Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Do Topics Make Sense to Managers and Developers?

Abram Hindle - Christian Bird -
Thomas Zimmermann - Nachiappan
Nagappan

the date of receipt and acceptance should be inserted later

Abstract Large organizations like Microsoft tend to rely on formal require-
ments documentation in order to specify and design the software products
that they develop. These documents are meant to be tightly coupled with the
actual implementation of the features they describe. In this paper we eval-
uate the value of high-level topic-based requirements traceability and issue
report traceability in the version control system, using Latent Dirichlet Allo-
cation (LDA). We evaluate LDA topics on practitioners and check if the topics
and trends extracted match the perception that industrial Program Managers
and Developers have about the effort put into addressing certain topics. We
then replicate this study again on Open Source Developers using issue reports
from issue trackers instead of requirements, confirming our previous industrial
conclusions. We found that efforts extracted as commits from version control
systems relevant to a topic often matched the perception of the managers
and developers of what actually occurred at that time. Furthermore we found
evidence that many of the identified topics made sense to practitioners and
matched their perception of what occurred. But for some topics, we found that
practitioners had difficulty interpreting and labelling them. In summary, we
investigate the high-level traceability of requirements topics and issue/bug re-
port topics to version control commits via topic analysis and validate with the
actual stakeholders the relevance of these topics extracted from requirements
and issues.

Abram Hindle

Department of Computing Science
University of Alberta

Edmonton, Canada

E-mail: abram.hindle@softwareprocess.es

Christian Bird and Thomas Zimmermann and Nachiappan Nagappan
Microsoft Research

Redmond, WA, USA

E-mail: {cbird,tzimmer,nachin}@microsoft.com

2 Abram Hindle et al.

1 Introduction

For many organizations requirements and specifications provide the founda-
tion for the products that they produce. As requirements are implemented
the links between requirements and implementation weaken, especially during
maintenance. Later, development artifacts often stop referencing the require-
ments documents that they were derived from. Current research shows that
there is a lack of traceability between requirements and implementation [20]
whereas the managers we interviewed expected and wanted requirements and
implementation to be in sync (Section 5.2). The volume of traceability re-
search confirms its importance [8,32,38,39]. In this paper we extract topics
from a large body of requirements documents and then search for commits
that mention these topics within the version control system. These topics are
represented as word distributions. These topics provide some high-level trace-
ability between requirements and implementation once they are labelled and
interpreted. Yet these topics can be exploited to provide an overview of devel-
opment effort relevant to each topic.

In this paper we attempt to validate these topic-generated overviews by
asking industrial developers, industrial program managers, and Free/Libre
Open Source Software (FLOSS) developers if their perception of their own
behaviour matches the behaviour highlighted by the topic. We do this by re-
lating the topics extracted from requirements and issue reports to the commit
log messages in version control systems. Thus we seek to validate if topics
extracted from requirements and issue reports make sense to practitioners.

Stakeholder based validation of topics in terms of relevance, labelling, and
the recovery of behaviour [3] is critical, but to date has not been widely applied
to the domain of software engineering [14]. We also ask how well non-experts,
such as the authors of this paper, can label topics on projects that we did not
write. The topics we study are extracted using Latent Dirichlet Allocation [5]
(LDA) which has gained popularity in software engineering (SE) research [3,
9,12,13,15,22,27,36]. Our contributions include:

— A technique for linking requirements to code commits via topics.

— An evaluation of the relevance of topics extracted by LDA from require-

ments with developers and managers.

An analysis of whether topic highlighted behaviour matches the perception

of industrial developers and managers as well as FLOSS developers.

— Insight into the difficulties that practitioners face when labelling topics and
the need for labelled topics.

— Validation of non-expert topic labelling with practicing experts.

A FLOSS developer oriented replication of the industrial study on issue

tracker topics.

