
feature

80 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 74 0 - 74 5 9 / 1 0 / $ 2 6 . 0 0 © 2 0 1 0 I E E E

in a class library and then understanding the com-
plex interactions among them. Without assistance,
it’s easy to become bogged down in a morass of de-
tails and spend a disproportionate amount of time
seeking information at the expense of other value-
producing tasks.

Various recommendation systems help people
!nd information and make decisions where they
lack experience or can’t consider all the data at
hand. These systems combine many computer sci-
ence and engineering methods to proactively tailor
suggestions that meet users’ particular information
needs and preferences.1 To date, most recommen-
dation systems have been tied to the Web. Many
of them embody mature technology delivered as
part of commercial systems, such as Amazon.com’s
recommenders.

The challenges people face in navigating large
information spaces have similarities to those of
software developers trying to !nd the one class
they need from a library of hundreds. Recommen-
dation systems for software engineering (RSSEs)
are emerging to assist developers in various activi-

ties—from reusing code to writing effective bug re-
ports. In addition to the scale of software systems
and libraries, the increasing pace of their evolution
and extent of their heterogeneity are also driving
RSSE development. Likewise, the increase in dis-
tributed development constrains knowledge sharing
among team members, motivating technological
alternatives.

Key factors giving rise to practical RSSEs in-
clude large stores of publicly available source code
for analyzing recommendations, mature software-
repository mining techniques, and mainstream
adoption of common software development inter-
faces, including Web interfaces such as Bugzilla and
tool-integration platforms such as Eclipse.

RSSEs are ready to become part of industrial
software developers’ toolboxes. Research proto-
types are quickly maturing, tools are being released,
and !rst-generation systems are being reimple-
mented in different environments.2 In this over-
view, we describe what RSSEs are, what they can
do for developers, and what they might do in the
near future.

D espite steady advancement in the state of the art, software engineering remains
a challenging endeavor. Developers are continually introduced to new tech-
nologies, components, and ideas. The systems they work on have more code
and depend on larger libraries. Mastering a programming language is no lon-

ger suf!cient to ensure software development pro!ciency. Developers must also learn to
navigate large code bases and class libraries. For example, a task as mundane as adding
a message to a status bar might involve discovering the right classes among thousands

Recommendation
systems speci!c to
software engineering
are emerging to
assist developers
in a wide range
of activities. This
overview of available
systems describes
what they are, what
they can do now,
and what they might
do in the future.

Martin P. Robillard, McGill University

Robert J. Walker, University of Calgary

Thomas Zimmermann, Microsoft Research

Recommendation
Systems for
Software Engineering

deve lopm en t t o o l s

 July/August 2010 I E E E S O F T W A R E 81

RSSEs: What They Are
We start with a general de!nition and descrip-
tion proposed by the organizers of the ACM In-
ternational Conference on Recommender Systems
(RecSys 09; http://recsys.acm.org/2009):

[Recommendation] systems are software
applications that aim to support users in their
decision-making while interacting with large
information spaces. They recommend items
of interest to users based on preferences they
have expressed, either explicitly or implicitly.
The ever-expanding volume and increasing
complexity of information […] has there-
fore made such systems essential tools for
users in a variety of information seeking […]
activities. [Recommendation] systems help
overcome the information overload problem
by exposing users to the most interesting
items, and by offering novelty, surprise, and
relevance.

RSSEs match this de!nition in their aim to
support developers in decision making. Particu-
larly with respect to information-seeking goals,
RSSEs help developers !nd the right code, API,
and human expert in information spaces com-
prising a system’s code base, libraries, bug re-
ports, version history, and other documentation.

RSSEs also relate their output to a user’s inter-
ests. Developers can express their interests explic-
itly through a direct query or implicitly through
actions that the RSSE factors into its recommen-
dations. This distinction highlights a general chal-
lenge for recommendation systems—namely, how
to establish context, which could include all rel-
evant information about the user, his or her work-
ing environment, and the project or task status at
the time of the recommendation.

