates that having a larger team
may produce a game with better gameplay.

Lastly, we found that 50% of small teams listed obsta-
cles as something that went wrong, while only 26% of large
teams listed obstacles as something that went wrong during
development. This indicates that small teams may be much
more likely to encounter obstacles during development than
large teams.

7.2 Publisher vs. No Publisher
When looking at what went right and wrong in developers

who had publishers versus developers who published their
own game, we identified a few categories in which one group
performed better than the other.

First, 30% of the developers without publishers listed test-
ing as something that went right during development, while
only 19% of those with publishers listed this as having gone
right. The two groups were comparable in the number of
times they listed testing as something that went wrong, with
11% of those without publishers and 13% of those with pub-
lishers listing it as having gone wrong. This shows that those
developers who published their own games performed better
testing than the developers who had publishers.

Second, we found that while only 17% of developers who
published their ow game listed tools as something that went
right, 40% of developers with publishers listed tools as some-
thing that went right. Both groups listed tools as having
gone wrong in only 17% of cases. This indicates that devel-
opers who have publishers often have better tools for devel-
opment than developers who do not have publishers.

Lastly, we found that 43% of the developers that pub-
lished their own game listed obstacles as something that
went wrong, while only 35% of the developers with publish-
ers ran into obstacles. This suggests that developers who
publish their own games may be affected more severely by
obstacles than developers who utilize publishers.

7.3 Single Platform vs. Multiplatform
When looking at games developed for one platform versus

games developed for multiple platforms, we found a few ad-
vantages and disadvantages to choosing one over the other.
First, 46% of developers that used multiple platforms listed
art as something that went right, while only 33% of devel-
opers that used a single platform listed this. Additionally,
15% of the developers that used a single platform listed this
as something that went wrong, while only 17% of developers
that used multiple platforms listed art as having gone wrong.
Therefore, the evidence shows us that games developed for
multiple platforms may be more likely to have better game
art.

We also found that 20% of developers that worked on mul-
tiple platforms listed marketing as having gone right, and
only 12% of developers that worked on a single platform
listed this as having gone right. There is not much varia-
tion between the two groups when looking at marketing as
something that went wrong. In fact, 11% of the developers
that used multiple platforms and 10% of the developers that
used single platforms listed marketing as going wrong. This
evidence suggests that marketing is often better in games
developed for multiple platforms.

8. THREATS TO VALIDITY
The three threats to validity of this research are: (1)

We could have made mistakes in qualitatively analyzing the
postmortems. We tried to address this issue by having two
authors discuss their qualitative tagging frequently. (2) The
results were synthesized from self reported postmortems,
which could be written by one particular set of game devel-
opers. However, we find that the games we analyzed were
very diverse. (3) The authors of these postmortems may not
report what actually happened during development or hide
certain failures. However, on reading these postmortems, we



often find that the authors are very candid. Also in order to
make our experiments more transparent and reproducible,
we have made available all the data, including the actual
raw postmortem reports, in our online appendix [6].

9. CONCLUSIONS
We find that we were able to identify both best prac-

tices and pitfalls in game development using the informa-
tion present in the postmortems. Such information on the
development of all kinds of software would be highly useful
too. Therefore we urge the research community to provide a
forum where postmortems on general software development
can be presented, and practitioners to report their retro-
spective thoughts in a postmortem.

Finally, based on our analysis of the data we collected, we
make a few recommendations to game developers. First, be
sure to practice good risk management techniques. This will
help avoid some of the adverse effects of obstacles that you
may encounter during development. Second, prescribe to
an iterative development process, and utilize prototypes as
a method of proving features and concepts before commit-
ting them to your design. Third, don’t be overly ambitious
in your design. Be reasonable, and take into account your
schedule and budget before adding something to your de-
sign. Building off of that, don’t be overly optimistic with
your scheduling. If you make an estimate that initially feels
optimistic to you, don’t give that estimate to your stake-
holders. Revisit and reassess your design to form a better
estimation.

10. REFERENCES
[1] Gamasutra. http://www.gamasutra.com/. 2015-09-30.

[2] Erik Bethke. Game development and production.
Wordware Publishing, 2003.