We are investigating if LDA topics make sense to practitioners, and whether
practitioners can label LDA topics. We have at our disposal many skilled Mi-
crosoft developers who work on a very large software system that has many
requirements documents. We also have the participation of 13 gracious and

Do Topics Make Sense to Managers and Developers? 3

skilled Free/Libre Open Source Software (FLOSS) developers associated with
13 different FLOSS projects, each with issue trackers and version control sys-
tems. Thus we investigate if practitioners face difficulties interpreting topics,
if unlabelled topics are enough, and if familiarity with the source and domain
of the topics matters.

1.1 Motivation

Latent Dirichlet Allocation (LDA) [5] and Latent Semantic Indexing (LST) [23]
are popular tools in software engineering research [4,33,36,37]. They are often
used for traceability and information retrieval, but their use is built upon as-
sumptions regarding usability. We validate this usability of topics assumption
with managers and developers from our prior work [14] and FLOSS developers
in this extension. Often in SE literature these topics are interpreted solely by
the researchers themselves (e.g., [15]). Thus the use of topic analysis through
algorithms like LDA and LSI in software engineering has not been widely and
rigorously validated with actual developers and managers. The core motivation
of this work is to validate: if topic analysis (with LDA) of requirements doc-
uments produces topics relevant to practitioners; if the extracted topics make
sense to software developers; and if the development behaviour associated with
a topic matches the perception shared by the practitioners. This work could
be used in traceability tools, project dashboards for managers, effort models,
and knowledge management systems.

In prior work we felt that topics needed to be labelled to be useful [15].
We were motivated by the belief that labelled topics allow stakeholders such
as managers to track development efforts related to these extracted topics.
We sought to evaluate the effectiveness of depicting document relevance to
topics over time as topic-plots (see Figure 2 for an example). Thus we ask
stakeholders to help verify if combining topics with commits allows for local
analysis of requirements-relevant effort of different groups of developers or
teams. An example scenario we are targeting would be a manager who is
trying to identify how much effort went into addressing different requirements.
Managers could try to answer the question, “Who should I talk to regarding
a requirement change in the bluetooth stack?” by using individual developer
topic-plots and correlating the developer’s visible effort within a bluetooth
related topic.

1.2 Extension and Replication

This work differs from our previous ICSM 2012 publication [14] because we
have extended it with a FLOSS-oriented replication on issue-tracker topics
rather than requirements topics.

We repeated most of the industrial methodology with the FLOSS develop-
ers: we sought out FLOSS developers and presented them with a very similar

4 Abram Hindle et al.

Requirements
or Topics Commits

Issue Reports

Fig. 1: Our data model. Topics are extracted from Requirements using LDA.
Topics are related to requirements in a many-to-many relationship. Commits
are related to topics via LDA document-topic inference.

survey. We then aggregated the results and compared. Thus the field work
associated with the FLOSS survey was equivalent or larger in scale than the
industrial case study.

In this paper, we added a comparison between the case studies and dis-
cussed the results of the FLOSS study in depth. For the sake of brevity we
have combined the methodologies into one general description and included
special cases for the FLOSS study when necessary.

2 Background and Previous Work

Our work fits into traceability, requirements engineering, issue tracker query-
ing, and topic analysis [7,8,22,32, 36].

2.1 Traceability and Requirements Engineering

Traceability is the linking of software artifacts and popular software engineer-
ing topic. Authors such as Ramesh et al. [30] and De Lucia [10] have provided
excellent surveys of the literature and the techniques relevant to traceability.
In terms of information retrieval (IR) and traceability Antonional et al. [1]
first investigated linking documentation and source code together using IR
techniques including the vector space model. IR traceability was extended by
Marcus et al. [23] who first employed LSI for traceability of documentation to
source code. Karl Wiegers [39] has argued for tagging commits with relevant
requirements to aide traceability. Tillmann et al. [38] have discussed mining