In recommendation systems for traditional
domains, the context is typically established
through a user pro!le, which can consist of any
combination of user-speci!ed and learned char-
acteristics. However, the context for RSSEs in-
cludes the comparatively rich range of activities
associated with software development tasks.
A traveler who seeks a hotel recommendation
can typically specify much of the context with
a handful of simple criteria, such as price, ame-
nities, star-rating, distance from area of inter-
est. In contrast, a software developer who wants
help !nding where to look next when exploring
source code needs a recommendation system that
can establish several rather fuzzy parameters,
such as what the developer already knows and

which parts of the source code are related to his
or her needs.

An RSSE might need to provide or infer all the
following aspects as part of the context:

 ! the user’s characteristics, such as job descrip-
tion, expertise level, prior work, and social
network;

 ! the kind of task being conducted, such as add-
ing new features, debugging, or optimizing;

 ! the task’s speci!c characteristics, such as edited
code, viewed code, or code dependencies; and

 ! the user’s past actions or those of the user’s
peers, such as artifacts viewed and artifacts ex-
plicitly recommended.

The last part of the RecSys 09 general descrip-
tion addresses qualities of system output: novelty,
surprise, and relevance. To assist software devel-
opers, RSSEs must provide information that’s
relevant to their problem and useful to them.
The recommendations must be both situation-
and user-speci!c. Sometimes a recommendation
is valuable because the developer wasn’t aware
of a need or all the risks it posed. Sometimes it’s
valuable merely because it corroborates the de-
veloper’s suspicions—for example, con!rming a
thought that a call to Document.getContentSize() is the
only dependency on JDOM (Java document ob-
ject model) within a project.

Considering all these particulars of soft-
ware engineering, we’ve developed the following
de!nition:

An RSSE is a software application that
provides information items estimated to be
valuable for a software engineering task in a
given context.

What RSSEs Do for Developers
By helping developers !nd information they should
know about and evaluate alternative decisions,
RSSEs span a wide spectrum of software engineer-
ing tasks and practically unbounded amounts of
development data.

Most current RSSEs support developers while
programming. For example, CodeBroker3 has
demonstrated its potential for surfacing reuse
opportunities, and Expertise Browser4 has done
the same for locating expert consultants. Avail-
able RSSEs also facilitate deciding what examples
to use (Strathcona5) and what call sequences to
make (ParseWeb6). They can help navigate large
code bases by boiling down rich and complex
information spaces into clearly prioritized lists

How to establish
context is
a general

challenge for
recommendation

systems.

82 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

of alternatives, such as where to look in the code
(Suade7) and what to change next (eRose8).

Beyond programming support, current RSSEs
can recommend replacement methods for adapt-
ing code to a new library version (SemDiff9).
They can also help during debugging by !nding
code and people related to a bug !x (Dhruv10).
Additionally, they can predict which parts of a
software product will have the most defects and
thus help prioritize test resources for quality
assurance.11

This diversity makes generalizations about
RSSE architectures dif!cult, but most involve at
least three main functionalities:

 ! a data-collection mechanism to collect devel-
opment-process data and artifacts in a data
model;

 ! a recommendation engine to analyze the data
model and generate recommendations; and

 ! a user interface to trigger the recommendation
cycle and present its results.

To illustrate what RSSEs can do, we present
three example systems that we’ve developed and
experimented with. The examples don’t represent
the entire !eld, but they do show important differ-
ences between RSSEs.

Guiding Software Changes with eRose
If you browse books at Amazon.com, you can en-
counter recommendations of the form, “Custom-
ers who bought this book also bought….” Such
suggestions stem from purchase history. Buying
two or more books together establishes a rela-
tionship between them, which Amazon.com uses
to create recommendations.

