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ABSTRACT
How do design decisions impact the quality of the resulting soft-
ware? In an empirical study of 52ECLIPSEplug-ins, we found that
the software design as well as past failure history, can be used to
build models which accurately predict failure-prone components in
new programs. Our prediction only requires usage relationships be-
tween components, which are typically defined in the design phase;
thus, designers can easily explore and assess design alternatives in
terms of predicted quality. In theECLIPSEstudy, 90% of the 5%
most failure-prone components, as predicted by our model from
design data, turned out to actually produce failures later; a random
guess would have predicted only 33%.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—version control; D.2.8 [Software Engineering]:
Metrics—Complexity measures, Process metrics, Product metrics;
D.2.9 [Software Engineering]: Management—Software quality
assurance (SQA)

General Terms
Management, Measurement, Reliability

1. INTRODUCTION
During the design phase of new software, designers must make sev-
eral decisions that will impact the cost and quality of the resulting
software. Such decisions are typically guided byexperience—that
is, the accumulated knowledge of which designs worked and which
designs did not. Think of a designer who has to choose between us-
ing graphics libraryA and graphics libraryB. Her choice will be
influenced by previous experience with these libraries—her own
experience as well as the experience reported from others. If she
knows, for instance, that some other project has gotten into trouble
because it was usingA, she may opt for usingB instead.

In this work, we aim to facilitate such decisions by making accu-
ratepredictionshow failure-prone a component will be—by learn-
ing from history which design decisions correlated with failures in
the past. More precisely, we focus onusage relationships:Does
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using the libraryA increase or decrease the risk of failure? It turns
out that this usage information alone suffices to predict the failure-
proneness of individual components. With such a prediction, our
software designer can explore and assess the design alternatives
and check which one has the lowest risk. She can also use the
prediction to identify the components that are most likely to fail af-
terwards, and assign appropriate quality assurance efforts—and all
this at design time, when decisions matter most.

Why does usage influence the risk of failure? As an example,
consider two plug-ins from theECLIPSEdevelopment framework.
The packageorg.eclipse.jdt.core.compiler provides
an interface to theJAVA compiler, such as invoking it or accessing
compilation results. On the other hand, theorg.eclipse.ui
package gives access to theECLIPSEuser interface, providingGUI
elements for user interaction.

For the average programmer, dealing with user interfaces is an ev-
eryday’s job—in contrast to interacting with a compiler package,
especially for an incremental compiler as used inECLIPSE. There-
fore, we would assume that code which uses thecompiler pack-
age is more error-prone than code that uses theui package. But can
we actually quantify these differences? To this end, we have mined
theECLIPSEbug and version archives for usage data (which com-
ponent uses which other components?) as well as for failure rates
(which component had how many failures in the past?). Applied to
thecompiler andui packages above, we found that 71% of the
components using thecompiler package needed to be fixed due
to a failure after release. However, only 14% of the components
usingui had to be fixed. Hence, we can confirm: compiler-related
code is more failure-prone thanGUI-related code.

In ECLIPSE, using the compiler and theGUI are just two extremes of
how the usage of individual components impacts later failures. In
this work, we therefore investigate whethercombinationsof usages
make good failure predictors: If a component uses, say, theGUI and
version control, but not the compiler, this specificusage pattern
may indeed correlate with failures—and this is what we want to
mine, as a model that makes accurate failure predictions.

In the remainder of this work, we start with an overview of related
work (Section 2), followed by our research hypotheses (Section 3)
Next, we describe how to collect usage and failure data from ver-
sion archives (Section 4). From this data, we can build predictive
models (Section 5), which we evaluate for 52 individual plug-ins
in theECLIPSEframework (Section 6). After a brief discussion of
our results (Section 7), we close with conclusion and future work
(Section 8).



2. STATE OF THE ART
Predicting which components are more failure-prone than others
has been addressed by a number of researchers in the past. This
work, discussed below, uses either complexity metrics or historical
data to predict failures. In this paper, we go beyond this state of the
art by showing that design data such as import relationships can
predict failures.

2.1 Complexity Metrics
Typically, research on defect-proneness defines metrics to capture
the software complexity and builds models that relate these metrics
to failure-proneness [6]. Basili et al. [2] were among the first to
validate that OO metrics are useful for predicting defect density.
Subramanyam and Krishnan [23] presented a survey on eight more
empirical studies, all showing that OO metrics are significantly
associated with defects. Our models predictpost-release failures
since only such failures matter for the users of a program. Only
few studies addressed post-release failures: Binkley and Schach [3]
showed that their coupling dependency metric outperforms several
other metrics; Ohlsson and Alberg [19] investigated a number of
metrics to predict modules that fail during test or operation.

The work closest to ours in spirit is the MetriZone project at Mi-
crosoft Research. The goal of MetriZone is to make early estimated
of software quality to predict post-releasure failures. Nagappan and
Ball [17] showed thatrelative code churnpredicts the software de-
fect density; (absolute) code churn is the number of lines added or
deleted between version. Additionally, Nagappan et al. [18] car-
ried out the largest study of commercial software software so far.
Within five Microsoft projects, they identified metrics that predict
post-release failures and reported how to systematically build pre-
dictors for post-release failures from history.