Do Topics Make Sense to Managers and Developers? 5

specifications by their language in order to aid traceability for reverse engi-
neering. Kozlenkov and Zisman et al. [20] have also studied requirements trace-
ability with respect to design documents and models. Ernst et al. [11] traced
nonfunctional requirements (NFRs) within version control systems (VCSs) us-
ing a simple technique incorporating NFR word dictionaries. Murphy et al. [26]
defined explicit mappings between concepts and changes to files but did not use
topics; whereas Sneed [35] investigated mining requirements in order to pro-
duce test cases. Reiss et al. [31] produced a tool called CLIME that allows one
to define constraints and track the co-evolution of artifacts in order to enforce
adherence. Poshyvanyk et al. [25,28,33] has explored the use of IR techniques
for software traceability in source code to other kinds of documents. Others
within the RE community have leveraged natural language processing (NLP)
techniques to produce UML models [19]. NLP techniques and IR techniques,
such as n-grams, stemming, bag of words models, and vector space models are
used in conjunction with topic analysis.

2.2 Topics in Software Engineering

Topics in software engineering literature are known by many names: concerns,
concepts, aspects, features, and sometimes even requirements. In this paper, by
topic we mean a word distribution extracted from requirements documents by
an algorithm such as Latent Dirichlet Allocation (LDA) [5] that often matches
a topic of discussion between authors. LDA helps us find topics by looking for
independent word distributions within numerous documents. These documents
are represented as word distributions (i.e., counts of words) to LDA. Given a
number n LDA then attempts to discover a set of n topics, n word distributions
that can describe the set of input documents. Each document is then described
as a combination of the n topics that are extracted. Thus the end result of topic
analysis is a set of n topics (word distributions) in the form of a the word-topic
matriz, and a topic-document matriz that provides the relationship between
documents and topics.

Documents are not mutually exclusive to topics. This means that 1 doc-
ument can be related to 0 or 1 to n topics. The allocation part of Latent
Dirichlet Allocation implies that words and documents are allocated to topics.
But since they can be partially relevant to a topic they are also partially al-
located. But the allocation implies there is a limit, thus the topics and words
are shared among topics. For example, if a document is allocated solely and
equally to 2 topics the document’s row in the topic-document matrix will have
half of its “space” allocated to one topics and the other half allocated to the
second topic. If this “space” was represented as probability, each entry would
be 0.5; if this “space” was word counts then the word counts would be equal.
Thus while a document can be allocated to many topics, there is a limit to
how much of a document or word can be allocated to a particular topic. Fun-
damentally it means that documents are often allocated to more than one
topic.

6 Abram Hindle et al.

Since each LDA topic is a word distribution over many words, we must
present an alternative representation to end-users such as developers and man-
agers. These topics can be represented to end-users as a ranked list of words,
from highest magnitude to lowest magnitude word relevance. Many researchers
use top-10 lists of words, in this study we used 20 words. An example topic
might be:

code improve change without functionality behaviour readability
maintainability structure restructure modify reduce quality process complexity
software re-factoring performance maintain better

How would you label this topic? Notice how this topic takes time to in-
terpret. In this paper we investigate the difficulty practitioners have when
labelling the topic as well as the relevance of the topic to practitioners.

There is much software engineering research relevant to topics. Many tech-
niques are used, ranging from LDA [15] to Latent Semantic Indexing (LSTI) [24].
Researchers such as Poshyvanyk et al. [28] and Marcus et al. [24] often focus
on the document relationships rather than the topic words. In terms of topics
and traceability, Baldi et al. [4] labelled topics and then tried to relate topics
to aspects in software. Asuncion et al. [3] used LDA on documentation and
source code in order to provide traceability links. Gethers et al. [12] combine
IR techniques such as Jenson and Shannon, vector space model, and relational
topic model using LDA, together into one integrated in order to aide trace-
ability link recovery. They found this integration of techniques achieved better
performance than any technique alone.