The eRose plug-in8 for the Eclipse integrated
development environment (IDE) realizes a similar
feature for software development by mining past
changes from version archives, such as Concur-
rent Versions System (CVS). This feature tracks
changed elements (the context) and updates rec-
ommendations in a view after every save opera-
tion. For example, if a developer wants to add a
new preference to the Eclipse IDE and so changes
fKeys[] and initDefaults(), eRose would recommend
“Change plugin.properties” because all developers
who changed the Eclipse code did so in the past.

During setup, eRose preprocesses the project’s
CVS archive to identify !ne-grained changes to
program elements such as classes, methods, and
!elds. In addition, it groups elements that were
changed at the same time and by the same devel-
oper (“co-changed”) into transactions and stores

them in an SQL database. At runtime, eRose uses
the developer’s context to query the database for
transactions that contain at least one of the con-
text elements. It then extracts the elements from
these transactions to derive recommendations.

In deriving recommendations from these re-
sults, eRose !rst excludes elements in the con-
text, because the user has already changed them.
It ranks the remaining elements by the number
of transactions they belong to—the more fre-
quent an element, the more likely the user should
change it. Because eRose’s underlying concept is
co-change, it’s fairly language independent and
can recommend text, image, or documentation
!les in addition to program elements. Further-
more, eRose can reveal hidden dependencies. For
example, when a developer changes code to create
a database, he or she might also need to update
the diagram !le depicting the database schema.

A prototype implementation of eRose is avail-
able at www.st.cs.uni-saarland.de/softevo/erose.

Finding Relevant Examples with Strathcona
Frameworks give developers a code repository that
can help in their coding tasks. However, frame-
works are frequently large and dif!cult to under-
stand, and documentation is often incomplete or
otherwise insuf!cient to help with speci!c tasks.

The Strathcona system5 retrieves relevant
source code examples to help developers use
frameworks effectively. For example, a developer
who’s trying to !gure out how to change the sta-
tus bar in the Eclipse IDE can highlight the par-
tially complete code (the context) and ask Strath-
cona for similar examples, as shown in Figure 1a.
Strathcona extracts a set of structural facts from
the code fragment, such as what types are refer-
enced (IStatusLineManager, an abstract interface type)
and what methods are called (setMessage(String)).

Strathcona uses PostgreSQL queries to search
for occurrences of each fact in a code repository.
Next, it uses a set of heuristics to decide on the
best examples, which it orders according to how
many heuristics select them. It returns the top
10 examples, displaying them in two formats—
a structural overview (Figure 1b) diagram and
highlighted source code (Figure 1c)—to show
similarities to the developer’s partially complete
code. Developers can also view a rationale for a
proposed example, as shown in Figure 1d.

A prototype and more details are available at
http://lsmr.cs.ucalgary.ca/strathcona.

Guiding Software Navigation with Suade
Suade is an Eclipse plug-in that automatically

Preprocessing
the project’s
CVS archive

identifies
changes to
program

elements such
as classes.

 July/August 2010 I E E E S O F T W A R E 83

generates suggestions for software investiga-
tion.11 Developers who become stuck while ex-
ploring code to complete a change task can use
Suade to trigger recommendations about where
to look next among all the related elements.

The developer explicitly speci!es a set of rel-
evant !elds and methods (the context elements),
and Suade uses method-call and !eld-access rela-
tions to automatically retrieve related elements.
It ranks the retrieved elements by extracting a
dependency graph of all their static dependen-
cies from the project’s source code to the context
elements, and then by applying heuristics to the

graph’s topology. For example, if a method calls
only those methods that a developer speci!ed as
relevant, it’s ranked higher than methods that
call the context methods in addition to many
others.