2.2 Historical Data
In recent years, researcher exploited software repositories such as
version archives and bug databases [20, 15, 17] for defect predic-
tion. Our approach relies on the idea that one can mapproblems
(in the bug database) tofixes(in the version archive) and thus to the
location that caused the problem [22, 9, 10, 5, 4].

Several researchers used historical data without taking bug
databases into account. Khoshgoftaar et al. [13] classified modules
as defect-prone where the number of lines of code added or deleted
exceeded a threshold. Graves et al. [11] used the sum of contribu-
tions to a module in its history to predict defect density. Ostrand
et al. [20] used historical data from up to 17 releases to predict the
files with the highest defect density in the next release. Hudepohl et
al. [12] predicted whether a module would be defect-prone by com-
bining metrics and historical data. From several software metrics,
Denaro et al. [7] learned logistic regression models for Apache 1.3
and verified them against Apache 2.0.

3. HYPOTHESES
Our work is inspired by a simple observation:Some problem do-
mains are more failure-prone than others.For instance, we found
working on compiler internals to be much more difficult and error-
prone than building user interfaces—regardless of developer, pro-
gramming language, or the complexity of the resulting code. While
we cannot say what it is that makes one problem domain more
failure-prone than another one, we can at least attempt tomeasure
and predict failure proneness given a particular problem domain.

ClassC NC
all NC

✘
p(✘|C)

org.eclipse.jdt.internal.compiler.util.CharOperation 111 87 0.7837
org.eclipse.team.internal.ccvs.core.Policy 48 34 0.7083
org.eclipse.core.resources.IWorkspaceRoot 50 34 0.6800
org.eclipse.jdt.core.IClasspathEntry 56 38 0.6785
org.eclipse.team.internal.ccvs.core.CVSProviderPlugin60 40 0.6666
org.eclipse.jdt.core.Signature 73 48 0.6575
org.eclipse.jdt.internal.corext.util.JavaModelUtil 92 60 0.6521
org.eclipse.team.internal.ccvs.core.ICVSResource 63 41 0.6507
org.eclipse.swt.events.ModifyEvent 40 26 0.6500
org.eclipse.jdt.core.IPackageFragmentRoot 102 65 0.6372
org.eclipse.swt.events.ModifyListener 41 26 0.6341
org.eclipse.jface.text.ITextSelection 55 34 0.6181
. . .
org.eclipse.swt.custom.BusyIndicator 101 18 0.1783
org.eclipse.swt.graphics.Point 122 21 0.1722
org.eclipse.core.runtime.Platform 103 17 0.1651
org.eclipse.jface.resource.ImageDescriptor 260 42 0.1616
org.eclipse.ui.PlatformUI 120 19 0.1584
java.util.ResourceBundle 160 24 0.1500
org.eclipse.jface.action.Action 136 16 0.1177

Table 1: Good and bad imports (classes) in ECLIPSE 2.0

PackageC NC
all NC

✘
p(✘|C)

org.eclipse.jdt.internal.compiler.lookup.* 197 170 0.8629
org.eclipse.jdt.internal.compiler.* 138 119 0.8623
org.eclipse.jdt.internal.compiler.ast.* 132 111 0.8409
org.eclipse.jdt.internal.compiler.util.* 148 121 0.8175
org.eclipse.jdt.internal.ui.preferences.* 63 48 0.7619
org.eclipse.jdt.core.compiler.* 106 76 0.7169
org.eclipse.jdt.internal.ui.actions.* 55 37 0.6727
org.eclipse.jdt.internal.ui.viewsupport.* 42 28 0.6666
org.eclipse.swt.internal.photon.* 50 33 0.6600
org.eclipse.jdt.internal.corext.util.* 117 70 0.5982
org.eclipse.swt.internal.motif.* 46 27 0.5869
org.eclipse.jdt.internal.ui.dialogs.* 60 34 0.5666
. . .
org.eclipse.ui.model.* 128 23 0.1797
org.eclipse.swt.custom.* 233 41 0.1760
org.eclipse.pde.internal.ui.* 211 35 0.1659
org.eclipse.jface.resource.* 387 64 0.1654
org.eclipse.pde.core.* 112 18 0.1608
org.eclipse.jface.wizard.* 230 36 0.1566
org.eclipse.ui.* 948 141 0.1488

Table 2: Good and bad imports (packages) in ECLIPSE 2.0

How can one identify problem domains? We assume that the do-
main is implicitly described by the components that are used. When
building anECLIPSEplug-in that works onJAVA files, one has to
import JDT classes; if the plug-in comes with a user interface,GUI
classes are mandatory. In this paper, we will investigate whether the
problem domain predicts future failures. Our research hypotheses
H1 and H2 are as follows:

H1 Importing certain components correlates with the failure-
proneness of a file or package.

H2 Considering all imported components of a file or package,
we can predict its future failure-proneness.

