
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

The Work Life of Developers:
Activities, Switches and Perceived Productivity

André N. Meyer, Laura E. Barton, Gail C. Murphy, Member, IEEE, Thomas Zimmermann, Member, IEEE,
and Thomas Fritz, Member, IEEE

Abstract—Many software development organizations strive to enhance the productivity of their developers. All too often, efforts aimed
at improving developer productivity are undertaken without knowledge about how developers spend their time at work and how it
influences their own perception of productivity. To fill in this gap, we deployed a monitoring application at 20 computers of professional
software developers from four companies for an average of 11 full workdays in situ. Corroborating earlier findings, we found that
developers spend their time on a wide variety of activities and switch regularly between them, resulting in highly fragmented work. Our
findings extend beyond existing research in that we correlate developers’ work habits with perceived productivity and also show
productivity is a personal matter. Although productivity is personal, developers can be roughly grouped into morning, low-at-lunch and
afternoon people. A stepwise linear regression per participant revealed that more user input is most often associated with a positive,
and emails, planned meetings and work unrelated websites with a negative perception of productivity. We discuss opportunities of our
findings, the potential to predict high and low productivity and suggest design approaches to create better tool support for planning
developers’ workdays and improving their personal productivity.

Index Terms—Productivity, Developer Activity, Work Fragmentation, Interruptions, Human Factors, User Studies.

F

1 INTRODUCTION

A software developer’s work day might be influenced by a
wide variety of factors such as the tasks being performed,
meetings, interruptions from co-workers, the infrastructure
or the office environment (e.g., [1], [2], [3]). Some of these
factors result in activity and context switches that can cause
fragmented work and that can have a negative impact on
the developer’s perceived productivity, progress on tasks,
and quality of output (e.g., [4], [5]). As a result, researchers
and practitioners have both had a long interest in better
understanding how developers work and how their work
could be quantified to optimize productivity and efficiency.

Researchers have investigated work practices and work
fragmentation in detail from various perspectives, specif-
ically the effect of interruptions on fragmentation (e.g.,
[6], [7], [8], [9]) and how developers organize their work
in terms of tasks and working spheres (e.g., [5], [10]).
Using both a diary and an observational study format to
understand software developer work practices, Perry and
colleagues gained several insights, including that most time
was spent coding, and that there was a substantial amount
of unplanned interaction with colleagues [2]. Singer and
colleagues, using several study methods including tool us-
age statistics, found that developers spent most of their
time reading documentation and that search tools were the
most heavily used [3]. Since the time these earlier studies
on developers’ work practices were conducted, empirical
studies of software development have focused more on
particular aspects of a developer’s work day. For example,

● A. Meyer and T. Fritz are with the University of Zurich.
● L. Barton and G. Murphy are with the University of British Columbia.
● T. Zimmermann is with Microsoft Research.

Manuscript revised January 16, 2017.

Ko et al. observed software developers to determine what
information was needed to perform their work and how
they found that information [11]. Other studies have focused
on how developers spend their time inside the Integrated
Development Environment (IDE) (e.g., [12], [13]). The indus-
try has also seen an increasing trend with self-monitoring
tools to track activity and work habits, with applications
such as RescueTime [14] or Codealike [15].

Starting in the 1970s, researchers have also been ex-
ploring various different ways to quantify a developer’s
productivity. Most of these identified productivity measures
capture a small part or single aspect of a developer’s work,
such as the number of tasks per month [16], the number of
lines of code written [17], or the resolution time for a modi-
fication request [18]. However, these studies on productivity
are generally separate from studies of work fragmentation
and of how developers work. Furthermore, these measures
do not take into account the individual differences in devel-
opment work that might affect productivity as pointed out
by previous work [5], [19], [20], [21].

In this paper, we study developers’ work practices and
the relationship to the developers’ perceptions of produc-
tivity more holistically, while also examining individual
differences. In particular, our study seeks to answer the
following research questions:

RQ1 What does a developer’s work day look like?
RQ2 How fragmented is a developer’s work?
RQ3 Are there observable trends in how developers per-

ceive their productivity?
RQ4 What is the relationship between developers’ activity

and perceived productivity at work?

To investigate these questions, we designed and con-
ducted a study involving the monitoring of 20 developers’

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

interactions with their computer over a two week time
period. From this monitoring, we were able to gather logs
describing how a developer was interacting with the com-
puter (i.e., through the keyboard or the mouse) and in what
applications the interaction was occurring. Our monitoring
also gathered self-reports from the developers about their
current task(s) at 60 minutes time intervals, and a self-rating
of their perceived productivity. The 20 developers from
whom we gathered data worked for 4 different companies
of varying size, with varying projects, project stages and
customers, providing more diversity in our results than has
been available in previous holistic studies. This approach
also allows us to see whether earlier research findings, such
as how much time developers actually spend coding [2] and
typical coding related activities [22], hold in contemporary
development, and to enhance emerging theories about frag-
mented knowledge work [10].

Based on our analysis of the gathered data, we ob-
served that productivity is a highly personal matter and
perceptions of what is considered to be productive are
different across developers. No one model we built relating
actions and activity to perceived productivity was able to
explain a large number of developers. However, we did
find that many developers consider email, planned meetings
and work unrelated browsing as less productive activities,
and usually perceive themselves as more productive when
they have a higher user input rate as measured by mouse
clicks and keystrokes. Further, developers’ work is highly
fragmented, as developers are spending only very short
amounts of time (0.3 to 2 minutes) in one activity before
switching to another one. Even though we observed that
some aspects of a developer’s work habits are highly indi-
vidual we found consistent trends across multiple people.
For example, some developers parcel their work out over a
longer time span, while others choose to contain their work
time and stay off of the computer during the evening. Some
seem to be morning people, with higher productivity ratings
in the morning hours, others are afternoon people. Finally,
we discuss implications and opportunities of our findings
to help improve and predict developer productivity.

This paper provides the following contributions:

● it provides insights into software developers’ work
habits, including the frequency and duration of per-
forming particularly activities and application use;

● it provides data about the rhythms in developers’
perceived productivity, which opens opportunities
for retrospective tools and recommender systems
for when developers might best perform particular
activities;

● it demonstrates that productivity patterns for indi-
viduals are consistent, but vary when comparing
across groups of software developers; and,

● it shows that perceived productivity and the factors
that influence it, such as emails, meetings, or activity
switches, are highly individual.

Section 2 presents relevant related work on develop-
ers’ work practices, the high fragmentation of their work,
approaches on quantifying development activities and on

measuring productivity. Sections 3 and 4 describe the study
method employed and the data collected. Section 5 presents
the results of our study in terms of what a developer does,
the fragmentation of a developers’ work, the rhythms of
a developer’s perceived productivity and which activities
and actions a developer perceives as productive. Section 6
outlines the threats to our results. Section 7 discusses impli-
cations and opportunities of the findings of our study for
future tool support and presents results of a preliminary
analysis on predicting two levels of productivity. Section 8
summarizes the paper.

2 RELATED WORK

Related work can broadly be classified into four categories:
developers’ work practices, work fragmentation, the quan-
tification of development activities and productivity.

2.1 Developers’ Work Practices
Early studies that focus on a holistic perspective of how
software developers spend their time at work, were con-
ducted by Perry et al. and Singer et al. With two experi-
ments, a diary-study and observations, Perry et al. found
that by far most time was spent on coding, that there is
much unplanned interaction with colleagues, and that work
is generally performed in two-hour chunks [2]. Using a
combination of surveys, interviews, observations, and col-
lecting tool usage statistics, Singer and colleagues found that
software developers spend most of their time searching for
information as well as reading documentation and source
code [3]. Most empirical studies since then have focused
on various specific aspects of software development, such
as the collaboration and communication of developers [23],
the typical activities and tools related to coding [22], as well
as developers information needs [11] and comprehension
of software [24]. As an example, Goncalves and colleagues
found in their observations and interviews that developers
spend 45% of their time collaborating, 32% for seeking infor-
mation, and they only use software process tools during 9%
of their time [23]. More recent studies by Minelli et al. [12]
and Amann et al. [13] focused on how developers spend
their time inside the IDE.

Our work confirms some of these findings, such as the
little time developers spend in software development tools
and on actual coding related activities. At the same time,
it provides a more holistic and more complete picture of
how a developer’s work day looks across several companies
and with detailed insights into how developers spend their
work time on their computer (also outside the IDE), what
programs they are using during their work, and how their
work spreads over the whole day.

2.2 Work Fragmentation
One aspect of developers’ work that has drawn much at-
tention is the fragmentation of work. Developers work is
fragmented and frequently interrupted, for instance, due to
planned meetings, unexpected requests from a co-worker,
unplanned or blocking tasks or even just background noise
in the office. A large body of research has investigated

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

interruptions—a major reason for fragmentation—in great
detail, e.g. the length and types of interruptions, the fre-
quency of self- versus externally initiated interruptions,
their social context, the response time to certain types of
interruptions, resumption strategies after an interruption,
and their impact on work performance [6], [7], [8], [25], [26],
[27], [28]. For example, by observing software developers
and other information workers at work, Mark et al. found
that 57% of all tasks are interrupted and are thus often
fragmented into small work sessions [29] and Chong and
Siino found that most interruptions—many of them were
also self-initiated—lasted around 2 to 3 minutes [26]. While
many of these interruptions are necessary, they can lead to a
higher error rate, slow task resumption and an overall lower
work performance [9], [30], [31], [32]. Parnin and Rugaber
found, for instance, that only one out of ten interrupted
programming tasks is being continued within a minute after
the interruption [9].