In Suade, users create a context by drag-
ging and dropping elements of interest into a
view. Once they’ve speci!ed a context, they
can trigger a recommendation cycle. Suade dis-
plays recommendations as a list in a dedicated
view. Users can drag recommended elements
back into the context view to iteratively update
recommendations.

public class View extends ViewPart {
 /**
 * Plave a message on the Eclipse status line.
 *
 * @param msg to place on the dtatus line
 */
 private void updateStatusMessage(String msg) {
 IstatusLineManager.setMessage(msg);
 }

/**
 * Updates the message shown in the status line.
 *
 * @param selection the current selection
 */
 protected void updateStatusLine(IStructuredSelection selection) {
 String msg = getStatusLineMessage(selection);
 getViewSite().getActionBars().getStatusLineManager().setMessage(msg);
 }

ResourceNavigator
updateStatusLine(..)

public class View extends ViewPart {
 /**
 * Place a message on the Eclipse status line.
 *
 * @param msg to place on the status line
 */
 private void updateStatusMessage(String msg) {
 IStatusLineManager.setMessage(msg);
 }

IStatusLineManager StringViewPart
setMessage(..)

(a)

(b)

(c)

(d)

/**
 * Updates the message shown in the status line.
 *
 * @param selection the current selection
 */
 protected void updateStatusLine(IStructuredSelection selection) {
 String msg = getStatusLineMessage(selection);
 getViewSite().getActionBars().getStatusLineManager().setMessage(msg);
 }

Class Inherits From
Method Calls Method
Method Uses Type
Method Uses Type (S)

org.eclipse.ui.part.ViewPart
org.eclipse.jface.action.IStatusLineManager.setMesage(Ljava.lang.String;)
org.eclipse.jface.action.IStatusLineManager
java.lang.String

Figure 1. Strathcona
user interface:
(a) recommendation
query; results in (b) a
structural overview and
(c) highlighted source
code; and (d) rationale
for recommendation.
The multiple output
views let developers
quickly assess the
potential relevance of
each example before
wading into the details.

84 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

More information on Suade, including screen-
shots and a downloadable version of the tool, is
available at www.cs.mcgill.ca/˜swevo/suade.

RSSE Design Dimensions
The examples we’ve described represent only a
small fraction of the RSSEs available and in de-
velopment. To take a broader look at the !eld, we
now consider three RSSE design dimensions: na-
ture of the context, recommendation engine, and
output modes. Table 1 summarizes these dimen-
sions, and the sidebar describes some other RSSEs
we mention in the discussion.

Nature of the Context
The recommendation context is a core RSSE con-
cept. It’s the RSSE input, and it can be explicit, im-
plicit, or a hybrid of these strategies.

Developers can provide context explicitly
through various user-interface interactions, such
as entering text, selecting elements directly in the
code (as in Strathcona or ParseWeb), or dragging
and dropping elements into an explicit context
widget (as in Suade). Specifying the context ex-
plicitly is appropriate for contexts that are dif-
!cult to detect, such as the user’s interest or
experience level, and where the burden of speci-
!cation is small. For many tasks, RSSEs can ob-
tain part of the context implicitly. For example,
some systems can track and react to developer
actions (as in eRose), and some require context
information that would be unreasonable to spec-
ify explicitly (such as a developer’s interaction
history with the IDE).

Finally, many cases will require a combination
of implicit and explicit context gathering. With
Strathcona, the developer explicitly selects a sec-
tion of code text, but the system parses and an-
alyzes the code to implicitly extract a structured
model of the RSSE’s context. CodeBroker auto-
matically extracts the context from code com-
ments, a syntactic construct that it assumes to be
part of the task.

Recommendation Engine
RSSEs must analyze more than context data to
make their recommendations. Additional data
can include the project’s source code, the com-
plete history of system changes, artifacts such as
emails posted to mailing lists and bug reports,
interaction data accumulated from many pro-
gramming sessions, test coverage reports, and
code bases external to the project. Analysis of
these data sources, often referred to as mining
software repositories (MSR), was a theme topic
of a recent IEEE Software special issue (Jan./
Feb. 2009). MSR is just one potential means to
an end, and not all RSSEs rely on it to produce
recommendations (for example, Suade does not).