In a first experiment, we tested hypothesis H1 and investigated
whether the usage of certain components such as packages or
classes correlates with failures. For everyECLIPSEcomponentC,
we computed the likelihoodp(✘|C) that a post-release failure oc-
curred when this component was used in a file:



Nall N✘ p(✘)

Eclipse 2.0
– Files 6,751 1,649 0.244
– Packages 309 113 0.365

Eclipse 2.1
– Files 7,909 1,021 0.129
– Packages 357 169 0.419

Table 3: Number of components in ECLIPSE

p(✘|C) =
number of files usingC with failures

number of files usingC
=

NC
✘

NC
all

For every likelihood, we tested with twot-tests(α = 0.05) whether
it is significantly higher (or lower) than the average likelihood
p(✘) = 1649/6751 = 0.244 of a failure (see Table 3) and the
likelihoodp(✘|¬C) of a failure whennot using componentC.

Table 1 ranks the classes for whichp(✘|C) was tested as signifi-
cant; Table 2 shows the same ranking for significant packages. On
the top of the lists, we see components that come with a high risk
when they are used. The classCharOperation was used 111
times, of which 87 times a post-release failure occurred. The pack-
agesinternal.compiler are also risky: over 80% of the com-
ponents using these packages failed after release.

There are also components whose usage implies low risk. Using
the classesResourceBundle andAction is rather safe com-
pared to the average risk of a post-release failurep(✘) = 0.244.
For packages,ui andjface.wizard can be used “safely”. We
also observed classes and packages that were exclusively used in
files without post-release failures, i.e.,p(✘|c) = 0; however, these
components were not tested as significant by our t-tests.

An interesting observation in Table 2 is that many of the pack-
ages areinternal (as indicated by the substringinternal in the
package name). Such packages are not part of the officialECLIPSE
API and thus frequently changed; they should only be used by the
ECLIPSEdeveloper team [21]. Our results are consistent with this
recommendation: using internal classes increases the likelihood of
a post-release failure.

What does one do with such results? Of course, a component inter-
acting with the user simply has to use one of theGUI-related pack-
ages; there is no design alternative available. However, suppose a
programmer suggests a user interface design that relies on features
of the internalMotif package. In the past, components that relied
on Motif had a far higher risk of failure (58%) than components
that relied onui (14%)—and, when designing the component, this
knowledge should be weighed against the potential benefit.

In ECLIPSE, the number of post-release failures is determined by
the usage of specific components.

4. DATA COLLECTION
How do we know which components failed and which did not? For
our analysis, we investigated two kinds of data: theusage of import
statementswithin a single release and thenumber of failuresfor
that release. We collect this data fromversion archiveslike CVS
andbug tracking systemslike BUGZILLA in three steps:

1. Identify post-release failures.From the bug tracking system,
we get failures that were observed after a release (see Sec-
tion 4.2).

2. Classify files as failure-prone.By mapping fixed failures
to changes in the version archive, we can classify files as
failure-prone or not (see Section 4.3).

3. Determine imported classes for each file.For eachJAVA file,
we collect the imported classes by a using simple syntactic
analysis.

4.1 CVS and BUGZILLA
A CVS archive contains information about changes: Who changed
what, when, why, and how? Achangeδ transforms a file from re-
vision r1 to a revisionr2 by inserting, deleting, or changing lines.
Several file changesδ1, . . . , δn form a transactionT if they were
submitted toCVSby the same developer, at the same time, and with
the same log message, i.e., they have been made with the same in-
tention, e.g., to fix a bug or to introduce a new feature. AsCVS
records only individual changes to files, we group these to trans-
actions with asliding time windowapproach [25]. ACVS archive
also lacks information about thepurposeof a change: Did it in-
troduce a new feature or did it fix a bug? Although it is possible
to identify such reasons solely with log messages [14], we combine
bothCVSandBUGZILLA for this step because we need information
from BUGZILLA for assigning bugs to releases.

A BUGZILLA database collects bug reports that are submitted by a
reporter with a short description, summary, andversionin which
the bug was observed. After a bug has been confirmed, it isas-
signedto a developer who is responsible to fix the bug and finally
commits her changes to the version control archive.BUGZILLA
also captures thestatus of a bug, e.g.,UNCONFIRMED, NEW,
ASSIGNED, RESOLVED, or CLOSEDand theresolution, e.g.,
FIXED, DUPLICATE, or INVALID . Additionally there is infor-
mation about theseverityof a bug that ranges from blocker (“ap-
plication unusable”) to trivial (“minor cosmetic issue”). Details on
the life-cycle of a bug can be found in theBUGZILLA documenta-
tion [24, Sections 6.3 and 6.4].

For our analysis, we mirror bothCVS and BUGZILLA in a local
database. Our mirroring techniques forCVS are described in [25];
for BUGZILLA , we use itsXML export feature.

4.2 Counting Post-Release Failures
We distinguish two different kinds of failures:pre-release fail-
ures are observed during development of a program, whilepost-
release failuresare observed after the program has been released
and shipped to its customers. In our study, we focus on post-release
failures, since these are the ones that matter for the users of a pro-
gram.

