
Products, Developers, and Milestones:

How Should I Build My N-Gram Language Model

Juliana Saraiva
Federal University of Pernambuco

Recife, Brazil
jags2@cinf.ufpe.br

Christian Bird
Microsoft Research
Redmond, WA, USA
cbird@microsoft.com

Thomas Zimmermann
Microsoft Research
Redmond, WA, USA

tzimmer@microsoft.com

ABSTRACT
Recent work has shown that although programming languages en-

able source code to be rich and complex, most code tends to be

repetitive and predictable. The use of natural language processing

(NLP) techniques applied to source code such as n-gram language

models show great promise in areas such as code completion, aid-

ing impaired developers, and code search. In this paper, we address

three questions related to different methods of constructing lan-

guage models in an industrial context. Specifically, we ask: (1) Do

application specific, but smaller language models perform better

than language models across applications? (2) Are developer spe-

cific language models effective and do they differ depending on

what parts of the codebase a developer is working in? (3) Finally,

do language models change over time, i.e., does a language model

from early development model change later on in development?

The answers to these questions enable techniques that make use of

programming language models in development to choose the model

training corpus more effectively.

We evaluate these questions by building 28 language models across

developers, time periods, and applications within Microsoft Office

and present the results in this paper. We find that developer and

application specific language models perform better than models

from the entire codebase, but that temporality has little to no effect

on language model performance.

Categories and Subject Descriptors

D.2.3 [Software Engineering]: Coding Tools and Techniques

General Terms

Measurement, Experimentation,

Keywords

N-gram Models, Natural Language Processing

1. INTRODUCTION
In their work on the naturalness of software, Hindle et al. showed

that n-gram based language models perform quite well when used

in the software engineering domain on source code [1]. A language

model assigns a probability to a sequence of words (n-grams); the

probability is typically learned from a training corpus. In recent

years, these language models trained on source code corpora have

been leveraged to aid in a wealth of tasks in software engineering

including code completion [1] [2], detecting and enforcing team

coding conventions [3], generating comments [4], suggesting accu-

rate names of program entities [5], improving error messages [6]

and migrating code between languages [7].

A language model assigns probabilities to sequences of token (also

called n-grams) based on frequencies of the sequences in the train-

ing corpus. These probabilities can then be used to help developers

in common programming tasks. A simple example is code comple-

tion, e.g., after encountering the sequence “for (int i=0; i<n;”,

a tool would automatically suggest the suffix “i++)” because it is

the most frequent suffix for such code.

When training language models on source code, one faces two com-

peting forces:

Specificity. Language models can only provide help in source code

that is similar to source code that it has seen before. Thus, the data

sparsity problem, i.e., the need to see instances of many code con-

texts, drives the use of larger and larger corpora to train the model.

Generality. On the other hand, the more disparate code bases are

used, the less specific the model is and the less nuanced the help

that it can provide. Put concretely, training a model on Apache

Lucene will lead to a model that has Lucene specific knowledge,

but the model may not have suggestions or help for code contexts

outside of the text search domain. In contrast, training a model on

all of the code on GitHub will lead to models that contain general

“knowledge” of programming for virtually every API, code con-

struct, or pattern, but will not be specific to any particular applica-

tion.

Given these tradeoffs, practitioners hoping to use language models

in their own work are faced with the question, “How should I train

my language model?” In this paper, we shed light on this question

by sharing our experience on building language models on several

different “slices” of the same codebase and comparing the results.

Specifically, we examine the code of Microsoft Office (hereafter

referred to as Office). Office is a prime subject for such a study

because the code is large, i.e., tens of millions of lines of code, and

can be partitioned along a number of dimensions.

 Office is a suite of office productivity software applications in-

cluding a word processor (Word), a spreadsheet application

(Excel), and a presentation creator (PowerPoint). Thus we can

naturally divide the code by application and train application-

specific language models.

 Office is developed by thousands of full time developers, which

allows us to partition the changes by the individuals and train

developer-specific models.