Looking more broadly at the fragmentation of work,
researchers have also investigated how developers organize
their work in terms of tasks or working spheres (interre-
lated events that share a common goal), and the switching
between these. In a study over a 7 month period, Gonzalez
and Mark observed and interviewed software developers
and found that there is a high level of discontinuity in
developers’ work, with an average of 3 minutes spent per
task before switching, and an average of 11.5 minutes per
working sphere [10]. In an extension of this study, Mark and
colleagues also examined the influence of collocation and
interruptions on the work fragmentation [29]. More recently,
Sanchez and colleagues used interaction logs with an IDE
to analyze fragmentation on software evolution tasks. Their
analysis found that more interruptions and longer activity
switches lead to a smaller edit ratio, indicating a lower
productivity [33]. Further, they found that short breaks or
interruptions between 3 to 12 minutes are most prevalent in
developers’ work with an IDE.

Supporting previous research on work fragmentation,
we found that developers spend their time on a wide variety
of activities and that they spend very little time in each one
before switching to another. As one example, our results
show that developers switch activities on average after less
than two minutes except for meetings, which confirms the
short switching times that González and Mark found [10].
Similarly, our results on developers having an average of 2.5
short breaks away from their computer per hour, with about
4 minutes of duration each, confirm the high frequency
and impact of self- and externally initiated interruptions
reported in other studies (e.g., [8], [26]). Our study extends
previous research, by examining activities performed dur-
ing a developer’s work day from a more holistic perspective
and by correlating them with perceived productivity.

2.3 Quantification of Work Activities
An increasing amount of people are using applications and
wearable devices to track certain aspects of their lives,
in particular related to physical activity and health [34],
[35]. These applications provide users an opportunity to
reflect upon their own activities as well as they support an
improvement therein, such as a more active lifestyle [36],

[37], [38], [39]. Along with this ‘quantified self’ movement of
activity tracking, new applications such as RescueTime [14],
TimeAware [40] and Hubstaff [41] have been developed to
expand the self-quantification to work activities by auto-
matically tracking and summarizing a worker’s computer
activity, sometimes even providing some productivity scores
as in the case of RescueTime. A few of these applications, in-
cluding Codealike [15] and Wakatime [42], also specifically
target software developers and their work activities within
the IDE.

In our study, we are also tracking all interactions of a
developer with their computer, similar to but on a finer
grained level than the mentioned tools and use the collected
data to analyze developers’ work, activities and practices
and how it relates to their perceived productivity.

2.4 Quantification of Productivity at Work
Early on, researchers and practitioners explored multiple
ways to quantify productivity of developers’ work. Most of
these productivity measures are based on a single artifact or
deliverable over a time interval, for instance, the number of
lines of source code (SLOC) written in a time interval [43],
[44], [45], the number of function points per month [46],
[47], the number of tasks completed per month [16], or the
resolution time for modification requests [18], [48]. A more
complete list of approaches to quantify productivity on the
technical factors can be found in our previous work [5].
Most of these measures only capture a small part of a
developer’s work, also making it difficult to provide a more
holistic picture of a developer’s work and productivity [49].
The Personal Software Process (PSP) has taken this a step
further by focusing on a set of basic metrics, such as time,
size, quality, and schedule data, with the aim of improving
an individual developer’s skills and quality of work [19],
[20], [50].

Researchers have also looked more broadly into the
factors that affect the productivity of software development.
In their systematic literature review, Wagner and Ruhe listed
related work in a chronological order, starting in the late
1970s [51]. They categorized factors that influence produc-
tivity into technical (related to the product, process or IDE)
and soft factors (related to the company and team culture,
the developer’s capabilities and experience and the work
environment). DeMarco and Lister found, for instance, that
the characteristics of a workplace, such as noise, privacy,
and interruptibility can have a significant influence on a
developer’s performance for a given task [1]. As further
examples, Boehm looked at factors such as the hiring of
people and the use of language and tools, and their impact
on improving development output [4] and Vasilescu et al.
examined the influence of project-switching on productiv-
ity [21]. More recent studies have also looked more at soft
factors on the individual level, such as the correlation of
affective states and self-assessed productivity for program-
ming tasks [52], or the impact of mood on performance for
debugging tasks [53].

In a previous study, we took a first cut at investigating
the trends and activities in developers’ work with respect
to their perceptions of productivity based on observations
and people’s self-reporting [5]. This, however, left several

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

questions unanswered, especially on what a developer’s
work day actually looks like, and how this relates to produc-
tivity over a longer period in time. We attempted to answer
these lingering questions in this paper with a multiple-week
field study of industrial software developers. Our work
provides findings on various measures to model developer
productivity and on the individual differences therein.

3 STUDY METHOD

To answer our research questions, we conducted an in situ
study at four international software development compa-
nies of varying size. We collected data from 24 professional
software developers using a combination of experience sam-
pling (diary study) and a background monitoring applica-
tion. The monitoring application logged a wide range of
digital activities over several weeks with detailed precision.
Experience sampling was used to collect participants’ per-
ceptions of productivity, as well as self-reported tasks and
activities they performed throughout their work day.

3.1 Participants
We used personal contacts, emails and sometimes a short
presentation at the company to recruit participants. Of the
total 24 participants, we discarded the data of 4 participants
as they did not respond to a sufficient amount of experi-
ence samples. Two participants responded to less than 5
experience samples over the course of the study, as they
thought it was too intrusive for their work. The other two
participants responded to very few samples since they were
either working on a different machine as the one initially
indicated or did not use their machine for more than an
hour per work day.

Of the remaining 20 participants, 1 was female and 19
were male. All participants are professional software devel-
opers, with varying roles between individual contributors1

and lead. At the time of the study, our participants had an
average of 14.2 years (±9.6, ranging from 0.5 to 40 years) of
professional software development experience and an aver-
age of 18.9 years (± 9.2, ranging from 1.5 to 40 years) of total
software development experience, including education. An
overview of our participants can be found in Table 1.

To capture various kinds of software development prac-
tices, we sampled developers from 4 different companies of
varying size, in different locations and project stages, using
different kinds of programming languages, and with differ-
ent kinds of products and customers. Companies resided
either in the USA (company A), Canada (company B and
C) or Switzerland (company D). The company sizes varied
from less than 10 developers (company D), to a few hundred
(company C), and thousands of developers (company A
and B). The project stages varied from working on initial
releases (company D), over working on a next big release
(company D and B) to being in a project maintenance cycle
(company A and C). The developers in company A were
mainly programming in C++ and C#, in company B in Java
and C#, in company C in JavaScript, C# and SQL, and in
company D in JavaScript, Java, C# and SQL. The products

1. We defined an individual contributor as an individual who does
not manage other employees.

TABLE 1: Study Participants (IC: Individual Contributor,
Distribution is on a 7-point Likert scale: left = “not at all
productive” (1), right = “very much productive” (7)).

ID Comp. Role # Distribution

S1 C IC 15 10 8 45

S2 C IC 25 18 8 101

S3 C IC/Lead 23 16 9 62

S4 C IC 20 15 8 94

S5 C IC 19 15 8 40

S6 C IC/Lead 20 20 8 62

S7 C IC 16 11 15 80

S8 C IC 40 40 11 73

S9 C IC 29 29 12 89

S10 C IC 22.5 19 12 92

S11 B Lead 14 6 9 51

S12 B IC 1.5 0.5 7 40

S13 D Lead 23 12 10 76

S14 D IC 8 4 9 88

S15 D IC 5 1 9 71

S16 A IC 20 15 11 42

S17 A IC 19 5 17 62

S18 A Lead 17 17 16 53

S19 A IC/Lead 33 23 20 100

S20 A IC 8 7 13 30

18.9 14.2 11.0 67.6

Participant Total Dev.

Experien.

Work

Days

Perc. Prod. Ratings Prof. Dev.

Experien.

 Average

developed by the companies range from developer support
tools, to power monitoring and robotics software, all the
way to cloud-solutions for B2B and B2C customers.

3.2 Procedure and Monitoring Application
The monitoring application was developed and tested to
run on the Windows 7, 8 and 10 operating system. To
make sure it works properly, the collected data is accurate
and to optimize the performance, we deployed the tool in
multiple steps. After an initial phase of extended testing on
3 researchers’ machines, we deployed it to three developers
in company B and one developer in company C over several
weeks, to ensure correct functionality in many different
computer set-ups and use cases and to ensure the tool is
stable and reliable enough for daily use.

We then installed the monitoring application on the first
day of the study after a presentation that included an intro-
duction to the study and details on the data that was being
collected with the monitoring application. Participants were
assured of the anonymity and privacy of their data and were
shown the location where the logged data was stored on
their computer to give them full control over their data.
Participants had the opportunity to censor parts of the
collected data, which was reportedly done a few times, e.g.,
when participants were using their private e-banking. The
monitoring application logged the currently active process
and window title every 10 seconds, or an ‘idle’ entry in
case there was no user input for longer than 10 seconds. In
addition an event for each mouse click, movement, scrolling,
and keystroke was logged. For keystrokes, we avoided
implementing a key logger and only logged the time-stamp
of any pressed key.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

(a) Notification (b) Survey Pop-Up

Fig. 1: Notification to Prompt Participants to Respond to the Experience Sampling Survey.