Failures are typically documented inbug reports.For our study, we
investigated all bug reports that were

• neither duplicates (=resolved asDUPLICATE) nor bugs of
low severity such asENHANCEMENT, MINORor TRIVIAL ,

• submitted within six months after a release, and

• fixed at some time after they were reported.

For mapping bug reports to releases, we used theversionfield of
theBUGZILLA database. Since the values of this field may change
during the life-cycle of a bug, we decided to take only the first
reported version into account because this is the version in which
the bug was introduced.



Bug 42
version 
2.0

Bug 42
FIXED

release
2.12.0

release

Bug 42
version 
2.1

Six months after rel 2.0

Figure 1: Locating post-release failures

Version Total Mapped Ratio

1.0 2001-11-07 347 195 56.2%
2.0 2002-06-27 1,437 1,018 70.8%
2.0.1 2002-08-29 182 118 64.8%
2.0.2 2002-11-07 104 70 67.3%
2.1 2003-03-27 1,051 714 67.9%
2.1.1 2003-06-27 164 105 64.0%
2.1.2 2003-11-03 74 48 64.9%
2.1.3 2004-03-10 19 11 57.9%
3.0 2004-06-25 1,649 1,243 75.4%

Table 4: Number of post-release failures in ECLIPSE

Figure 1 illustrates post-release failures. Bug 42 is reported within
six months after release 2.0 and marked with that version. How-
ever, it is not fixed within these six months, and still exists in re-
lease 2.1. After release 2.1, the version field is updated to 2.1 and
finally the bug is fixed. Bug 42 counts as a post-release failure for
release 2.0, but not as a post-release failure for 2.1 because it was
already observed before that release.

Table 4 shows the releases ofECLIPSEin the first column and the
number of identified post-release failures in the second column. We
observed most post-release failures in majorECLIPSEreleases such
as 2.0, 2.1, and 3.0. In contrast, maintenance release such as 2.0.1
or 2.0.2 introduce less failures.

4.3 Mapping Post-Release Failures to Files
Let us now show how to map bug reports to corrections in the
source code—and thus the location of the original bug. For this
mapping, we use a bidirectional approach:

From code changes to bug reports.In version archives every
change is annotated with a message that describes the rea-
son for that change. We search this message for references
to bug reports such as “Fixed 42233” or “bug #23444”. Ba-
sically every number is a potential reference to a bug report,
however such references have a low trust at first. We increase
the trust level when the message contains keywords such as
“fixed” or “bug” or matches patterns like “# and a number”.

From bug reports to code changes.Not all bugs are referenced
in log messages. We map such bugs to the change that (a) is
closest to the time when a bug report was resolved, (b) but
less than twelve hours away, and (c) was made by the devel-
oper to whom the bug was assigned. For the second condi-
tion, we manually created a mapping between theBUGZILLA
andCVS user accounts.

Bug 4321
assigned to:
Alice

Fixed bug 
4321

Bug 5678
assigned to:
Bob

fixed 

Bob Bob BobAlice

change by Bob 
that is closest to 
the fix of 5678

Figure 2: Mapping bug reports to changes

Figure 2 shows two examples: The change with the message “Fixed
bug 4321” can be mapped directly to bug report 4321. For bug re-
port 5678 that is assigned to Bob, there is no message; to identify
the change that fixed 5678, we take the change by Bob that is clos-
est to the time when 5678 was reported to be fixed, but not more
than 12 hours apart.

Our approach for mapping code changes to bug reports is described
in detail by Śliwerski et al. [22] and is similar to the approaches
used by Fischer et al. [9, 10] and byČubraníc et al. [5]. The idea
of mapping the other direction, from bug reports to changes, was
proposed and implemented byČubraníc [4].

By mapping from code changes to bug reports, we identified the
corrections of approximately 50% of all post-release-failures; the
other direction, from bug reports to code changes, identified an ad-
ditional 20%. Table 4 shows in the third column the number of
post-release failures that we could map for each release. For major
releases, we mapped approximately 70% of post-release failures.

We classify files asfailure-proneby using the changes that cor-
rected post-release failures: a file is failure-prone in a releaseR if
it was changed in order to fix a post-release failure forR. Addition-
ally, we can rank failure-prone files by the number of post-release
failures that are assigned to it.

4.4 Assigning Imports to Files
In the previous section, we counted for every file the number of
post-release failures. Next, we run a simple syntactic analysis in
order to collect for everyJAVA file the imported classes or packages.

As a result, we get for everyJAVA file:

• the numberN✘ of post-release failures, and

• the setJ of used resources, such as classes or packages.

In the remainder of the paper, we will build models that predict for
JAVA files the numberN✘ of post-release failures from the setJ of
imported classes and packages.

5. PREDICTING FAILURES
Let us now describe how to build prediction models from the im-
port relations which we collected in the previous section. Our mod-
els work on two different granularity levels that are described first.
Next, we discuss the difference between classification and ranking
and finally, we briefly describe the models that we used for our case
study.



5.1 Granularity Levels
For our models, we can use two different granularity levels:

File/class level.For input features we directly used the classes that
a file imported. Since inJAVA, import statements are per file,
we can only predict failure-proneness for files and not for
classes.