 Finally, Office is developed in development milestones allow-

ing us to train language models on the changes that are made in

certain periods, i.e., time-specific models.

We use Office to answer the following three research questions.

The answers will help developers make informed decisions about

how to train language models for their software engineering tools:

 RQ1: Does a smaller application specific language model per-

form better than a language model built from multiple applica-

tions?

 RQ2: Does a programmer generate the same patterns (n-grams)

regardless of where he/she is working?

 RQ3: Does a model built from changes over the last milestone

perform as well as one trained over the whole history of changes

(i.e., is there a temporal relationship to the language models)?

2. METHOD
We examined the C# code and changes in Office 2013 since that

was the last full release (and development cycle) for the Office

codebase. We used the Roslyn API to extract the lexical tokens

from the C# code (http://msdn.com/roslyn); we did not include

comments in the analysis. We used 3-grams (also called trigrams)

because the majority of the works related to NLP used 2-grams

and/or 3-grams [8] and when n-grams models are applied to source

code, cross-entropy saturates around 3 and 4-grams [1]. We imple-

mented the language model generation and evaluation ourselves in

C# and R.

Application specific models. We built four language models based

on the n-grams of tokens taken from the source code of (1) Excel,

(2) Word, (3) PowerPoint, and (4) the entire Office source code.

Developer specific models. We selected the five most active devel-

opers in Office (D1...D5). Each developer’s language model was

built considering all their respective source code changes. For each

change made by the developer, we generated two multi-sets of n-

grams with their frequencies: (i) the n-grams in the version of the

file prior to the change, and (ii) the n-grams in the version after the

change. The n-grams used to generate the developer-specific lan-

guage model are the multi-set difference between the “after” n-

grams and the “before” n-grams. If an n-gram occurred in the orig-

inal file twice and in the modified file five times, then we would

use add three occurrences of the n-gram to the language model for

that developer (if an n-gram occurs the same amount or lower in

the changed file, the count for that n-gram is 0). The n-grams that

were added as a result of a developer’s changes allow us to build a

language model based on implementation patterns by developers.

Time-specific models. We use a similar technique for extracting n-

grams when building language models for different time periods,

e.g., the last milestone of the Office development. For each change

in the milestone period, we extract the n-grams from the file both

before and after the change and use the added n-grams to build lan-

guage model for the last milestone.

In summary, we built a total of 28 distinct language models.

 1 general model for all code in Office

 3 application-specific models: all code in (i) Word, (ii) Excel,

and (iii) PowerPoint

 20 developer-specific models, i.e., 4 models for each of the 5

most active developers (D1…D5): changes by the developer in

(i) Office, (ii) Word, (iii) Excel, and (iv) PowerPoint

 4 time-specific models: changes in the last milestone of (i) Of-

fice, (ii) Word, (iii) Excel, and (iv) PowerPoint

2.1 Language Model Quality Evaluation
To evaluate language models we split each corpus into two halves:

a training corpus and a test corpus. It is important to highlight that

for our test data, we chose files (and in cases of changes, changes

to those files) distinct from those used to train the language models.

To evaluate the quality of language models we use cross-entropy,

the standard measure of language model quality [1], which

measures how surprising a test corpus is to a language model built

from a training corpus. Lower values indicate a better model. The

formula to compute cross-entropy H is shown below. An n-gram

in the testing corpus is represented by the tokens a1…an. M repre-

sents the Language Model, and pM is the probability of encounter-

ing the token ai after encountering tokens a1…ai-1.

𝐻𝑀(𝑠) = −
1

𝑛
∑ log 𝑝𝑀(𝑎𝑖|𝑎1 ⋯ 𝑎𝑖−1)

𝑛

1

The cross-entropy calculation depends on the probability of the oc-

currence of a certain token given a previous sequence of tokens.