Grant et al. [13] have worked with LDA and topics before. Their 2010 paper
suggests heuristics for determining the optimal number of topics to extract.
Thomas et al. [36] statistically validated email to source code traceability using
LDA. Panichella et al. [27] described LDA-GA, a genetic algorithm approach to
search for appropriate LDA hyper-parameters and parameters. They evaluate
these parameter choices against a range of software engineering tasks and
thus evaluate the cost-effectiveness of this search approach. Both groups did
not validate their results with practitioners.

Our work builds up on the work of Lukins et al. [22] as they apply topic
analysis to issue reports as well, but use the topics to query for existing issue
reports.

In this study we investigate human-generated labels for topics; while other
researchers have investigated automatically generated labels for source code
artifacts. De Lucia et al. [9] investigated using IR methods on source code
artifacts in order to label software artifacts. They used multiple IR approaches,
including LDA and LSI to see if they could label or summarize source code and
if their approach matched human-generated labels. They found that labelling
via simple heuristics best matched practitioner labels rather than LSI or LDA.

These studies rely on assumptions about the applicability to practitioners.
We investigate some of these assumptions by surveying practitioners in order to
validate the value of topics extracted from requirements. Furthermore instead
of tracing individual requirements documents or sections of said documents

Do Topics Make Sense to Managers and Developers? 7

directly, we extract topics from sets of requirements and then track those
topics within the version control’s change history. Original requirements can be
related to code changes by the topic-document association matrix as described
in Figure 1. Next we describe our methodology.

3 Methodology

Our goal is to relate commits to topics of requirements and then validate if
these topics and plots of topic-relevant commits make sense to stakeholders
such as developers and managers. Our methodology is to extract requirements
and issues, perform topic analysis on the documents and then infer and link
these topics across all of the commit log messages in the source code repository.
Then we present extracted topics to developers and managers and ask them
to label the topics. After that, we show plots of topic-relevant commits to
developers and managers and ask whether or not these plots actually match
their perception of their effort related to the topic. Finally we analyze and
present the results.

3.1 Requirements Mining

Microsoft stores requirements documents in their documentation repository.
Requirements for a project are grouped by broad general topics. The docu-
ments are usually saved as Word documents within the specification repos-
itory. These requirements are usually written by program managers (PMs),
developers and testers.

We obtained all of the network component specifications from a popular
Microsoft product that is used by millions of users and has several millions of
lines of source code. We then saved each of these specifications as text files
for later analysis. This large collection of requirements documents included 75
total requirements documents consisting of nearly 1500 pages of documenta-
tion, 59 000 lines of text, 35000 paragraphs, and 285000 words. The average
document was 20 pages long with an average word count of 3 800.

Each requirements document has a title, a list of authors and small table
of major revisions. The documents are then further broken down into sections
much like IEEE documentation such as Software Requirements Specification
(SRS) (the functional specifications), Software Design Description (SDD) (re-
ferred to internally as “dev specs”), and Software Test Documentation (re-
ferred to internally as “test specs”). Program managers that we interviewed
indicated that requirements were generally written by the managers and the
“dev specs” and “test specs” were written by developers and testers. The
requirements were often the result of “quick specs” that had become “final
specs” via a process of comment elicitation and discussion. Once a require-
ments document became a “final spec”, it could be scheduled for a milestone
and assigned to a team.