Package level.Packages describe a coarser granularity level than
files or classes. For input features we mapped the im-
ported classes to the surrounding package, e.g., the class
java.util.Vector to the packagejava.util . When
predicting for packages, we mapped post-release failures to
directories instead of files, and counted them by package.
This way we guaranteed that no post-release failure was
counted twice.

Intuitively, predicting for a coarse granularity is easier while using
fine-grained input features yields better results.

Note that we distinguish between the granularity for input features
and for prediction; for instance we can predict the failure-proneness
of files using their imported packages, or the failure-proneness of
packages using imported classes.

In the case of the 52ECLIPSEplug-ins, the granularity of the in-
put features and for the prediction can be described in the same
way. We start with the finest levels and will continue with the more
coarse levels.

5.2 Classification vs. Ranking
With our models, we address two problems:

Classification. Can we tell whether a component will be failure-
prone or not based on its design data? This information helps
to mark risky parts of a software design.

Ranking. Can we tell which components will have the most fail-
ures? This information identifies the parts of a software de-
sign that require most attention when being implemented and
tested.

Since classification yields strictly less information from the same
training data than ranking, it is less error-prone, i.e., the likelihood
of a wrong prediction is lower for classification than for ranking.

Typically, a software designer is interested in the components that
are most failure-prone, and not in a complete ranking of all compo-
nents. We take this into account by additionally assessing the top
5, 10, 15, and 20 percent of our rankings.

5.3 Prediction Models
We used four different prediction models for our case study.

Linear regression is a method of estimating the value of a depen-
dent variable, which depends on the input features. We use
the number of failures in a component as dependent variable
and the imported resources used from this component as in-
put features.

Ridge regression is a slight generalization of linear regression.
The difference to linear regression is that we are able to pe-
nalize the log-likelihood.

Model failure-prone

not failure-prone

util.Vector

core.Signature

lang.Math

graphics.Point

io.Reader

util.RecourceBundel

Figure 3: Classification of a component

Regression treesare mappings from observations about the de-
pendent variable to conclusion about its value. Each level
of such a tree corresponds to an input feature and an edge to
a child represents its possible value. The leaves of the tree
describe the predicted values.

Support vector machines create a hyper-plane separating the
data into two classes with the maximum margin, i.e., dis-
tance between the hyper-plane and the closest point from
both sides are maximized. We used support vector machines
with a radial basis function as kernel which smoothens our
data. This helps to reduce noise that was created during data
collection.

All these models are regression models that can be used directly
for ranking; for classification they are combined with a suitable
decision boundary.

Figure 3 illustrates how our approach classifies files as failure-
prone or not using classes as input features. For every possible
import in ECLIPSE, we introduced a dummy variable which in-
dicates whether a component uses a certain import. The exam-
ple in Figure 3 importscore.Signature , graphics.Point ,
util.Vector , io.Reader , and lang.Math and is classi-
fied as failure-prone. If there is another component that imports
the same classes but additionallyutil.ResourceBundle , our
model may classify it as not failure-prone.

For ranking we predict for every component the number of failures
and sort according to this. In Figure 4, we get a rankingC.java ,
B.java , A.java , andD.java . Next we compare this predicted
ranking with the observed ranking using the Spearman rank corre-
lation coefficient.

6. RESULTS: 52 ECLIPSE PLUG-INS
Let us now discuss the obtained results. After explaining how to as-
sess the presented tables, we continue with a discussion of how the
different levels of granularity impact the predictions. Subsequently,
we take a look at the classification and ranking approaches, fol-
lowed by a comparison of the different models. We close this sec-
tion with a discussion ofrobustness,i.e., how the predictive power
changes with the version for which we predict.

6.1 Assessing Results
We used different measurements to asses the quality of our predic-
tion models.

Precision measures from the set of predicted failure-prone com-
ponents the percentage of correctly classified components.

precision=
correct predicted failures

all predicted failures
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C.java

B.java
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Figure 4: Comparison of predicted and observed ranking

In Table 6(d) we obtained aprecisionof 0.6671 for the test
in version 2.0. That is, two of three components predicted as
failure-prone turned out to produce failures. Had we used a
random guess instead, the probability of a failure occurrence
would have beenp(✘) = 113/309 = 0.365 (see Table 3),
and we would have obtained a precision of only 0.365.

Recall measures from the set of predicted failure-prone compo-
nents the percentage of failure-prone components classified
as such.

recall=
correct predicted failures

all failures

As an example, therecall of the test in version 2.0 shown in
Table 6(d) indicates that over two third of the failure-prone
components are actually identified as failure-prone. Again,
a random guess would have had a probability of 0.365 and
therefore yielded a recall of only 0.365.

Spearman coefficientmeasures the correlation between the pre-
dicted and observed ranking. Hence, it indicates the quality
of our overall ranking. High correlations are indicated by
values close to 1 and -1, i.e., values of 1 indicate a identical
ranking and values of -1 indicate an opposite ranking. Values
close to 0 indicate no correlation. For example, the training
result in Table 5(d) indicates an almost identical ranking with
a value of 0.7641.

