
Don’t Program on Fridays!
How to Locate Fix-Inducing Changes

JacekŚliwerski Thomas Zimmermann Andreas Zeller

Saarland University
Department of Computer Science

Saarbr̈ucken, Germany
{sliwers,zimmerth,zeller }@st.cs.uni-sb.de

Abstract

As a software system evolves, programmers make changes
that sometimes cause problems. We analyzeCVS archives
for fix-inducing changes—changes that lead to problems,
indicated by fixes. We automatically locate fix-inducing
changes by linking a version archive (such asCVS) to a bug
database (such asBUGZILLA ). In a first investigation of the
ECLIPSEhistory, it turns out that fix-inducing changes are
most frequent on Fridays.

1 What are Fix-Inducing Changes?

When we mine software histories, we frequently do so in
order to detect patterns that help us understanding the cur-
rent state of the system. Unfortunately, not all changes in
the past have been beneficial. Any bug database will show
a significant fraction of problems that are reported some
time after some change has been made.

Recent research investigated changes thatfixed prob-
lems. In contrast, we identified those changes thatcaused
problems [4]. The basic idea is as follows:

1. We start with the changes from the version archive,
that are associated with a fix. This gives us theloca-
tionsof the fix, i.e., the affected lines.

2. We determine theearlier changesat these locations
that were applied before the bug was reported.

These earlier changes are the ones thatcausedthe later fix.
We call such changesfix-inducing.

2 The Technique in a Nutshell

Our approach consists of two steps: identify fixes and lo-
cate changes that induced these fixes. Both steps are per-
formed automatically.

Identify Fixes

We identify fixes based on the log messages that are sup-
plied with a change. There are two approaches for this
step: looking forkeywordsas introduced by Mockus and
Votta [3] and looking forreferences to bug databasesas
introduced by Fischer et al. [2] as well asČubraníc and
Murphy [1].

Bug 42233 was reported.

1.14 1.16

b() was 
changed

c() was 
changed

a() was 
changed

1.11 1.18

Fixed Bug 
42233

Changed:
a() b() c()

Figure 1: Locating fix-inducing changes for bug 42233

For instance, in Figure 1 both approaches would rec-
ognize revision 1.18 as a fix, because of the keywords
“Fixed” and “Bug” and because of the reference to the bug
database “42233”.

However, our approach relies on the connection to a
bug database because we get additional information about
fixes. For instance, we use the bug report date to distin-
guish between several fixes within the same change or to
recognize false positives.

Locate Fix-Inducing Changes

Once we know that revision 1.18 is a fix, we annotate each
line of the preceding revision 1.17 with the most recent au-
thor and revision that touched this line. Figure 2 shows the
output of such an annotation. Right now, we use theCVS
annotatecommand, but it is straightforward to implement
a similar feature for other version control systems.

By computing the differences between revision 1.17
and 1.18, we get the lines that have been changed by the
fix. For these lines, we use the annotations for 1.17 to find
candidatesfor fix-inducing changes. In our example, we
assume that lines 20, 40, and 60 have been changed. Thus
our candidates are 1.11, 1.14, and 1.16.

Finally, we use the bug database to rule out changes that
cannot be fix-inducing because they have been made after
the bug was reported, i.e., they are no real causes for the
bug. In our example, revisions 1.14 and 1.16 are not fix-
inducing. Without the connection to the bug database, they
would be false positives.

Thus, revision 1.11 is the only fix-inducing change in
our example. Frequently, but not always, such a fix-
inducing change introduced the bug that has been fixed.
However, they always are unstable and thus risky changes.



$ cvs annotate -r 1.17 Foo.java
. . .

19:1.11 (joe 12-Feb-03): public int a() {
20: 1.11 (joe 12-Feb-03): return i/0;

. . .
39:1.10 (ann 12-Jan-03): public int b() {
40: 1.14 (eve 23-May-03): return 42;

. . .
59:1.10 (ann 17-Jan-03): public void c(){
60: 1.16 (ann 10-Jun-03): int i=0;

. . .

Figure 2: CVS annotations for Foo.java

Day of Week

in % Mon Tue Wed Thu Fri Sat Sun avg

P (fix) 18.4 20.9 20.0 22.3 24.0 14.7 16.9 20.8
P (bug) 11.3 10.4 11.1 12.1 12.2 11.7 11.6 11.4
P (bug∩ fix) 4.6 4.8 4.6 5.2 5.6 4.5 4.5 4.9

P (bug| fix) 25.1 22.9 23.3 23.5 23.2 30.3 26.4 23.7
P (bug| ¬fix) 8.2 7.1 8.1 8.8 8.7 8.4 8.6 8.1

Table 1: Distribution of fixes and fix-inducing changes
across day of week in ECLIPSE

3 Don’t Program on Fridays

In a first case study, we have broken down fixes and fix-
inducing changes by the day of the week when they were
applied. Table 1 presents the results forECLIPSE. The
amount of fixes on a day is indicated byP (fix). It turns
out that most fixes are performed on Friday; Saturday and
Sunday are the days of week with the lowest amount of
fixes. The amount of fix-inducing changes is indicated by
P (bug); it is highest on Friday.

Table 1 shows that forECLIPSE, the average risk
of introducing a fix-inducing change is almost three
times higher for fixes, indicated by the conditional like-
lihood P (bug| fix), than for regular changes, indicated by
P (bug| ¬fix).

Besides the day of week, one can easily determine fur-
ther properties of a change that correlate with inducing
fixes—such as the development group, or the involved
modules. Again, all this data is automatically retrieved for
arbitrary projects.

4 Perspectives

What can one do with fix-inducing changes? Here are
some potential applications:

Which properties may lead to problems? These can be
properties of the change itself, but also properties or
metrics of the object being changed. This is a wide
area with several future applications.

How error-prone is my product? We can assign amet-
ric to the product—on average, how likely is it that a
change induces a later fix?

How can I filter out problematic changes? When
extracting the architecture via co-changes from a ver-
sion archive, there is no need to consider fix-inducing
changes, as they get undone later.

Can I improve guidance along related changes?When
using co-changes to guide programmers along related
changes [5], we would like to avoid fix-inducing
changes in our suggestions.

For ongoing information on the project, see

http://www.st.cs.uni-sb.de/softevo/

References

[1] D. Čubraníc and G. C. Murphy. Hipikat: Recommend-
ing pertinent software development artifacts. InProc.
25th International Conference on Software Engineer-
ing (ICSE), pages 408–418, Portland, Oregon, May
2003.

[2] M. Fischer, M. Pinzger, and H. Gall. Populating a re-
lease history database from version control and bug
tracking systems. InProc. International Conference
on Software Maintenance (ICSM 2003), Amsterdam,
Netherlands, Sept. 2003. IEEE.

[3] A. Mockus and L. G. Votta. Identifying reasons for
software changes using historic databases. InProc.
International Conference on Software Maintenance
(ICSM 2000), pages 120–130, San Jose, California,
USA, Oct. 2000. IEEE.

[4] J. Śliwerski, T. Zimmermann, and A. Zeller. When
do changes induce fixes? On Fridays. InProc. Inter-
national Workshop on Mining Software Repositories
(MSR), Saint Louis, Missouri, USA, May 2005.

[5] T. Zimmermann, P. Weißgerber, S. Diehl, and
A. Zeller. Mining version histories to guide software
changes. InProc. 26th International Conference on
Software Engineering (ICSE), pages 563–572, Edin-
burgh, Scotland, May 2004.