However, there are some cases where the probability of the occur-

rence of a particular token following a given sequence is 0 for a

trained language model. This occurs when an n-gram that occurs

in the testing corpus does not occur in the training corpus (which is

not uncommon given that one source file may contain identifiers

such as names of local variables or private methods that do not oc-

cur in any other file). As the cross-entropy measurement is based

on a log function, and the log of 0 tends to negative infinity we use

smoothing techniques [9], which attempt to estimate the likelihood

of encountering a particular n-gram even if it has not been seen be-

fore, to avoid these situations. We used the Additive Smoothing

technique because prior studies [9] have found that it works well

and it is used frequently in practice.

For each research question, we computed different groups of cross-

entropies and compared their values with others to determine if cer-

tain models perform better than others.

In this section we present the research hypotheses that we evaluate

to answer each of our research questions.

RQ1: The goal is to determine if a general language model gener-

ated from all of the C# code in Office performs well for each of the

individual applications (Excel, Word, PowerPoint) or if applica-

tion-specific language models are better in terms of cross-entropy.

The common wisdom is that general models, which are based on

larger data sets perform better (observed by Hindle et al. [1]). How-

ever, application-specific models may be more effective in captur-

ing application-specific programming idioms or API. We therefore

trained four models: a general model for all of Office and applica-

tion-specific models for Word, Excel, and PowerPoint. We then

computed the cross entropy of these models with the test sets for

Word, Excel, and PowerPoint (again, note that there is no overlap

in the training and tests sets).

RQ2: The goal is to determine if developers write code differently

in different parts (applications) of the code base. This answers the

question whether a single language model for a developer is suffi-

cient (e.g. for code completion) and whether context-specific mod-

els should be built for developers, e.g., one language model for each

application that a developer is working on. From the Office code-

base, we identified 84 developers who worked on all three applica-

tions in the same development cycle and selected the five most ac-

tive developers (based on the number of changes that they made in

each application) for our analysis.

RQ3: This research question asks if we can represent all of the

changes across an entire development cycle with a language model

created from the changes from just one milestone. Put more simply,

is the language model for an application time independent? To an-

swer this question we built models using only changes from the last

milestone in the development cycle and compare with models built

from the changes during the entire development cycle. To compare

the accuracy the models we use a test corpora composed of changes

from the entire development cycle of entire Office, Excel, Word,

and PowerPoint.

3. RESULTS
The main goal of this research is to understand what factors have

an effect on the quality of a language model. By understanding the

answers to these questions, we can generate high quality language

models to aid and improve development activities through tech-

niques such as code completion, anomaly detection, and assistance

of disabled developers [1]. We now present the results of our anal-

ysis in an attempt to provide evidence to answer our research ques-

tions

RQ1: Does an application specific language model perform better

than a language model across all of Microsoft Office?

The Excel, Word, and PowerPoint applications were analyzed to

answer this RQ. In each case we compared the quality of an appli-

cation-specific language model to the general, office-wide lan-

guage model. In all cases, the application-specific model per-

formed better than the general model. The same testing corpora

were used for each pair of cross-entropies calculation. Figure 1

shows the cross-entropy values. The dark bars represent the values

obtained when using the application-specific models and the light

bars indicate values when using the general model.

In all three cases, the cross-entropies were lower when the applica-

tion-specific language model was used on the test corpus. Power-

Point shows the least difference with a delta of 0.58 in Figure 1.

We conclude that in the case of the applications examined within

Office, our answer to RQ1 is: “Yes, an application-specific lan-

guage model performs better than a model across the entire code-

base”.

RQ2: Does a programmer generate the same patterns and idioms

(n-grams) regardless of where he/she is working?

Five developers who all made changes to Word, Excel, and Power-

Point between January, 1st 2011 and July, 31st 2012 were analyzed

in this study. Table 1 shows the cross-entropies results.

The first column indicates which language model (LM) was used

on the testing data. The second, third, and fourth columns represent

the cross-entropies results found for Excel, Word, and PowerPoint,

respectively. Observing Table 1, we can confirm once again, that

the language model generated specifically from an application per-

formed better than a general language model (that is, a general lan-

guage model for a specific developer), i.e., the cross-entropy values

are lower. The better language model of the two is indicated in bold

for each pair.