Top. We applied precision and spearman coefficents to the upper
x% of our rankings. We did not compute the recall for these
parts because the recall values are limited by thex percent to
a maximum ofx/(100 · p(✘)). Additionally, the upperx%
are a special case for which we can compute the recall from
the precision:

recall for top x%=
precision· x
100 · p(✘)

For our experiments, we usedrandom splits. A random split is
a technique to divide our data into training and test sets. To ap-
ply such a random split for our 52ECLIPSEplug-ins, we randomly
chose one third of all plug-ins contained in version 2.0 as our train-
ing set, the other two third as test set for 2.0 and the complement in

Test 2.1 without training set
All plug-ins 
version 2.1

All plug-ins 
version 2.0    

Test 2.0 without training set 

1/3 Plug-ins
as training set

Figure 5: Random split on plug-in level

2.1 as test set for 2.1 (see Figure 5). We generated 40 independent
training and test sets, trained and tested 40 models of each kind. To
obtain our final results, we averaged over the 40 predictions made
by the trained models.

Note that when a model returned less then x% failure-prone com-
ponents during the investigation of the top x%, we filled it up with
false positives. As a result the precision was lowered while the
recall remained unchanged. Thus top x% means ”Return x% of
all components that are most likely failure-prone”. A consequence
of this is that average top values may have lower precision as the
overall prediction.

6.2 Packages vs. Files
As we see in Table 5 and 6, our prediction of failure-proneness for
packages yields better results than predicting failure-proneness for
files. For example, take the test in version 2.0 of Table 6(b) with a
recall of about 0.1 and Table 6(d) with a recall of about 0.7.

Since packages represent a more coarse level of granularity, they
provide some kind ofsmoothness.This smoothness is expressed
through lowering the number of outliers we have to deal with pre-
dictions on file level. Usually more information on input features
means better predictions. Since on package level we not only have
binary input features, we are able to distinguish the packages on
how intense they use a resources other than on file level where
we only know the resources they use. Therefore, the prediction
for packages with class imports as input feature yield better results
than predicting with package imports as input features.

Note that every newly introduced feature increases the risk of mak-
ing the data highly dependent on single features, rather than on
combination of features. This leads on the one hand to good train-
ing results like a precision of 0.8331 and a recall of 0.8724 as shown
in Table 5(b). On the other hand it results in bad test results like the
test in version 2.0 shown in Table 5(b).

Prediction on package level yields the best results: Of the top 5%
packages predicted as failure-prone, 90% are correctly classified.

6.3 Ranking vs. Classification
To obtain our results, we use several regression methods which pro-
vides us with rankings. We transform these rankings into a classi-
fication by applying adecision boundary. We label failure-prone
components with the number of failures and components that did
not fail with -1; thus we choose our decision boundary to be 0.



Precision Recall Spear. Coef.

training 0.5246 0.6866 0.2937

test in v2.0 0.3800 0.2894 0.2738
→5% 0.4369 0.0717
→10% 0.4449 0.0503
→15% 0.4093 0.0320
→20% 0.3886 0.0734

test in v2.1 0.2219 0.3640 0.3201
→5% 0.2705 0.1136
→10% 0.2546 0.1527
→15% 0.2433 0.1539
→20% 0.2396 0.1486

(a) Predicting files with packages

Precision Recall Spear. Coef.

training 0.8331 0.8724 0.1332

test in v2.0 0.2614 0.2958 -0.0313
→5% 0.3103 -0.1346
→10% 0.3092 -0.1257
→15% 0.2979 -0.1026
→20% 0.2826 -0.0883

test in v2.1 0.1967 0.4225 0.0979
→5% 0.2767 -0.0878
→10% 0.2543 -0.0586
→15% 0.2374 -0.0329
→20% 0.2274 -0.0276

(b) Predicting files with classes

Precision Recall Spear. Coef.

training 0.7274 0.9973 0.1152

test in v2.0 0.5874 0.7955 -0.2622
→5% 0.4384 -0.0474
→10% 0.4522 -0.1056
→15% 0.4703 -0.1323
→20% 0.5054 -0.1250

test in v2.1 0.4511 0.7878 -0.0367
→5% 0.5214 0.0633
→10% 0.4704 0.0319
→15% 0.4711 -0.0310
→20% 0.4866 -0.0570

(c) Predicting packages with packages

Precision Recall Spear. Coef.

training 1.0000 0.9996 0.7641

test in v2.0 0.5952 0.4512 0.0204
→5% 0.5747 0.0739
→10% 0.5776 -0.0086
→15% 0.5717 0.0170
→20% 0.5869 0.0097

test in v2.1 0.4754 0.4643 0.1224
→5% 0.5362 -0.0065
→10% 0.5466 -0.0568
→15% 0.5232 -0.0677
→20% 0.5168 -0.0377

(d) Predicting packages with classes

Table 5: Results from linear regression

Precision Recall Spear. Coef.