Perceived Productivity Self-Reports. To capture how devel-
opers perceive their own productivity, we used experience
sampling in the form of regular self-reports. Experience
sampling has previously been used in multiple studies
(e.g., [8], [54], [55], [56]), and allowed us to capture perceived
productivity on a periodic and fine granular basis. For the
experience sampling, a notification window appeared on
the bottom right corner of the participants’ main screen in
regular intervals (see Figure 1a) prompting the participant to
answer a short survey on productivity. To minimize the risk
of negatively influencing the participant’s work, the notifi-
cation window also offered options to postpone the survey.
By default, the notification window was shown every 60
minutes, but participants could also change the interval,
which was only done by one participant who changed it
to a 90 minute time interval. Additionally, participants were
also able to manually trigger the survey in case they wanted
to answer the questions more often. If the participant was
regularly working on a virtual machine or secondary device,
we installed the application on the other devices as well, but
disabled the pop-ups so as to not interrupt the participant
more than necessary. Overall, participants answered 74.6%
of the triggered self-reports within five minutes of the no-
tification, 21.6% were postponed for an average of 38 (±43)
minutes, and 3.8% were ignored.

Once the participant started the self-reporting, another
window with the survey appeared (see Figure 1b). This
survey asked participants about their perceived level of
productivity for the previous work session using a 7-point
Likert scale and to specify the activities and tasks they
performed. To facilitate the participant’s response, the text
boxes offered auto-completion and quick-insert buttons for
frequently used and previously inserted activity descrip-
tions. We only used a single question on productivity to
minimize the disruption and also since previous research
has shown that participants interpret different terms of

productivity, such as efficiency, effectiveness, or accomplish-
ment, very similar [56]. Since the survey questions remained
the same throughout the study and were related to the
current context, we expected the cognitive burden on the
participant and the distraction for answering the survey to
be relatively low, as also illustrated in other research [31],
[57]. Participants used an average of 33.5 (± 39.4) seconds
to answer the two questions. We found no significant differ-
ences in the total number of times participants answered
the survey per day over the whole course of the study,
suggesting that they used similar effort throughout the
study and the burden of answering did not increase for
them.

Procedure. After we explained the study and installed the
application, we asked participants to resume their normal
working habits during the period of the study and answer
the experience sampling probes when the pop-up appeared.
We also told participants to ask us any questions about the
study, the application or captured data at any point in time
during the study. At the end of the study, we interviewed
each participant to collect demographic information and
information on the project they were working on, the com-
pany and their experience of using the monitoring tool and
participating in the study. We then collected the monitoring
and self-report data and un-installed the application. Table 2
summarizes the data we collected from the participants.

4 DATA COLLECTION AND ANALYSIS

During the study, the monitoring application collected data
from 2197 hours of participants’ computer use over a total
of 220 work days. Table 1 shows that each participant was
part of the study for between 7 and 20 work days (mean:
11.0 days, ±3.6). Table 2 shows how much of each type of
information we collected. This section describes how we
prepared the collected data for the analysis.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

TABLE 2: Data Collected by the Monitoring Application.

Data Description Data Collected
Background Monitoring
Program usage current process name and currently active window title, captured once

every 10 seconds
1 479 383 items

User Input
Mouse clicks as event happens 798 266 clicks
Mouse movement distance aggregated pixels moved per second 2 248 367 entries
Mouse scroll distance aggregated pixels scrolled per second 296 763 entries
Keystrokes only count, not exact keystrokes (for privacy reasons) 3 515 793 keystrokes

Survey Pop-Ups
Tasks and Activities participants self-reported tasks and activities from the past 60 minutes

(for one participant: 90 minutes)
2 237 items

Perceived Productivity slider where the participant rates the perceived productivity of the
previous work session

1 350 ratings

4.1 User Input Data
Whenever a study participant pressed a key, or clicked,
scrolled or moved their mouse, the event-type and its
timestamp were recorded by the monitoring application. We
divided the events into work days, where a day spanned
from 04:00:00 A.M. to 03:59:59 A.M. the following morning,
very similar to Amann et al. [13]. This division was cho-
sen as some participants stayed up late and logged input
continuously before and slightly after midnight, suggesting
that their ’work day’ was not yet over at that time. With re-
spect to time usage, but not application usage, we removed
weekends, as we wanted to examine trends and based on
initial inspection the weekend data was highly irregular. If
a day had less than 10 minutes of recorded active input
for a given developer, that day was not included when
considering keyboard and mouse input.

Within a day, we determined inactive and active periods
of computer use. An inactive period is a lapse in any type of
input for 2 minutes or longer; conversely, an active period is
2 minutes or longer during which there is no inactivity. This
2 minute mark was chosen as a reasonable boundary based
on previous research that found an average time of 2 min 11
sec being spent on any device or paper before switching [10],
as well as research by Chong and Siino [26] who found that
a typical interruption for one work team lasted 1 min 55
sec, and 2 min 45 sec for another team. We further defined
inactive periods by sorting them into two categories: short
and long breaks away from the computer. A short break from
the computer is defined as a period of inactivity that lasts
at least 2 minutes but less than 15 minutes and that is often
spent with answering a co-workers question or as a coffee
break. A long break from the computer is defined as a period
of inactivity equal to or longer than the 15 minute threshold,
and is often used for meetings and longer breaks from work,
such as a lunch [33], [58]. We used a 15 minutes threshold
based on previous work by Sanchez et al. that described a
typical developer’s coffee break to be 12 minutes on average
and factored in a 3 minute deviation [33].

4.2 Preparing Program Data and Mapping to Activities
Our monitoring application recorded the current process
and window titles of participants’ program usage during
their work day, once every 10 seconds. To provide a higher-
level, aggregated view on participants’ work, we mapped

each entry of a program’s use to activity categories, also
taking into account the window titles for clarification. These
activity categories group actions undertaken by a developer,
for example the category Coding denotes any developer
action that is related to reading, editing or navigating code.
We reused the activity categories we identified with an
open-coding approach in our previous study [5]. This map-
ping process was a semi-automated open-coding process;
automated, where an action fit into an obvious category
(e.g., SourceTree belonging to the activity category Version
Control) and manual, where actions could not automatically
be classified distinctively using the program and window
title names (e.g., website names to the activity categories
Work Related Browsing or Work Unrelated Browsing). When a
participant did not switch programs or have any mouse or
keyboard interaction for the past 10 seconds, the application
logged it as ‘idle’.

In order to complete the coding, we first defined a set of
keywords for each activity that distinctly map a program
to an activity. For instance, we mapped Microsoft Word
to Reading or Writing Documents and Microsoft Outlook
either to Email or Planning, depending on the details in the
window title. We created a script using these keywords to
produce the initial mapping, then inspected the results and
iteratively refined the keywords until most programs were
mapped. In cases where a program could be mapped to
two or more activities, we performed a manual mapping.
For example, as work in a text editor could be mapped to
several activities (e.g., Coding, Reading or Writing Documents,
or Planning), we manually mapped all editor use. Similarly,
we mapped most website use manually, either to Work Re-
lated Browsing or Work Unrelated Browsing. In both cases, the
window title held valuable information about the activity a
developer was performing. We further manually checked all
automated mappings for the following activities: Debugger
Use, Code Reviews, and Version Control. All entries, related to
coding, which could not distinctively be mapped to one of
these categories, were mapped to Coding.

To better understand what participants were doing when
they were not actively working on their computer (‘idle’
events), we combined the data logged by the monitoring
tool with participants’ self-reports. As most participants not
only reported the tasks they worked on in the past work
session, but also planned and informal meetings, and lunch

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

and coffee breaks, we could in many cases infer if a period of
‘idle’ time belongs to one of these categories. In cases where
the participant did not report a meeting or break, we had
no way of identifying the reason for the ‘idle’ time, which is
why the amount of time spent with planned and informal
meetings might be higher than reported in this paper. The
self-reports were not only used to map ‘idle’ time, i.e. time
not actively spent on the computer, to breaks and meetings,
but also to analyze developers’ self-reported tasks.

The mapping algorithm is described in detail in the
Appendix.

5 RESULTS

This section presents the results of our study on developers’
work practices and their relation to the perceived produc-
tivity by investigating the following research questions:

RQ1 What does a developer’s work day look like?
RQ2 How fragmented is a developer’s work?
RQ3 Are there observable trends in how developers per-

ceive their productivity?
RQ4 What is the relationship between developers’ activity

and perceived productivity at work?

5.1 What Does a Developer Do?
To answer our first research question, “What does a de-
veloper’s work day look like?”, we analyzed the span of
a developer’s work, the amount of time during the span the
developer was active, the nature of the breaks taken, the
applications used, and the activities pursued.

5.1.1 Hours Spanned and Hours Active
The number of hours spanned by a developer’s work day is
defined as the time between the earliest and latest inputs on
a given day, regardless of intervening activities or inactive
periods. For example, if the first mouse click happened at
9:00 A.M. and the last keystroke happened at 17:30 P.M., the
time span would be 8.5 hours. The number of hours active is
the cumulative time when a participant was logging active
input.

Figure 2 contrasts the hours spanned and hours active
per developer across all days monitored. Some participants
(e.g., S13 and S20) tend to space their work out over as many
as 21.4 hours, whereas others (e.g., S12 and S15) keep more
compact work hours and remain active during the bulk of
their time. Overall, developers averaged spans of 8.4 (±1.2)
hours per day, with active time of 4.3 (±0.5) hours. It should
be noted that the hours active are not synonymous with an
individual’s total working time; since the hours active value
is based on the time the participant is using their mouse or
keyboard, it does not account for meetings or other work
activity away from the computer.