We note that for each developer, the application specific model for

that developer performs better than the general, office-wide model

for that developer when evaluated on each of the applications. Af-

ter testing that the data was distributed normally (using Shapiro-

Wilk normality tests), we used a paired t-test. The t-test showed

that there was a statistically significant improvement for the appli-

cation-specific models for individual developers (p < 0.01).

We therefore conclude that for the five most active developers in

Office, our answer to RQ2 is: “No, individuals developers use

slightly different patterns and write less predictable code across

applications”. The implication of this result is that when building

developer specific models, it is better to use less data per model and

build multiple context-specific models per developer than to build

one large model per developer.

RQ3: Is there a temporal relationship to the language models?

Does a model built from changes over the last milestone perform

as well as one trained over the whole history of changes?

The intention of this research question was to determine if a lan-

guage model drawn from a shorter period of time performs well

across all of the changes in an entire development cycle. This has

implications on how frequently language models need to be up-

dated as well as the resources needed to build these language mod-

els (data from a full development cycle requires more resources to

generate a language model than data from one milestone). Figure

2 shows the cross-entropies for Excel, Word, PowerPoint, and the

general Office language models for the last milestone and the entire

Figure 2. Cross-Entropy Results for models generated

from the last milestone and for the entire dev cycle - R3.

Figure 1. Cross-Entropy Results by Application - RQ1.

13.86
11.84

14.7515.52 15.37 15.33

0

5

10

15

20

Excel Word PowerPoint

Cross Entropies for RQ1

Project Specific LM Office Wide LM

Table 1. Cross-Entropy Results for Developers by Appli-

cation and Across All Applications– RQ2

 Excel Word Power

Using Application's LM for D1 3.57 1.72 8.79

Using General LM for D1 11.04 11.01 11.16

Using Application's LM for D2 6.04 7.55 5.86

Using General LM for D2 10.47 10.77 9.96

Using Application's LM for D3 2.02 9.81 7.14

Using General LM for D3 10.09 11.28 10.94

Using Application's LM for D4 9.06 7.35 5.87

Using General LM for D4 10.66 10.50 11.81

Using Application's LM for D5 6.17 5.18 5.14

Using General LM for D5 9.03 8.68 8.65

development cycle evaluated against a test corpus for each applica-

tion drawn from the entire development cycle. The dark bars repre-

sent the cross-entropies resulting of the whole application’s lan-

guage model, and the light gray bars indicate the cross-entropies of

the last milestone’s language model.

Analyzing Figure 2, in three of the four cases, there is only a small

difference in the cross-entropies, with the last milestone model ac-

tually performing better. However, for Word, the language model

built from the entire development cycle performed much better than

the last milestone language model.

We thus conclude that for RQ3: “For most, but not all, cases, a

language model generated from the last milestone performs as well

as a language model generated from the entire development cycle”.

The answer to this question indicates that it may be a fruitful direc-

tion for further research. We are unaware of any other research on

the effects of temporality factors on language model quality.

4. THREATS TO VALITITY
Our work is subject to many of the usual threats to validity in an

industrial software engineering empirical study. The primary threat

in such studies is of external validity; while Office is a large product

suite, it is still just one software project thus it is unclear how gen-

eralizable our results are. Nonetheless, we believe that this study

provides some insight for industrial software projects considering

using language models to aid in various development tasks. We

encourage others to investigate similar ecosystems of projects such

as GNOME, KDE, the Apache family of projects, or in proprietary

codebases.

5. RELATED WORK
We are unaware of work that evaluates how to select the training

corpus for language models. Hindle et al. [1] built language models

from Java and C codebases and evaluated cross-entropy for each

corpus and between corpora, but did not investigate different sets

of documents along dimensions such as time or developer.

The applications of language models in software engineering are

varied. The most common is code completion, as demonstrated by

Raychev et al. [2] and Franks et al [11]. However, Allamanis at al.

have shown that language models can be used to detecting and en-

forcing team coding conventions [3] as well as suggesting accurate

names of program entities such as variables, methods, and classes

[5]. Hellendoorn showed that language models can be used to de-

termine how well a code contribution to a project matches the pro-

ject’s coding style and thus can indicate if a contribution will be

rejected and need further work [12].