training 0.6974 0.3183 0.3010

test in v2.0 0.2876 0.0387 0.2390
→5% 0.1063 0.1167
→10% 0.0771 0.1188
→15% 0.0535 0.1007
→20% 0.0411 0.1566

test in v2.1 0.2757 0.0969 0.3104
→5% 0.1616 0.0772
→10% 0.1043 0.1406
→15% 0.0754 0.1879
→20% 0.0573 0.1973

(a) Predicting files with packages

Precision Recall Spear. Coef.

training 0.8944 0.2664 0.3366

test in v2.0 0.5523 0.0923 0.2253
→5% 0.2586 0.0566
→10% 0.1730 0.1001
→15% 0.1181 0.1123
→20% 0.0891 0.1667

test in v2.1 0.4646 0.1697 0.3181
→5% 0.2654 0.1866
→10% 0.1973 0.1969
→15% 0.1471 0.2337
→20% 0.1119 0.2836

(b) Predicting files with classes

Precision Recall Spear. Coef.

training 0.7442 0.8765 0.0770

test in v2.0 0.5654 0.7611 -0.1263
→5% 0.6254 0.0091
→10% 0.5804 -0.0772
→15% 0.5824 -0.0886
→20% 0.5808 -0.0541

test in v2.1 0.4768 0.7714 0.0822
→5% 0.7329 0.3750
→10% 0.6510 0.1973
→15% 0.6174 0.0729
→20% 0.5981 -0.0076

(c) Predicting packages with packages

Precision Recall Spear. Coef.

training 0.8770 0.8933 0.5961

test in v2.0 0.6671 0.6940 0.3002
→5% 0.7861 0.1369
→10% 0.7875 0.2032
→15% 0.7957 0.2648
→20% 0.8000 0.3190

test in v2.1 0.5917 0.7205 0.2842
→5% 0.8958 0.3416
→10% 0.8399 0.3702
→15% 0.7784 0.3675
→20% 0.7668 0.3615

(d) Predicting packages with classes

Table 6: Results from support vector machine



Precision Recall Spear. Coef.

training 1 0.5914 0.7248

test in v2.0 0.7354 0.3107 0.1908
→5% 0.6958 -0.2812
→10% 0.7191 -0.1741
→15% 0.7419 -0.0810
→20% 0.7498 -0.3606

test in v2.1 0.6865 0.3864 0.2360
→5% 0.8455 0.1034
→10% 0.7757 0.1603
→15% 0.7218 0.1763
→20% 0.7140 0.1949

Table 7: Results of ridge regression for predicting packages
with classes.

Precision Recall Spear. Coef.

training 0.6090 0.9121 0.2550

test in v2.0 0.5862 0.7945 0.0774
→5% 0.8713 -0.0130
→10% 0.8014 -0.0610
→15% 0.7584 -0.0603
→20% 0.7122 -0.0518

test in v2.1 0.4830 0.8182 0.2359
→5% 0.7174 0.0674
→10% 0.6777 0.0041
→15% 0.6414 0.0468
→20% 0.6193 0.0893

Table 8: Results of regression trees for predicting packages
with classes.

The low values of the Spearman rank correlation coefficients in
Tables 5 and 6 indicates that our predicted rankings do not correlate
with the observed rankings.

However, for almost all models the precision values for the topx%
are higher than the overall values, e.g., in Table 6(d), the precision
for the top 5% of version 2.1 is substantially higher than the overall
precision (90% vs. 60%). This means that our classification works
best for the parts that are highly ranked.

Classification works best for components that are ranked as most
failure-prone.

6.4 Comparing Models
In this section, we compare the predictive power of the models.

Linear regression. Although linear regressionmodels yield the
best training results, the test results are not as good as ex-
pected. As an example, take a look at Table 5(b). Since
linear regressionis more sensitive to outliers, the recall is
higher than the correspondingsupport vector machine,but
in return the precision is substantially lower.

Ridge regression.Sinceridge regressionis a slight generalization
of linear regressionallowing us to penalize outliers, the re-
sults become more accurate. For instance the precision val-
ues presented in Table 7 are substantially higher than in Ta-
ble 5(d), at the cost of a slightly decreased recall.

Regression tree.Table 8 shows thatregression treemodels
achieve results similar to thesupport vector machinein Ta-
ble 6(d). Compared to thelinear regressionthe regression
tree is a more accurate prediction model, e.g., the precision
observed in the top of Table 8 is significantly larger than in
the top of Table 5(d).

Support vector machine. The support vector machineachieved
the best results for predicting the failure-proneness of pack-
ages with classes as input features. Since these results are
better than any other results obtained either with packages
or classes as input feature, we consider thesupport vector
machineas the most effective model.

Note that we did not discuss theridge regressionand thepartition
tree models in detail because either the results or the idea of the
model were similar to one of the discussed models. Sinceridge
regressionis similar tolinear regressionwe decided to present the
linear regressionmodels because the results are easier to interpret.
Whereas, we skipped the detailed discussion of thepartition tree
models due to the similar results obtained by thesupport vector
machines.

Of the four models researched, the support vector machine yields
the best predictive power.