The main text refers explicitly to four recommendation systems for software
engineering (RSSEs) that we summarize here, but there are many more. For
further information, see our RSSE community website at http://rsse.org.

CodeBroker
CodeBroker1 analyzes developer comments in the code to detect similarities
to class library elements that could help implement the described functional-
ity. CodeBroker uses a combination of textual-similarity analysis and type-
signature matching to identify relevant elements. It works in push mode, pro-
ducing recommendations every time a developer writes a comment. It also
manages user-speci!c lists of “known components,” which it automatically
removes from its recommendations.

Dhruv
Dhruv2 recommends people and artifacts relevant to a bug report. It operates
chie"y in the open source community, which interacts heavily via the Web.
Using a three-layer model of community (developers, users, and contributors),
content (code, bug reports, and forum messages), and interactions between
these, Dhruv constructs a Semantic Web that describes the objects and their
relationships. It recommends objects according to the similarity between a
bug report and the terms contained in the object and its metadata.

Expertise Browser
Finding the right software experts to consult can be dif!cult, especially when
they’re geographically distributed. Expertise Browser3 is a tool that recom-
mends people by detecting past changes to a given code location or docu-
ment. It assumes that developers who changed a method have expertise in it.

ParseWeb
Sometimes you might want to call methods on an object of a particular
type but you don’t know how to obtain objects of that type from objects
available in your programming context (for example, method parameters).
ParseWeb4 recommends sequences of method calls starting from an avail-
able object type and producing a desired object type. ParseWeb analyzes
example code found on the Web to identify frequently occurring call pat-
terns that link available object types with desired object types. Developers
use the tool by specifying available and desired object types and requesting
recommendations.

References
 1. Y. Ye and G. Fischer, “Reuse-Conducive Development Environments,” Automated Software

Eng., vol. 12, no. 2, 2005, pp. 199–235.
 2. A. Ankolekar et al., “Supporting Online Problem-Solving Communities with the Semantic

Web,” Proc. Int’l Conf. World Wide Web, ACM Press, 2006, pp. 575–584.
 3. A. Mockus and J.D. Herbsleb, “Expertise Browser: A Quantitative Approach to Identifying

Expertise,” Proc. Int’l Conf. Software Eng. (ICSE 02), IEEE CS Press, 2002, pp. 503–512.
 4. S. Thummalapenta and T. Xie, “PARSEWeb: A Programming Assistant for Reusing Open

Source Code on the Web,” Proc. IEEE/ACM Int’l Conf. Automated Software Eng. (ASE 07),
ACM Press, 2007, pp. 204–213.

Some Other RSSEs

 July/August 2010 I E E E S O F T W A R E 85

Every RSSE we’ve encountered uses a ranking
mechanism as a cornerstone of its analysis. An
ideal ranking algorithm systematically puts the
items most valuable to the user at the top of its
rankings. In practice, rankings rely on a model
of what a developer will !nd useful. Such mod-
els are never perfect because they must model
not only the task but also the developer’s indi-
vidual perspective on the task: what’s useful for
one developer might not be useful for his or her
colleague.

Models used by recommendation engines
might also have to account for time sensitivity:
what’s useful for a developer now might not have
been useful in the past or might not be useful in
the future.

Output Modes
Most existing RSSEs operate in pull mode and
produce recommendations after a developer’s
explicit requests, which can be as simple as a
single click in an IDE. Some RSSEs operate in
push mode, delivering results continuously (for
example, eRose, CodeBroker, and Dhruv). Push
mode can be obstructive if it isn’t designed well.
Conversely, developers can miss something im-
portant in pull mode if they don’t even think to
ask about it.

We can also distinguish a batch output mode
of use from an inline mode. In batch mode, a
developer wants a complete set of recommenda-
tions about a task and is therefore willing to go
to a separate IDE view (the typical approach in
existing RSSEs). In inline mode, annotations are
made atop artifacts that the developer is other-
wise perusing (as in Dhruv).