5.1.2 Short and Long Inactive Periods
Every hour, developers take an average of 2.5 (±0.8) short
breaks that are about 4.2 (±0.6) minutes long each and in
which the developers are not interacting with their com-
puter. This results in a total of 10.5 minutes of inactive time
every hour of work, which we assumed to be likely un-
planned interruptions, such as co-workers asking a question

TABLE 3: Top 10 Used Applications (Sorted by Usage).

Application % of time used # of users
Microsoft Outlook 14.2% 18
PuTTY 12.8% 8
Google Chrome 11.4% 16
Microsoft Internet Explorer 9.4% 20
Microsoft Visual Studio 8.3% 13
File Explorer 6.6% 20
Mozilla Firefox 5.9% 8
Eclipse 3.0% 10
Microsoft OneNote 2.3% 9
Command Line 2.2% 16

or a quick coffee break. According to Minelli et al. [12], who
analyzed how developers spend their time inside the IDE,
inactive times are often spent with program comprehension.
This notion of taking a few minutes to understand, think
about or read the current artifact, such as code, a website
or document, is likely another reason for these short inac-
tivities. There was no obvious trend towards taking more
or fewer short breaks during a particular part of the day;
rather, short breaks appear to be fairly evenly distributed
for all participants.

The number of long breaks in which developers did not
interact with their computer for longer than 15 minutes
averaged 3.3 (±1.4) per day, with a total length of 54.7
(±28.2) minutes; this corresponds to an expectation of two
longer coffee breaks, a lunch, and perhaps a meeting. The
participants with a high number of long breaks appear to be
those who have a tendency towards longer hours spanned,
with additional long breaks happening in the late afternoon
or evening before these individuals returned to work. Since
these long breaks were likely planned by the developers,
they were also more likely to be self-reported as a distinct
activity in the pop-up surveys.

5.1.3 Applications Used and Frequency of Use
Participants used a total of 331 different applications, with
each participant using an average of 42.8 (±13.9) different
applications over the study duration and 15.8 (±4.1) appli-
cations per day.

Table 3 shows the ten most popular applications across
all participants (all were using Windows operating systems).
There is a notable amount of time spent using File Explorer,
although this may be due to the fact that it is the only ap-
plication, other than Internet Explorer, that was used by all
20 participants. Despite everyone using Microsoft Internet
Explorer, 80% of the participants also used Google Chrome
and spent more time in it than in the Internet Explorer.

5.1.4 Activities Pursued
Table 4 shows the activities developers pursue during their
work days. A developer’s typical work day is mostly spent
on coding (21.0%), emails (14.5%), and work-related web
browsing (11.4%). Using the debugger, reviewing other de-
velopers’ code, and version control account for just 2.4%
of the participants’ time. When looking at individual ver-
sus collaborative activities, 24.4% of a developer’s day is
spent pursuing collaborative activities with co-workers, cus-
tomers, or managers, such as planned or ad-hoc meetings

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

Fig. 2: Total Hours of Work versus Hours Active.

TABLE 4: Developers’ Fragmented Work: Activities Performed.

Activity Category % of time over Duration per Time spent before
whole period day (in hrs) switching (in mins)

Avg Stdev Max Avg Stdev Max
Development

Coding reading/editing/navigating code (and other
code related activities)

21.0% 1.5 ±1.6 7.3 0.6 ±2.6 135.7

Debugger Use using the debugger inside the IDE 0.4% 0.1 ±0.2 0.8 0.5 ±0.8 13.4
Code Reviews performing code reviews 1.3% 0.3 ±0.4 2.1 1.3 ±4.5 13.4
Version Control reading/accepting/submitting changes 0.7% 0.1 ±0.3 2.2 0.6 ±1.0 12.9

Email reading/writing emails 14.5% 1.1 ±1.3 8.1 0.9 ±4.8 89.6
Planning editing work items/tasks/todos;

creating/changing calendar entries
4.8% 0.5 ±1.1 5.1 1.1 ±2.5 67.5

Read/write documents reading/editing documents and other arti-
facts, e.g. pictures

6.6% 0.5 ±0.7 4.5 0.8 ±3.3 114.7

Planned meeting scheduled meeting/call 6.5% 1.0 ±1.3 7.1 15.8 ±35.3 203.1
Informal meeting ad-hoc, informal communication; e.g. un-

scheduled phone call / IM, or colleague asks
a question

3.4% 0.5 ±0.6 4.2 2.0 ±6.5 138.2

Work related browsing Internet browsing related to code/work/task 11.4% 0.8 ±1.3 12.8 0.5 ±5.5 102.6
Work unrelated browsing Internet browsing work unrelated 5.9% 0.5 ±0.7 3.4 1.1 ±4.3 91.8
Other Anything else; aggregates several small sub-

categories, such as changing music, updating
software, using the file explorer or having a
break

11.4% 0.8 ±1.4 10.5 0.4 ±5.6 112.5

Other RDP Remotedesktop use which could not be
mapped to another category

12.0% 1.5 ±1.8 8.2 0.3 ±2.6 85.4

and emails. These percentages do not include uncategorized
inactive time towards the total time as the monitoring
application could only capture non-computer work in case
the participants self-reported it.

When we inspected the data, we observed a notable
range between the minimum and maximum time develop-
ers spent on each activity per day. The minimum time was
virtually 0, or only a few seconds per day. The maximum
time a participant spent on a single activity was 12.8 hours
on one day: S13, who was evaluating various continuous in-
tegration and build systems. It is clear that the duration and

type of activities vary greatly depending on the individuals
and their current goals. We also observed differences in the
distribution of the activities between companies. For exam-
ple, developers S11 and S12, both from the same company,
spent significantly less time on emails, on average just 0.7
minutes (±0.5) per day, compared to the other participants,
who spent an average 74.3 minutes (±74.8) on emails.

The amount of time spent in coding or debugging might
be higher than reported, as it was not possible to map all
activities from the category Remote Desktop (OtherRdp),
as there was not enough context available for an accurate

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

mapping either automatically or manually. Similarly, the
amount of time spent in planned and informal meetings
might be higher than reported, as participants likely did not
self-report all meetings they attended via the pop-up survey.
This made it impossible to map all ‘idle’ time to an activity.

5.1.5 Developers’ Self-Reported Tasks
An analysis of developers’ self-reported tasks shows that
there is a wide variety in what developers work on, but in
particular also, in what developers denote as a task. In many
cases, participants reported activities they were performing,
such as “coding”, working on “emails” or performing a
“web search”, rather than the intention of the activity, such
as the change task or the bug they were trying to fix. Only in
very few cases, did participants mention a bug ID on which
they were working. Furthermore, reported and worked on
tasks varied in their granularity. While some participants
were working on a task only a single time for a part of the
60 to 90 minutes time window, others reported to work on
the same task for several days.

Overall, due to this variance in task definition and gran-
ularity, the self-reported tasks did not provide much further
insights into developers’ work days other than help with
disambiguation of our mappings in some cases. Also, while
the number of resolved or worked on tasks has been rated
as a relatively good measure for assessing one’s own pro-
ductivity [5], the variance in self-reported tasks, especially
also across developers, suggests that it might be a somewhat
individual help for assessment at best.

5.2 How Fragmented is the Work?

To answer our second research question, “How fragmented
is a developer’s work?”, we analyze how much time they
spend on an activity before switching to the next one. The
last three columns of Table 4 present the times a devel-
oper pursues each one of the activities before switching
to another one. With the exception of planned meetings, a
developer only remains in an activity between 0.3 (±2.6) and
2.0 (±6.5) minutes before switching to another one. These
very short times per activity and the variety of activities a
developer pursues each day illustrate the high fragmenta-
tion of a developer’s work. The low standard deviations for
each activity further emphasize this finding, which is similar
to Mark et al.’s, Ko et al.’s and our previous observations [5],
[10], [11]. At the same time, our data also suggests that there
are exceptions to this high work fragmentation and that in
rare occasions, developers spend long hours without switch-
ing activities. For example, participant S4 was coding in the
late afternoon for 135.7 minutes, without any break longer
than 2 minutes. Planned Meetings are the only exception
to the short time periods spent on a single activity with an
average duration of 15.8 minutes (±35.3) before switching.
Our analysis of the data also suggests that developers are
not using their computer in most of these planned meetings.
The opposite is true for informal meetings, for which our
monitoring tool recorded user input every few minutes. It is
important to note that an activity switch, while contributing
to work fragmentation, is not necessarily a task switch.
A developer might switch activities several times while
working on the same task, e.g. switching from coding in the

IDE to the web browser to search for API documentation or
code snippets.

To better understand the high number of activity
switches, we performed an n-gram analysis to identify the
activities which developers often perform in a sequence
together. The activity pattern, which occurred most often,
was a quick switch to emails during coding tasks. This
finding is supported by our results in a previous observa-
tional study, where we learnt that developers often perform
very quick and short context switches during waiting times,
which increases their perceived productivity [5]. Similarly,
Amann et al. found that developers continue working while
builds run in the background [13]. Developers also regularly
switch away from coding to work related web browsing
(22.1%), reading or writing documents (14.3%) or planning
(14.2%). These switches can be explained with the search for
additional information necessary to complete a task, such
as a task description from an email, a quick research on
the web (e.g., for a code snippet or tutorial), or reading a
documentation-file. After these quick switches, developers
usually switch back to their main coding task.