[3] Jonathan Blow. Game development: Harder than you
think. Queue, 1(10):28–37, February 2004.

[4] Thierry Burger-Helmchen and Patrick Cohendet. User
communities and social software in the video game
industry. Long Range Planning, 44(5–6):317 – 343,
2011. Social Software: Strategy, Technology, and
Community.

[5] Heather Maxwell Chandler. The Game Production
Handbook. Jones & Bartlett Learning, 2008.

[6] Michael Washburn Jr., Pavithra Sathiyanarayanan,
Meiyappan Nagappan, Thomas Zimmermann, and
Christian Bird. Appendix to “what went right and
what went wrong”: An analysis of 155 postmortems
from game development. Technical Report
MSR-TR-2016-6, February 2016.
research.microsoft.com/apps/pubs/?id=262289.

[7] Jussi Kasurinen, Jukka-Pekka Strandén, and Kari
Smolander. What do game developers expect from
development and design tools? In Proceedings of the
17th International Conference on Evaluation and
Assessment in Software Engineering, pages 36–41.
ACM, 2013.

[8] Annakaisa Kultima and Kati Alha. Hopefully
everything i’m doing has to do with innovation:
Games industry professionals on innovation in 2009. In
Games Innovations Conference (ICE-GIC), 2010
International IEEE Consumer Electronics Society’s,
pages 1–8, Dec 2010.

[9] Chris Lewis, Jim Whitehead, and Noah
Wardrip-Fruin. What went wrong: a taxonomy of
video game bugs. In Proceedings of the fifth
international conference on the foundations of digital
games, pages 108–115. ACM, 2010.

[10] Morgan McGuire and Odest Chadwicke Jenkins.
Creating games: Mechanics, content, and technology.
CRC Press, 2008.

[11] Mike McShaffry and David Graham. Game Coding
Complete. 4 edition.

[12] Emerson Murphy-Hill, Thomas Zimmermann, and
Nachiappan Nagappan. Cowboys, ankle sprains, and
keepers of quality: How is video game development
different from software development? In Proceedings of
the 36th International Conference on Software
Engineering, ICSE 2014, pages 1–11, 2014.

[13] Juergen Musil, Angelika Schweda, Dietmar Winkler,
and Stefan Biffl. Improving video game development:
Facilitating heterogeneous team collaboration through
flexible software processes. In Systems, Software and
Services Process Improvement, pages 83–94. Springer,
2010.

[14] Juergen Musil, Angelika Schweda, Dietmar Winkler,
and Stefan Biffl. A survey on the state of the practice
in video game software development. Technical report,
Technical report, QSE-IFS-10/04, TU Wien, 2010.

[15] Meiyappan Nagappan, Thomas Zimmermann, and
Christian Bird. Diversity in software engineering
research. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE
2013, pages 466–476, 2013.

[16] Randy J. Pagulayan, Kevin Keeker, Dennis Wixon,
Ramon L. Romero, and Thomas Fuller. The
human-computer interaction handbook. chapter
User-centered Design in Games, pages 883–906. L.
Erlbaum Associates Inc., Hillsdale, NJ, USA, 2003.

[17] Fábio Petrillo, Marcelo Pimenta, Francisco Trindade,
and Carlos Dietrich. What went wrong&#63; a survey
of problems in game development. Comput.
Entertain., 7(1):13:1–13:22, February 2009.

[18] Robert Purchese. Games are arguably the most
sophisticated and complex forms of software out there
these days.
http://bit.ly/eurogamer-games-more-complex.
2015-10-22.

[19] Ara Shirinian. Dissecting the postmortem.
http://gamasutra.com/view/feature/134679/
dissecting the postmortem lessons .php. 2015-09-30.

[20] Patrick Stacey and Joe Nandhakumar. A temporal
perspective of the computer game development
process. Information Systems Journal, 19(5):479–497,
2009.

[21] Rob van der Meulen and Janessa Rivera. Gartner Says
Worldwide Video Game Market to Total $93 Billion in
2013. http://www.gartner.com/newsroom/id/2614915.
2015-10-22.

[22] Michael Thornton Wyman. Making Great Games: An
Insider’s Guide to designing and developing the
World’s Greatest Games. CRC Press, 2012.