Cross-Dimensional Features
RSSE features can cross design dimensions. For
example, the recommendation engine can take
the developer’s interactions with the RSSE into ac-
count, allowing the developer to "ag bad recom-
mendations to eliminate them from future results.
In this way, past recommendations support a feed-
back mechanism and become part of the context
or data on which the RSSE operates.

Ranking mechanisms can be locally adjustable
(the developer adjusts the inferred context manu-
ally, as in Suade); individually adaptive (the algo-
rithm is re!ned for individuals according to their
implicit or explicit feedback, as in CodeBroker); or
globally adaptive (feedback from one user affects
another user). Existing RSSEs are often limited in
the ranking mechanisms they offer.

Finally, RSSEs vary in how they explain their

results. At one extreme, some recommendations
appear to be almost magical—for example, pre-
dicting that certain !les will be defect-prone with
no explanation. Developers will have a hard time
trusting these recommendations. At the other ex-
treme are systems such as Strathcona that provide
detailed rationales justifying each recommenda-
tion. Naturally, such detailed rationales expose
part of the RSSE’s inner workings, which has both
potential bene!ts, such as increasing con!dence in
the recommendation, and pitfalls, such as infor-
mation overload.

RSSE Limitations and Potential
RSSEs advance the state of the art in software
development tools, but they aren’t without their
limitations. For example, when information re-
positories are large, RSSEs can face the “cold-start
problem” of lacking enough information to make
recommendations until the project is underway.
One solution to this problem is to leverage anal-
ogous data from other projects. Additionally, be-
cause RSSEs can’t crawl inside developers’ heads
to understand what they need to accomplish, the
results’ quality depends heavily on the quality of
the RSSE’s model.

Proactive discovery is an exciting direction for
future RSSEs. Rather than waiting for developers
to realize they need a certain kind of information,
the system would deliver it to them automatically.
The challenge is to avoid giving so many “helpful”
hints that the developer !nally ignores them all.

Models that balance adaptation to developers’
actions with reaction to their feedback and stated
preferences seem the most promising but also
the most challenging. To date, the predominant
RSSE output mode has been a simple recom-
mendation list. Such lists have many limitations,

Table 1
RSSE design dimensions

Nature of the context Recommendation engine Output mode

Input:
explicit | implicit | hybrid

Data:
source | change | bug reports

| mailing lists | interaction
history | peers’ actions

Mode:
push | pull

Ranking:
yes | no

Presentation:
batch | inline

Explanations:
from none to detailed

User feedback:
none | locally adjustable | individually adaptive | globally adaptive

86 I E E E S O F T W A R E w w w . c o m p u t e r . o r g / s o f t w a r e

however, especially when it comes to explaining
the results. Strathcona departs from the standard
model by offering graphical representations of
the recommended examples’ inner structures (see
Figure 1).

RSSEs evolve not only with developers’ needs
but also with the nature of available data and de-
velopment of technologies.2 To date, most RSSEs
have focused on recommendations related to soft-
ware development artifacts, particularly source
code. RSSEs typically recommend code—to look
at, change, or reuse. However, recommendations
could address many other aspects of software de-
velopment.12 For example, recommendations for
quality measures, tools, project management,
and people could support an ever-widening array
of software engineering tasks. One of the early
RSSEs, Expertise Browser,4 was designed to help
developers !nd people with the expertise to an-
swer their questions. Since then, however, few rec-
ommendation systems have adopted this focus.
With the recent popularity of social networks in
software development,13 the tide appears to be re-
versing and a new generation of RSSEs, such as
Dhruv,10 can recommend people that developers
should interact with to succeed at their task.

A s RSSEs continue to develop, we’re bound
to see new ways for systems to support
developers by cost-effectively recom-

mending information that’s novel, surprising, and
relevant.