We were also interested in better understanding what
activities developers were performing before they were
interrupted by a co-worker, to learn where to focus for
building task resumption tools. When developers switched
their activity to an informal meeting, they were emailing
in 40.1% of the cases, coding in 18.1% of the cases, and
browsing the web (work related) in 13.5% of the cases before
the switch. Switches to work unrelated web browsing were
most often caused during coding tasks (35.5%) and during
work related web searches (26.7%), likely to get a quick
break from work.

5.3 Perceived Productivity Changes?

Our third research question asks “Are there observable
trends in how developers perceive productivity?”. We use
the developers’ self-ratings of their productivity via the pop-
up survey to investigate this question. For each participant,
we plot the perceived productivity ratings against the time
of day the rating was collected; thus, all ratings from an
individual are condensed across the hours of the day in one
plot.

From an analysis of these plots, we found that although
there was a lot of variation between individuals, the plots
can be categorized into three broad groups: morning people,
afternoon people, and those whose perceived productivity
dipped around lunch. Figure 3 shows examples of these
three types. The curved regression line in the figures shows
the overall pattern of what part of the day an individual
developer typically felt more or less productive with the
shaded area showing the confidence range. Morning people
were rare in our sample set (20% of all participants); Fig-
ure 3(a) shows S5’s perceived productivity pattern, which
is our clearest example of the trend but is not very pro-
nounced. Afternoon people (8 out of 20, 40%) may be
those who are industrious later in the day, or that feel
more productive as a result of having the majority of their
work day behind them (Figure 3(c)). The greater number of
afternoon people in our sample reflected previous research
that showed that information workers perceive themselves

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

●

● ● ●

●

●

● ●

● ●

● ● ● ● ● ● ●

●

● ●

●

●

●

●

●

●

● ●●

●

● ●

● ● ● ● ●

● ●

●

1

2

3

4

5

11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00
time

pr
od

uc
tiv

ity

(a) Morning Person

● ●

● ●

●

●

●

●

●

●

● ●

●

●

● ●

●

● ●

●

●

● ●

●

● ●

● ● ●

● ●●

● ●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●●

● ●

●

● ●

● ●

● ●

●

●

●

●

●

●

●

● ● ● ●

2

3

4

5

6

09:00 12:00 15:00 18:00
time

pr
od

uc
tiv

ity
(b) Low at Lunch Person

●

●●

●

●

●●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

● ● ●

●

● ●

●

●

●

●

● ●

● ●

●

●

●

●

2

3

4

5

6

12:00 15:00 18:00
time

pr
od

uc
tiv

ity

(c) Afternoon Person

Fig. 3: 3 Types of Developers and their Perceptions of Productivity over the Course of a Work Day.

as most productive in mid-afternoon, peaking around 2-3
P.M. [59]. The low-at-lunch group (35%) may see long breaks
as unproductive, or they may simply lag in effectiveness
as their physical processes draw focus away from work
(Figure 3(b)).

These graphs and numbers suggest that while informa-
tion workers in general have diverse perceived productivity
patterns, individuals do appear to follow their own habitual
patterns each day. Only for one of the twenty participants it
was not possible to determine a dominant category.

5.4 What are Productive Activities?
To answer our fourth research question, “What is the re-
lationship between developers’ activity and perceived pro-
ductivity at work?”, we built explanatory models relating
the action and activity data to the productivity ratings.

The purpose of the explanatory models is to describe
which factors contribute to the productivity ratings reported
by the study participants. For each participant, we built
one stepwise linear regression model for a total of 20
models. We chose linear regression because it is a simple
and intuitive way to model data. The dependent variable
is the reported productivity rating and the independent
explaining variables are: (1) session duration, (2) number
of certain events such as activity switches, (3) keystrokes
per minute, (4) mouse clicks per minute, (5) amount of
time spent in activities normalized by session length, and
(6) how much of a session was before mid-day (noon) in
percentage2. By choosing linear regression, we assume that
the productivity ratings are interval data meaning that the
distance between the productivity ratings 1 and 2 is the
same as the distance between the ratings 2 and 3, and so
on. To facilitate comparison across models, we specified the
intercept value for all models as 4, which corresponds to an
average perceived productivity.

Table 5 shows the results of the explanatory modeling.
Each column corresponds to the perceived productivity
model of a participant and each row corresponds to a factor

2. We chose mid-day, since a previous study found differences in
knowledge workers’ activities before and after mid-day [59].

in the model. To reduce the complexity of the table, we
only report the sign of the coefficients; the full coefficients
are available as supplemental material [60]. A plus sign (+)
in a cell indicates that a factor has positive influence in a
model; for instance, S1 reported higher productivity ratings
with a higher number of self-reported tasks. Similarly, a
minus sign (–) indicates negative influence; for instance,
S3 reported lower productivity ratings for higher session
durations. Empty cells correspond to variables that either
were removed as part of the stepwise regression, or were
not statistically significant. An NA value indicates that an
event or activity did not occur for a participant in the study
period; for instance, the NA for S1 in Debugger Use means
that S1 never used the debugger in the IDE during the study
period. In a few cases, we were also not able to map all
‘idle’ log entries to the two activity categories of informal
meetings or planned meetings due to a lack of information
provided in the self-reports. These cases are also denoted
with NA.

Based on the results presented in the table we can make
several observations:

(i) No two explanatory models are the same. This sug-
gests that productivity is a highly personal matter and
that perceptions of what is considered to be productive
are different across participants.

(ii) No single factor provides explanatory power across
all participants. Furthermore, the same factor can have
positive influence for one participant, and negative in-
fluence for another participant, for example the Num-
ber of Self Reported Tasks has both negative (2×) and
positive influence (2×).

(iii) The Number of Keystrokes and the Number of Mouse
Clicks have more often positive influence (7×) than
negative influence (1× and 2× respectively).

(iv) The activities Email (5× negative), Planned Meeting
(6× negative), Work Unrelated Browsing (5× negative),
and Idle (6× negative) have more often negative influ-
ence.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

TABLE 5: Explanatory Productivity Models for Participants (‘+’ indicates positive, ‘-’ negative influence; ‘NA’ indicates a
never performed activity. Columns ‘Neg’ / ‘Pos’ count the number of times a variable had negative / positive influence.
The ratings are distributed on a 7-point Likert scale: left = “not at all productive” (1), right = “very much productive” (7)).

Participant S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20
Ratings	(total) 45 101 62 94 40 62 80 73 89 92 51 40 76 88 71 42 62 53 100 30
Ratings	(discarded) 0 29 3 4 0 0 0 7 10 10 1 0 7 0 0 0 4 8 11 4
Ratings	(included	in	model) 45 72 59 90 40 62 80 66 79 82 50 40 69 88 71 42 58 45 89 26

Neg Pos NA Ratings	(distribution)
3 3 0 Session	Duration	(in	hours) + − − + − +
2 1 0 Percent	of	Session	Before	Noon − − +

Per	Minute
2 2 0 #	self-reported	tasks + − − +
2 4 0 #	activity	switches + − + + − +
1 1 4 #	meetings NA NA + NA NA −
2 1 7 #	instant	messaging	switches NA NA NA NA + NA NA NA + −
1 7 0 #	keystrokes + + + − + + + +
2 7 0 #	mouse	clicks + + + + + + − + −

Percent	Activity
4 1 0 Dev.	Coding − − − + −
0 1 9 Dev.	Debugger	Use NA NA NA NA NA NA NA + NA NA
2 1 12 Dev.	Code	Reviews NA NA NA NA NA NA NA NA NA NA − NA NA − +
2 0 3 Dev.	Version	Control NA − NA − NA
5 0 0 Email − − − − −
2 3 0 Planning + + ➖ + ➖
4 3 0 Read	/	write	documents + + − − + − −
6 0 5 Planned	meeting NA NA − − − − NA NA − NA −
3 2 9 Informal	meeting NA + NA NA NA − NA NA − NA NA NA + −
2 0 8 Instant	messaging NA NA NA NA NA − NA NA NA −
1 2 0 Work	related	browsing ➖ + +
5 0 2 Work	unrelated	browsing − NA − − − − NA
2 1 0 Other + − −
2 1 4 Other	RDP NA NA − + NA − NA
6 2 2 Idle − − − − + − NA − + NA

5.5 Summary of Results

Our analysis provides a broad range of insights on the rela-
tionship between developer’s work practices and activities
and their perceived productivity. Table 6 summarizes some
of the key findings.

6 THREATS TO VALIDITY

The main threats to our study are construct validity threats
due to the monitoring application we used to collect data.
These, and the threats to internal and external validity, are
described in this section.

6.1 Construct Validity

The main threat comes with the metrics we base our analysis
on, as it is limited to the data we collected with our monitor-
ing application. We believe that a chronological record of ap-
plication use, user inputs, and the addition of self-reported
productivity, tasks, and activities provide a reasonable basis
to analyze a developer’s work. Though, we cannot exclude
the possibility that any other factors influence a developer’s
work day and productivity.

Running a monitoring application in a real-world sce-
nario might capture inaccurate data, due to bugs in the
logging application or stability issues. To mitigate this risk,
we ran several test-runs in different scenarios prior to the
study, and observed a user for several hours to compare the
logged with the observed data. No major problems with the

tracker were reported during the tests or at the time of the
study.

Even though the monitoring tool is able to capture a
broad range of activities on a participants’ computer, it does

TABLE 6: Summary of Some of the Study Key Findings.

Finding Section

F1 Developers only spend about half their time active
on their computer.