6.5 Applying Models across Versions
The idea behind the predictive models is to obtain models which
we can use for predictions in future versions, e.g., we want to have
a model which predicts failure-prone components for version 2.0
using the data of version 1.0.

In the case of the 52ECLIPSEplug-ins the obtained results show a
similar behavior between the versions 2.0 and 2.1 ofECLIPSE. This
behavior results in a robustness of the models over time, i.e., the
results from version 2.0 and 2.1 are similar with respect to classifi-
cation.

Take for example Table 6(d), the recall and precision obtained from
testing in version 2.0 are about 0.66 and 0.69. Comparing them to
the results of the tests in version 2.1, the precision decreased by
about 0.06 and the recall increased by about 0.03. Since these vari-
ance values present a precision recall trade-off, the results can be
considered stable. Hence, we can use the models for later versions
without losing predictive power.

Models trained in one version can be used to predict failure-prone
components in later versions.

7. DISCUSSION
To our knowledge this is the first work that predicts post-release
failures from design data such as import relationships. In contrast
to previous work, our approach does not use any metrics. Our mod-
els rely solely onimport relationshipsbetween components, an as-
pect that has not been investigated for failure-proneness so far. In
addition, our approach takes advantage of bug databases to identify
post-release failures, and only severe ones. However, we do not use
historical data as input features which is another main difference to
previous research conducted in this field.



7.1 Results
Our results support hypothesis H2 that one can predict future post-
release failures by using imported components of a file or package.

File Level. The results on file level are not as good as on package
level, but still substantially better than random guesses. This
means that the problem domain of single files has an impact
on post-release failures.

Package Level.Our precision and recall values show that the
problem domain has a higher influence on the failure-
proneness of packages than for files. This is not surprising as
it gets more difficult to identify reliable predictors for fine-
grained levels.

Although the results confirmed our hypotheses that problem do-
mains correlate with and predict failure-proneness, one central
question remains open: ”What is it that make some domains more
failure-prone?”. This is the question on which our future work will
concentrate.

7.2 Threats to Validity
We studied 52 plug-ins of theECLIPSEdevelopment environment.
Although the plug-ins themselves are very different and cover a
wide spectrum of applications from compilers to user interfaces,
we cannot claim that their version history would berepresenta-
tive for all kinds of software projects.Unfortunately, too few soft-
ware projects combine their version archive with a well-kept bug
database;ECLIPSEis one of them [1].

We assumed that fixes are in the same location as the correspond-
ing defect. Although this is not always true, this assumption is
frequently used in research [16, 8, 20, 18].

We approximated the design of a plug-in by its import relations at
release time. These relations do not need to correspond to the actual
initial design. We also used only static information about imports,
thus neglecting dynamic binding. We believe that considering dy-
namic binding will improve the quality of our models.

We trained our models and examined their predictive power using
data that wascomputed by heuristics.For instance, we could not
map all post-release failures to source code and did not cross-check
the fixes that were identified. Additionally, we missed failures that
were not reported to bug databases. Eventually, usefulness for the
programmer can only be determined by studies that include real
developers, which we intend to accomplish in the future.

8. CONCLUSION AND FUTURE WORK
A component’s likelihood to fail is significantly determined by the
set of components that it uses. Why is this so? Our hypothesis
is that the set of used components isdetermined by the problem
domain—and some of these domains are harder to get right than
others. If a component importsECLIPSE internals, it is likely to
work on the abstract syntax tree, which is failure-prone; a compo-
nent importingGUI elements will interact with the user, which is
easier to get right—at least, this is what theECLIPSEfailure history
suggests.

Using our approach, managers and developers can leverage earlier
failure history to predict future failure-prone components, and thus
assign resources to those components which need it most. Since
the set of used components is typically defined at design time, these
decisions can be made very early in the software process.

Although our predictions are much better than random guesses, we
still would like to increase their accuracy. Our future work will
focus on the following topics:

More Design Features.Software design is characterized by far
more than just import relationships. Features we would like
to look into includeinheritance relations(does sub-classing
from a classC increase failure-proneness?),part-of relations
(does includingC as a part influence the likelihood of fail-
ure?), or generaldesign metricssuch as depth of inheritance
or number of subclasses.

Indirect Assessments.Right now, when a componentA imports
a componentB, we need to know the earlier failure history
of other users ofB to assess the failure-proneness ofA. If
our hypothesis that imports characterize the problem domain
is true, though, it may be that thelikelihood of failure propa-
gates along relationships.In other words, ifB itself is likely
to fail, so may beA as an user ofB—simply because their
problem domains are related.

Tool Support. Right now, our approach is implemented as a series
of scripts around the R statistics package. We would like to
turn our approach into a tool that is immediately available to
the software designer, allowing her to interactively explore
design alternatives and assess the overall predicted quality.

At the dawn of the last century, the philosopher George Santayana
remarked that those who do not learn from history would be con-
demned to repeat it. With our approach, we want to encourage de-
velopers to learn from failure history such that they get the chance
to avoid these mistakes—and build better software in the future.

For ongoing information on the project, see

http://www.st.cs.uni-sb.de/softevo/
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