Acknowledgments
We’re grateful to Barthélémy Dagenais, Rob DeLine,
and Reid Holmes as well as the anonymous reviewers
for their insightful comments on this article.

References
 1. J.A. Konstan et al., “Foreword,” Proc. 2007 ACM

Conf. Recommender Systems (RecSys 07), ACM Press,
2007. p. iii.

 2. M.P. Robillard, R.J. Walker, and T. Zimmermann,
“Foreword,” Proc. Int’l Workshop on Recommenda-
tion Systems for Software Engineering, ACM Press,
2008; www.rsse.org.

 3. Y. Ye and G. Fischer, “Reuse-Conducive Development
Environments,” Automated Software Eng., vol. 12, no.
2, 2005, pp. 199–235.

 4. A. Mockus and J.D. Herbsleb, “Expertise Browser: A
Quantitative Approach to Identifying Expertise,” Proc.
Int’l Conf. Software Eng. (ICSE 02), IEEE CS Press,
2002, pp. 503–512.

 5. R. Holmes, R.J. Walker, and G.C. Murphy, “Approxi-
mate Structural Context Matching: An Approach for
Recommending Relevant Examples,” IEEE Trans.
Software Eng., vol. 32, no. 1, 2006, pp. 952–970.

 6. S. Thummalapenta and T. Xie, “PARSEWeb: A Pro-
gramming Assistant for Reusing Open Source Code
on the Web,” Proc. IEEE/ACM Int’l Conf. Auto-
mated Software Eng. (ASE 07), ACM Press, 2007, pp.
204–213.

 7. M.P. Robillard, “Topology Analysis of Software Depen-
dencies,” ACM Trans. Software Eng. and Methodology,
vol. 17, no. 4, 2008, article no. 18.

 8. T. Zimmermann et al., “Mining Version Histories to
Guide Software Changes,” IEEE Trans. Software Eng.,
vol. 31, no. 6, 2005, pp. 429–445.

 9. B. Dagenais and M.P. Robillard, “Recommending
Adaptive Changes for Framework Evolution,” Proc.
30th Int’l Conf. Software Eng. (ICSE 08), IEEE CS
Press, 2008, pp. 481–490.

 10. A. Ankolekar et al., “Supporting Online Problem-
Solving Communities with the Semantic Web,” Proc.
Int’l Conf. World Wide Web, ACM Press, 2006, pp.
575–584.

 11. N. Nagappan, T. Ball, and A. Zeller, “Mining Metrics
to Predict Component Failures,” Proc. 28th Int’l Conf.
Software Eng. (ICSE 06), IEEE CS Press, 2006, pp.
452-461.

 12. H.-J. Happel and W. Maalej, “Potentials and Chal-
lenges of Recommendation Systems for Software Devel-
opment,” Proc. Int’l Workshop on Recommendation
Systems for Software Eng. (RSSE 08), ACM, 2008, pp.
11–15.

 13. M. Swaine, “Social Networks and Software Develop-
ment,” Dr. Dobb’s, Feb. 2008; www.ddj.com/
architect/206104412.

About the Authors
Martin P. Robillard is an associate professor in McGill University’s School of
Computer Science. His research focuses on software evolution and maintenance. Robillard
received his PhD in computer science from the University of British Columbia. Contact him at
martin@cs.mcgill.ca.

Robert J. Walker is an associate professor in the University of Calgary’s Department
of Computer Science. His research interests focus on software evolution and reuse. Walker
received his PhD in computer science from the University of British Columbia. Contact him at
walker@ucalgary.ca.

Thomas Zimmermann is a researcher in empirical software engineering and
measurement at Microsoft Research. His research focuses on the evolution of large, complex
software systems and involves conducting empirical studies and building tools that use data
mining to support programmers. Zimmermann received his PhD in computer science from
Saarland University in Germany. Contact him at tzimmer@microsoft.com.

Selected CS articles and columns are also available
for free at http://ComputingNow.computer.org.