5.1.1

F2 For every work hour, developers have an average
of 2.5 short breaks, totaling 10.5 minutes of un-
planned time away from their computer.

5.1.2

F3 Developers spend about a fourth of their time on
coding related activities and another fourth of their
time on collaborative activities.

5.1.4

F4 The range and time spent on activities varies
greatly depending on the individual and company.

5.1.4

F5 Developers’ work is highly fragmented, spending
very short amounts of time (0.3 to 2 minutes) in
one activity before switching to another one.

5.2

F6 Developers’ perceived productivity follows habit-
ual patterns, broadly categorisable as morning peo-
ple, afternoon people and “low-at-lunch” people.

5.3

F7 Productivity and the factors that influence it are
highly individual.

5.4

F8 The number of mouse clicks and key strokes often
have a more positive, email, planned meetings, and
work unrelated browsing a more negative impact
on perceived productivity.

5.4

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

not capture activities away from the computer. Therefore,
we asked participants to record their activities/tasks for
their time away from the computer in the periodic self-
reports. Furthermore, to capture activities performed on
secondary computers or remote desktops, we asked par-
ticipants to install the monitoring application without the
self-reporting feature on these machines as well.

Understanding, categorizing and analyzing the data
poses another threat to validity, especially since it is not
straightforward to identify all activities from the collected
data. For instance, mapping ‘idle’ times to self-reported
breaks, planned meetings and informal meetings could not
be automated. We also needed to discard outliers, such as
very short work in the middle of the night or on weekends.
To mitigate this risk, we did a manual mapping of activities
we were uncertain about and checked random samples
of the semi-automated mapping. Assumptions made and
thresholds defined were carefully discussed, based on pre-
vious related work, and described in the paper in detail. The
short interviews at the end of the study further helped us to
interpret each participants’ data and work behavior.

6.2 Internal Validity
Running a monitoring application on participants’ comput-
ers might pose privacy concerns to participants. To address
these concerns, we tried to be very transparent about the
data we collected. The participant was shown the location
where the logs were saved and given the opportunity to
censor them. We did not collect information about what was
being typed or clicked on, merely that these events were
occurring. We also assured the participant that all collected
data will be anonymized and saved on password-protected
devices or in locked filing cabinets.

Monitoring participants’ during their work bears the risk
of changing their behavior. To mitigate these risks, we tried
to collect as much data as possible in the background and
optimized the performance of the data collection to avoid
lags, creating a non-intrusive experience for participants.
Several participants explicitly mentioned that they usually
forgot about the monitoring application and were only
reminded when they were prompted about the self-reports.

Interrupting participants with a short survey once an
hour might have influenced their work behavior and habits.
To address these concerns, we tried to only show the pop-
ups when necessary and reduce the effort needed to fill
them out by showing previous responses, having quick
response buttons, and auto-completion boxes. Additionally,
the participant had the chance to postpone the survey in
case it interrupted at an inopportune moment. The con-
tinuously very short but stable amount of time used to
answer the periodic survey throughout the study and the
small variation in the number of responses per participant
and day also suggests that participants’ behavior was not
affected much and that they did not get annoyed by the
survey.

6.3 External Validity
The number of participants or the selection of participants
might limit the generalizability of the results of this study. In
particular, our participants were all using Windows as their

operating system due to our monitoring application being
built for Windows. Overall though, we tried to mitigate the
threats to external validity and generalizability by select-
ing participants from four different software companies of
varying size, with more and less well-established products,
different kinds of customers, and different stages of product
development. Studies were spread to three different coun-
tries, Canada, US, and Switzerland, and across half a year.
Additionally, all participants are professionals who were
studied in their everyday, real-world work environment
and not in an experimental exercise. The external validity
is further strengthened by the broad range of development
experience of our participants, ranging from junior to senior
developers with an average professional development ex-
perience of 14.2 years (±9.6, ranging from 0.5 to 40 years).
Finally, our participants worked on projects using 7 of the
top 10 most used programming languages according to a
recent large-scale study [61]. While the large-scale study
also showed that 55% of all developers use Windows as
an operating system and our focus on Windows thus maps
to a majority of developers, further studies with a broader
participant pool are needed to assess the generalizability of
our results.

Another limitation might be the study running for
roughly two weeks per participant, as developers’ activities
might vary greatly at different stages and iterations of their
projects. We tried to mitigate this risk by having participants
from different teams at different stages of their project and
iterations, and by staggering the monitoring period between
participants so that varying times of the year were covered.
In the final interview, most participants also agreed that the
study took part in fairly usual, and not extraordinary, work
weeks.

7 DISCUSSION

The results of our study shed new light on the work
practices, fragmentation and perceptions of productivity of
individual software developers. In the following, we discuss
implications and opportunities of our findings, in particular
the individuality of productivity and its use for designing
better tool support, and we report on an exploratory analy-
sis to predict high and low productivity sessions.

7.1 Individuality of Productivity

To quantify a developer’s productivity, related work pre-
dominantly focused on a single or a small set of outcome
measures, such as the lines of code or function points.
While these measures can be used across developers, they
neglect to capture the individual differences in the way that
developers’ work as well as the differences in their work and
their perceived productivity. The results of our study show
that perceived productivity is in fact a very personal matter
and the influence and impact of the factors used for our
explanatory productivity models varied greatly. This sug-
gests that measures or models of productivity should take
into account the individual differences in what is perceived
as productive or not and capture a developer’s work more
holistically rather than just by a single outcome measure.
Such individual models could then be used to provide better

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

and more tailored support to developers, for instance, to
foster focus and flow at work.

At the same time, our results also show that while there
are individual differences, there are tendencies amongst
groups of software developers, for instance, with the num-
ber of key strokes and mouse clicks having a positive influ-
ence on productivity perception for 7 of the 20 participants.
Similarly, we identified types of developers with similar
trends of perceived productivity over the course of the day,
including morning and afternoon people, which resemble
the morningness and eveningness types that Taillard et al.
identified in their large-scale study on people’s sleeping
habits [62]. These results suggest that it might be possible to
identify clusters of software developers with fairly similar
productivity models despite individual differences, which
could then be used to provide tool support tailored to these
clusters, for instance, for scheduling a productive work day.

7.2 Supporting Flow and Retrospection
In our previous study, we found that developers feel partic-
ularly productive when they get into “the flow” without
having many switches [5]. Results from this and other
studies suggest that getting into the flow during work might
not be very easy, given the high fragmentation of work and
the many short breaks and interruptions. At the same time,
our analysis of the collected data suggests that it might
be possible to identify individualized proxies for developer
productivity, such as using the number of mouse clicks or
key strokes per minute or the time spent in work-unrelated
browsing for certain developers. Knowing if a developer is
productive or unproductive at the moment by using such
proxies could be used to support getting and staying in
a highly productive “flow” state. In particular, one could
use this to indicate the availability of a developer for in-
terruptions by changing the availability status in instant
messaging tools, or with a visual external cue to avoid
external interruptions at particularly inopportune moments,
similar to what Züger and Fritz suggested [63]. Or, one
could also use this to provide awareness to the developers
themselves on their flow and productivity, by indicating
them when they are stuck and it might be time to ask a co-
worker for help or to take a break, or even blocking work-
unrelated websites for 25 minutes—similar to the Pomodoro
technique [64]—and helping them to focus when they are
procrastinating.

Being able to predict, to some extent, a developer’s
productivity on an individual basis could also be used
to provide developers with individualized retrospection
support, in the form of daily or weekly summaries of
their work. With the Quantified Self movement, more and
more people are using applications and devices to track
themselves—mostly with a focus on the non-work related
activities, such as sports. These persuasive technologies
provide users an opportunity to reflect upon their own
activities and support desired improvements, such as a
more active lifestyle (e.g., [34], [35], [39]), due to self-
monitoring and goal-setting [39]. A proxy of an individual
developer’s productivity might provide such benefits for the
software development domain, by increasing developers’
awareness about their own work practices and productivity
and thereby helping them to improve them.

7.3 Scheduling a Productive Work Day

By knowing the trends of developers’ perceived produc-
tivity and the activities they perceive as particular pro-
ductive/unproductive, it might be possible to schedule the
tasks and activities developers must perform in a way that
best fits their work patterns. For example, if a developer
is a morning person and considers coding particularly pro-
ductive and meetings as impeding productivity, blocking
calendar time in the morning for coding tasks and automat-
ically assigning afternoon hours for meeting requests may
allow the developer to best employ their capabilities over
the whole day. Or, it could remind developers to reserve
slots for unplanned work or interruptions at times where
they usually happen.

7.4 Predicting High & Low Productivity

To examine whether we might be able to identify high
and low productivity sessions with the collected data, we
performed an initial, exploratory analysis, building predic-
tive models using logistic regression. For each participant,
we computed the median productivity rating individually,
which we assumed to be the standard perceived produc-
tivity of a developer. We then used the productivity (high
and low) as the dependent variable and the factors used
in the explanatory models (see Table 5) as the independent
variables, and we built two prediction models using binary
logistic regression:
Model 1: Is the reported perceived productivity above the

median productivity? (High Productivity)
Model 2: Is the reported perceived productivity below the

median productivity? (Low Productivity)
We built and evaluated the models for each participant

using 50 random split experiments: 2/3 of the participant’s
data was used for training and the remaining 1/3 of the
data was used for testing the model. In total, we ran 50 ×
2 × 20 + 50 = 2 050 experiments. For each experiment, we
measured the success of the predictions with precision and
recall. Precision represents how many of the returned results
are relevant (correct), and recall represents how many of
the relevant results were returned. We then averaged the
precision ratings over the 50 experiments for each model
and participant to receive a single precision rating. We did
the same for recall.