Language models can also be used to improve natural text that is

tightly coupled to code. For example, Movshovitz-Attias and Co-

hen demonstrated how to use LMs to generate code comments [4]

and Campbell et al. showed they could improve error reporting [6].

Our work is orthogonal to the applications of language models as

this study is focused on how to select the corpus of source code to

train a language model before using it in various tasks.

6. CONCLUSION
In this work, we have investigated how different aspects of lan-

guage model generation affect their quality. We used the standard

metric of cross-entropy for evaluating various language models.

We found that the more specific a language model is, the better its

performance, even when models are tailored to specific developers

and less data to train a model is available. In contrast, we found that

in many cases, the temporality of the models has little impact. We

recommend that language models to improve development tasks

(such as code completion), should consider the context such as the

application or the developer.

This is an initial step into the realm of exploring the various meth-

ods of generating language models. Similar to defect prediction,

bug triage, and other research problems, we hope that others will

build on these ideas and investigate the effects of considering vari-

ous attributes when building language models in an effort to build

knowledge and guidelines for those applying n-gram based lan-

guage models to development tasks.

7. REFERENCES

[1] A. Hindle, Z. Su, P. Devanbu, M. Gabel and E. T. Barr, "On

the Naturalness of Software," in ICSE, Zurich, 2012.

[2] V. Raychev, M. Vechev and E. Yahav, "Code completion

with statistical language models," in Proceedings of the 35th

ACM SIGPLAN Conference on Programming Language

Design and Implementation, 2014.

[3] M. Allamanis, E. T. Barr, C. Bird and C. Sutton, "Learning

Natural Coding Conventions," in Proceedings of the 22nd

International Symposium on Foundations of Software

Engineering, 2014.

[4] D. Movshovitz-Attias and W. W. Cohen, "Natural Language

Models for Predicting Programming Comments.," in ACL

(2), 2013.

[5] M. Allamanis, E. T. Barr, C. Bird and C. Sutton, "Suggesting

Accurate Method and Class Names," in Proceedings of the

the joint meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on The

Foundations of Software Engineering (ESEC/FSE), 2015.

[6] J. C. Campbell, A. Hindle and J. N. Amaral, "Syntax errors

just aren't natural: improving error reporting with language

models," in Proceedings of the 11th Working Conference on

Mining Software Repositories, 2014.

[7] A. T. Nguyen, T. T. Nguyen and T. N. Nguyen, "Lexical

statistical machine translation for language migration," in

Proceedings of the 2013 9th Joint Meeting on Foundations

of Software Engineering, 2013.

[8] P. F. Brown, P. V. Desouza, R. L. Mercer, V. J. D. Pietra and

J. C. Lai, "Class-based n-gram models of natural language,"

Computational linguistics, vol. 18, pp. 467--479, 1992.

[9] S. F. Chen and J. Goodman, "An empirical study of

smoothing techniques for language modeling," in

Proceedings of the 34th annual meeting on Association for

Computational Linguistics, 1996.

[10] M. Allamanis and C. Sutton, "Mining source code

repositories at massive scale using language modeling," in

Mining Software Repositories (MSR), 2013 10th IEEE

Working Conference on, 2013.

[11] C. Franks, Z. Tu, P. Devanbu and V. Hellendoorn,

"CACHECA: A Cache Language Model Based Code

Suggestion Tool," ICSE Demonstration Track, 2015.

[12] V. J. Hellendoorn, P. T. Devanbu and A. Bacchelli, "Will

they like this? Evaluating Code Contributions With

Language Models," in Proceedings of the International

Conference on Mining Software Repositories, 2015.

	1. INTRODUCTION
	2. METHOD
	2.1 Language Model Quality Evaluation

	3. RESULTS
	4. THREATS TO VALITITY
	5. RELATED WORK
	6. CONCLUSION
	7. REFERENCES