Table 7 shows the results. In addition to the precision and
recall values, we report in the Ratio columns the percentage
of High productivity and Low productivity sessions for
each participant. On average, the models have a precision
of 0.57 (High Productivity) and 0.56 (Low) and recall of
0.48 (High) and 0.43 (Low). For some participants, the
precision and recall values are above 0.70. The results are
promising and suggest that even with a relatively small
number of reported productivity ratings, it is possible to
build personalized, predictive productivity models. To build
the models we used the session length and information
about events (keystrokes, mouse clicks), and activities. We
expect that with more context and data, such as active
task information, window contents, calendar information,
development experience, time of day, or possibly biometrics,
the quality of the predictions can be improved further.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

TABLE 7: Models to Predict High / Low Productivity Ses-
sions.

7.5 Privacy Concerns

As with all approaches that collect personalized data on
people, collecting information on a developer’s activities
on the computer potentially raises many privacy concerns.
Especially given the focus of our study on productivity,
some people were skeptical and declined to participate.
This indicates the sensitivity of the data and the need for
further research on the privacy concerns of such broad,
work-related data. We believe that integrating potential
users early on in the design process of building such a
tool is crucial to increase acceptance of and engagement
with the tool. Furthermore, we expect that the voluntary
use of such applications and its ability to tailor to the
individual is important for its success since it focuses on
the intrinsic motivation of developers to improve or better
understand themselves. Requiring the use of such tools by
upper management on the other hand will lead to a ‘gam-
ing’ as previous research found and suggested (e.g., [49]),
since developers might fear that the gathered information
could influence their employment and increase pressure.

8 SUMMARY

Related work has proposed a wide variety of approaches
to quantify the productivity of software developers, mostly
only taking a single aspect of a developers’ work into
account. In our paper, we present a more holistic approach
to examine developers’ work practices and their relation to

perceived productivity. We conducted a study with 20 pro-
fessional software developers in four different companies in
situ, to investigate how developers spend their work days
and what activities they perform. We applied a combination
of computer logging and experience sampling by using a
background monitoring application and by letting develop-
ers answer pop-up questions every 60 minutes. The results
show that developers spend their time on a wide variety
of activities, about a fourth of it on collaborative activities,
such as meetings or emails. On average, participants spend
only between 0.3 and 2 minutes on each activity, before
switching to the next one. They also have 2.5 short per hour
and 3.3 breaks per day. This demonstrates how fragmented
a developer’s normal work day is.

Based on developers’ self-reports, we analyzed how their
perceived productivity changes throughout a work day. We
found a lot of variation between individuals, but that they
can roughly be grouped into morning people, low-at-lunch
people and afternoon people. We also correlated perceived
productivity with activities and user input using a stepwise
linear regression model per participant. The data suggested
that productivity is a personal matter and that perceptions
vary greatly as different factors in a developer’s work day
can influence productivity either positively or negatively.
More user input was often associated with a positive, while
emails, planned meetings and work unrelated websites
were most often associated with a negative perception of
productivity. Based on our findings, we propose a number
of design approaches and tools to help increase developer
productivity. For instance, by supporting developers to get
into and stay in “the flow”, by reducing interruptions at
inopportune moments and by helping them to focus when
they are procrastinating. Finally, we ran an exploratory
analysis of predicting productivity for individuals, based
on their computer usage. The results are promising and
suggest that even with a relatively small number of reported
productivity ratings, it is possible to build personalized, pre-
dictive productivity models. In the future, we plan to work
on improving the quality of these predictions by including
more context and data, such as active task information,
experience, time of the day, and biometrics.

ACKNOWLEDGMENTS

The authors would like to thank the study participants and
all of our reviewers for their insightful remarks. This work
was funded in part by ABB, SNF and NSERC.

REFERENCES

[1] T. DeMarco and T. Lister, “Programmer performance and the
effects of the workplace,” in Proceedings of the 8th international
conference on Software engineering. IEEE Computer Society Press,
1985, pp. 268–272.

[2] D. E. Perry, N. A. Staudenmayer, and L. G. Votta, “People, organi-
zations, and process improvement,” IEEE Software, vol. 11, no. 4,
pp. 36–45, 1994.

[3] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, “An exami-
nation of software engineering work practices,” in CASCON First
Decade High Impact Papers, ser. CASCON ’10. IBM Corporation,
2010, pp. 174–188.

[4] B. W. Boehm, “Improving software productivity,” vol. 20, no. 9.
IEEE, 1987, pp. 43–57.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

[5] A. N. Meyer, T. Fritz, G. C. Murphy, and T. Zimmermann, “Soft-
ware developers’ perceptions of productivity,” in Proceedings of
the 22Nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. FSE 2014. ACM, 2014, pp. 19–29.

[6] R. Van Solingen, E. Berghout, and F. Van Latum, “Interrupts: just
a minute never is,” IEEE software, no. 5, pp. 97–103, 1998.

[7] S. T. Iqbal and E. Horvitz, “Disruption and recovery of computing
tasks: Field study, analysis, and directions,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, ser. CHI
’07. ACM, 2007, pp. 677–686.

[8] M. Czerwinski, E. Horvitz, and S. Wilhite, “A diary study of
task switching and interruptions,” in Proceedings of the SIGCHI
conference on Human factors in computing systems. ACM, 2004,
pp. 175–182.

[9] C. Parnin and S. Rugaber, “Resumption strategies for interrupted
programming tasks,” Software Quality Journal, vol. 19, no. 1, pp.
5–34, 2011.

[10] V. M. González and G. Mark, “Constant, constant, multi-tasking
craziness: Managing multiple working spheres,” in Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, ser.
CHI ’04. ACM, 2004, pp. 113–120.

[11] A. J. Ko, R. DeLine, and G. Venolia, “Information needs in col-
located software development teams,” in Proceedings of the 29th
International Conference on Software Engineering, ser. ICSE ’07. IEEE
Computer Society, 2007, pp. 344–353.

[12] R. Minelli, A. Mocci, and M. Lanza, “I Know What You Did
Last Summer – An Investigation of How Developers Spend Their
Time,” Proceedings of ICPC 2015 (23rd IEEE International Conference
on Program Comprehension), pp. 25—-35, 2015.

[13] S. Amann, S. Proksch, S. Nadi, and M. Mezini, “A study of visual
studio usage in practice,” in Proceedings of the 23rd IEEE Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER ’16), 2016.

[14] RescueTime, rescuetime.com, retrieved January 16, 2017.
[15] Codealike, codealike.com, retrieved January 16, 2017.
[16] M. Zhou and A. Mockus, “Developer fluency: Achieving true

mastery in software projects,” in Proceedings of the Eighteenth
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE ’10. ACM, 2010, pp. 137–146.

[17] J. Blackburn, G. Scudder, and L. Van Wassenhove, “Improving
speed and productivity of software development: a global survey
of software developers,” IEEE Transactions on Software Engineering,
vol. 22, no. 12, pp. 875–885, 1996.

[18] M. Cataldo, J. D. Herbsleb, and K. M. Carley, “Socio-technical
congruence: A framework for assessing the impact of technical
and work dependencies on software development productivity,”
in Proceedings of the Second ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, ser. ESEM ’08.
ACM, 2008, pp. 2–11.

[19] W. S. Humphrey, “Using a defined and measured personal soft-
ware process,” IEEE, vol. 13, no. 3, pp. 77–88, 1996.

[20] P. M. Johnson, H. Kou, J. Agustin, C. Chan, C. Moore, J. Miglani,
S. Zhen, and W. E. J. Doane, “Beyond the personal software
process: Metrics collection and analysis for the differently dis-
ciplined,” in Proceedings of the 25th International Conference on
Software Engineering, ser. ICSE ’03. IEEE, 2003, pp. 641–646.

[21] B. Vasilescu, K. Blincoe, Q. Xuan, C. Casalnuovo, D. E. Damian,
P. T. Devanbu, and V. Filkov, “The sky is not the limit: multitasking
across github projects,” in ICSE, 2016.

[22] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental
models: a study of developer work habits,” in Proceedings of the
28th international conference on Software engineering. ACM, 2006,
pp. 492–501.

[23] M. K. Gonçalves, L. R. de Souza, and V. M. González, “Collabo-
ration, information seeking and communication: An observational
study of software developers’ work practices.” J. UCS, vol. 17,
no. 14, pp. 1913–1930, 2011.

[24] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do profes-
sional developers comprehend software?” in Proceedings of the 34th
International Conference on Software Engineering. IEEE Press, 2012,
pp. 255–265.

[25] E. Cutrell, M. Czerwinksi, and E. Horvitz, “Notification , Disrup-
tion , and Memory : Effects of Messaging Interruptions on Memory
and Performance,” in Human-Computer Interaction–Interact ’01, no.
1999, 2000.

[26] J. Chong and R. Siino, “Interruptions on software teams: a com-
parison of paired and solo programmers,” in Proceedings of the 2006

20th anniversary conference on Computer supported cooperative work.
ACM, 2006, pp. 29–38.

[27] L. A. Perlow, “The time famine: Toward a sociology of work time,”
Administrative science quarterly, vol. 44, no. 1, pp. 57–81, 1999.

[28] C. Parnin and R. DeLine, “Evaluating cues for resuming inter-
rupted programming tasks,” Proceedings of the 28th international
conference on Human factors in computing systems - CHI ’10, p. 93,
2010.

[29] G. Mark, V. M. Gonzalez, and J. Harris, “No task left behind?:
examining the nature of fragmented work,” in Proceedings of the
SIGCHI conference on Human factors in computing systems. ACM,
2005, pp. 321–330.

[30] B. P. Bailey, J. A. Konstan, and J. V. Carlis, “The effects of inter-
ruptions on task performance, annoyance, and anxiety in the user
interface,” in Proceedings of INTERACT, vol. 1, 2001, pp. 593–601.

[31] E. H. Mary Czerwinski, Ed Cutrell, “Instant messaging: Effects of
relevance and timing,” in People and Computers XIV: Proceedings of
HCI 2000, vol. 2, 2000, pp. 71–76.

[32] G. Mark, D. Gudith, and U. Klocke, “The cost of interrupted work:
more speed and stress,” in Proceedings of the SIGCHI conference on
Human Factors in Computing Systems. ACM, 2008, pp. 107–110.

[33] H. Sanchez, R. Robbes, and V. M. Gonzalez, “An empirical study
of work fragmentation in software evolution tasks,” in 2015 IEEE
22nd International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2015, pp. 251–260.

[34] S. Consolvo, D. W. McDonald, T. Toscos, M. Y. Chen, J. Froehlich,
B. Harrison, P. Klasnja, A. LaMarca, L. LeGrand, R. Libby et al.,
“Activity sensing in the wild: a field trial of ubifit garden,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2008, pp. 1797–1806.

[35] D. M. Bravata, C. Smith-Spangler, V. Sundaram, A. L. Gienger,
N. Lin, R. Lewis, C. D. Stave, I. Olkin, and J. R. Sirard, “Using
pedometers to increase physical activity and improve health: A
systematic review,” Jama, vol. 298, no. 19, pp. 2296–2304, 2007.

[36] B. J. Fogg, Persuasive Technology: Using Computers to Change What
We Think and Do, ser. Interactive Technologies. Elsevier Science,
2003.

[37] I. Li, A. Dey, and J. Forlizzi, “Understanding my data, myself:
supporting self-reflection with Ubicomp technologies,” in Proceed-
ings of the 13th international conference on Ubiquitous computing -
UbiComp ’11, 2011, p. 405.

[38] V. Hollis, A. Konrad, and S. Whittaker, “Change of Heart: Emotion
Tracking to Promote Behavior Change,” Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems
- CHI ’15, pp. 2643–2652, 2015.

[39] T. Fritz, E. M. Huang, G. C. Murphy, and T. Zimmermann, “Per-
suasive technology in the real world: A study of long-term use of
activity sensing devices for fitness,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ser. CHI ’14.
ACM, 2014, pp. 487–496.

[40] Y.-H. Kim, J. H. Jeon, E. K. Choe, B. Lee, K. Kim, and J. Seo,
“TimeAware: Leveraging Framing Effects to Enhance Personal
Productivity,” in Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems - CHI ’16, 2016, pp. 272–283.

[41] Hubstaff, http://hubstaff.com, retrieved January 16, 2017.
[42] Wakatime, wakatime.com, retrieved January 16, 2017.
[43] C. E. Walston and C. P. Felix, “A method of programming mea-

surement and estimation.” IBM Systems Journal, vol. 16, no. 1, pp.
54–73, 1977.

[44] P. Devanbu, S. Karstu, W. Melo, and W. Thomas, “Analytical and
empirical evaluation of software reuse metrics,” in Proceedings of
the 18th International Conference on Software Engineering, ser. ICSE
’96. IEEE Computer Society, 1996, pp. 189–199.

[45] V. Nguyen, L. Huang, and B. Boehm, “An analysis of trends in
productivity and cost drivers over years,” in Proceedings of the 7th
International Conference on Predictive Models in Software Engineering,
ser. Promise ’11. ACM, 2011, pp. 3:1–3:10.

[46] A. J. Albrecht, “Measuring application development productivity,”
in IBO Conference on Application Development, 1979, pp. 83–92.

[47] C. Jones, “Software metrics: good, bad and missing,” Computer,
vol. 27, no. 9, pp. 98–100, 1994.

[48] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case studies
of open source software development: Apache and mozilla,” ACM
Transactions on Software Engineering and Methodology, vol. 11, no. 3,
pp. 309–346, 2002.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

[49] C. Treude, F. F. Filho, and U. Kulesza, “Summarizing and mea-
suring development activity,” in Proceedings of FSE 2015, 2015, to
appear.

[50] W. S. Humphrey, Introduction to the Personal Software Process, 1st ed.
Addison-Wesley Professional, 1996.

[51] S. Wagner and M. Ruhe, “A Systematic Review of Productivity
Factors in Software Development,” in Software Productivity Analy-
sis and Cost Estimation (SPACE 2008), 2008, pp. 1–6.

[52] D. Graziotin, X. Wang, and P. Abrahamsson, “Are happy de-
velopers more productive?” in Product-Focused Software Process
Improvement. Springer, 2013, pp. 50–64.

[53] I. A. Khan, W.-P. Brinkman, and R. M. Hierons, “Do moods affect
programmers’ debug performance?” Cognition, Technology & Work,
vol. 13, no. 4, pp. 245–258, 2011.

[54] A. Mathur, M. V. D. Broeck, G. Vanderhulst, A. Mashhadi, and
F. Kawsar, “Tiny Habits in the Giant Enterprise: Understanding the
Dynamics of a Quantified Workplace,” in Proceedings of the Joint In-
ternational Conference on Pervasive and Ubiquitous Computing and the
International Symposium on Wearable Computers (Ubicomp/ISWC’15),
2015, pp. 577–588.

[55] G. Mark, S. T. Iqbal, M. Czerwinski, P. Johns, and A. Sano, “Email
Duration, Batching and Self-interruption: Patterns of Email Use on
Productivity and Stress,” in Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems - CHI ’16, vol. 21, no. 1,
2016, pp. 98–109.

[56] ——, “Neurotics Can’t Focus: An in situ Study of Online Multi-
tasking in the Workplace,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, 2016, pp. 1739–1744.

[57] C. A. Monk, J. G. Trafton, and D. A. Boehm-Davis, “The effect
of interruption duration and demand on resuming suspended
goals.” Journal of Experimental Psychology: Applied, vol. 14, no. 4,
pp. 299–313, 2008.

[58] D. A. Epstein, M. Caraway, C. Johnston, A. Ping, J. Fogarty, and
S. A. Munson, “Beyond Abandonment to Next Steps: Under-
standing and Designing for Life After Personal Informatics Tool
Use,” in Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems, 2016, pp. 1109–1113.

[59] G. Mark, S. T. Iqbal, M. Czerwinski, and P. Johns, “Bored mondays
and focused afternoons: The rhythm of attention and online activ-
ity in the workplace,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, 2014, pp. 3025–3034.

[60] “ifi.uzh.ch/seal/people/meyer/productive-workday.”
[61] StackOverflow, “Stack overflow developer survey 2015,” retrieved

January 16, 2017. [Online]. Available: http://stackoverflow.com/
research/developer-survey-2015

[62] J. Taillard, P. Philip, and B. Bioulac, “Morningness/eveningness
and the need for sleep,” Journal of Sleep Research, vol. 8, no. 4, pp.
291–295, 1999.

[63] M. Züger and T. Fritz, “Interruptibility of software developers and
its prediction using psycho-physiological sensors,” in CHI 2015.
ACM, APR 2015.

[64] PomodoroTechnique, pomodorotechnique.com, retrieved January
16, 2017.

André N. Meyer is working towards the Ph.D.
degree in Computer Science under the super-
vision of T. Fritz at the University of Zurich and
is also working for the information technology
industry as an application developer (and in-
tern). In his research, he focuses on developers’
productivity and on building tools for develop-
ers’ awareness of their work. His homepage is
http://www.andre-meyer.ch.

Laura E. Barton Laura Barton is pursuing an
undergraduate degree in Computer Science at
the University of British Columbia, while intern-
ing as a software engineer and exploring re-
search opportunities in the field.

Gail C. Murphy is a Professor in Computer Sci-
ence and Associate Dean (Research and Grad-
uate Programs) in the Faculty of Science at the
University of British Columbia. She is also a co-
founder and Chief Scientist at Tasktop Technolo-
gies, Inc. She received her B.Sc. in Computing
Science from the University of Alberta and the
M.S. and Ph.D. degrees in Computer Science
and Engineering from the University of Wash-
ington. Her research interests include software
developer productivity and software evolution.

She is a Fellow of the Royal Society of Canada and a member of the
IEEE Computer Society.

Thomas Zimmermann is a Senior Researcher
at Microsoft Research. He received his Ph.D.
degree from Saarland University in Germany.
His research interests include software pro-
ductivity, software analytics, and recommender
systems. He is a member of the IEEE Com-
puter Society. His homepage is http://thomas-
zimmermann.com.

Thomas Fritz is an Assistant Professor in the
Department of Informatics at the University of
Zurich, Switzerland. He received his Ph.D. de-
gree from the University of British Columbia,
Canada, and his Diplom from the Ludwig-
Maximilians-University Munich, Germany, in
2005. His research focuses on empirically study-
ing software developers and on using personal
and biometric data to improve developers’ pro-
ductivity. He is a member of the IEEE Com-
puter Society and currently a Member At-Large

of IEEE TCSE.