8 Abram Hindle et al.

——, search and traces: —— awareness for the —— ?
&
e
° B
- w
° s
20000516 20010628 20020810 20030922 20041103 msme mnm msom 20090423 20100605 20000516 20010628 mzoam zwmzz 20041103 20051216 20070128 zoososu 20090423 20100605
, roaming, features: ipv,: » wwan,:
: : [\ M\ =g
N yat
g g S v
4 IIllllIIHIIIillllIIIIIIIIIIIIIIIIIIIIIlIIIIIIIIIIlllllIlIII
20000516 20010628 mzwo zwm mmos 20051216 m?me 20080311 20090423 20100605 20000516 20010628 20020810 20030922 20 mmos zoosmo mmlza 2ooeom 20090423 20100605
m
g o
°
8 S
s AL e
20000516 20010628 2002 2mwo 20030922 mmoz msms 20070128 20080311 20090423 20100605 20000516 zoowsza 20020810 20030922 20041103 20051216 20070128 20080311 20090423 20100605
? Crowd sourcing —— cases feature : what's GAT? : is this just a cross-general topic of common terms?
- ®
S
-
e LALR AR RN R R AR AR R R RRRRRERE] d
20000516 20010628 mzoem mmnmmuwz msms zoamm zoooom 20090423 20100605 20000516 20010628 20020810 m:oszz 2oamos 20051215 mmzz maosu 20090423 20100605
ume, song, controls
-
s
b
20000516 20010628 20020810 20030922 20041103 20051216 20070128 20080311 20090423 20100605 20000516 20010628 20020810 20030922 20041103 msuw mmm 20080311 20090423 20100605
Programming and Notifications? : unclear ——— awareness based on wifi Crowd sourcing
g /"V\ TACAR P
VTV °
g -
° s
20000516 20010628 20020810 20030922 mmnz msms zoonm mmu 20090423 20100605 20000516 20010628 20020810 maoszz 20041103 20051216 _mmm 20080311 20090423 20100605
Programming and Notifications? : unclear
8
o
o
°
8
b4 s
2000816 20010628 20020610 20030522 W13 21 ms!z!s mmm 20080311 20090423 20100605 2000518 20010628 20020810 maoszz Z0041103 2051216 20070128 20000311 20080423 20100005

volume, song, c

L
il

20000516 20010628 20020810 20030522 zoomoa msms mmza mm 20090423 20100605 20000516 20010628 20020810 20030922 20041103 20051216 20070128 20080311 20090423 20100605
use cases feature : what's GAT? : is this just a cross-general topic of common terms?

20000516 20010628 20020810 20030922 ZMIHD& 200512!5 20070!25 200&03" 20090423 20100605 20000516 20010628 20020810 20030922 2W4||03 2005!2!5 20070!28 20080311 20090423 20100605
.
: g%mmmmm—l
w =)
g
20000516 20010628 20020810 20030922 20041103 20051216 20070128 20080311 20090423 20100605 20000516 20010628 20020810 20030922 20041103 20051216 20070128 20080311 20090423 20100605

Fig. 2: Requirements Topic-Plots: Topics and Relevant revisions over time. X
axis is time, Y axis is the average relevance per time window (greater is more
relevant). The topic-plots are labelled with our non-expert labels. They are
non-expert labels because we were not involved in the project’s development.
indicate redactions.

3.2 Requirements Topic Mining

To apply LDA to requirements we had to preprocess the documents. We con-
verted each specification to word distributions (counts of words per document)
and removed stop words (common English stop words such as “at”, “it”, “to0”,
and “the”) . We stemmed the English words using a custom Porter stemmer.
We provided these word distributions to our implementation of the LDA al-

1 The set of stop words used: http://softwareprocess.es/b/stop_words

Do Topics Make Sense to Managers and Developers?

Topic 1 quality respawn send packets seconds set position die player event ste ..

Topic 2 punkkeks solution http fixed platform e.g. implementation pull framewo

a °
8 ™ N 8 N
e H €
s H s
8 H B
s : g
£ : iy
£3 P ES
[$) S
23 22
< 2012-07-06 2012-08-10 2012-09-14 2012-10-26 2012-11-30 2013-01-04 < 2012-07-06 2012-08-10 2012-09-14 2012-10-26 2012-11-30 2013-01-04
Time Time
Topic 3 libnbt craft.net collisions effects metadata versus github.com direct! Topic 4 added readme encryption food eating orientation world support stair nb ...
29 o<
go H go H
s H s
B : 53
g : Sy
E E°
EY €~
3 S5
o 8s
gs g3
< 2012707-06" '2012-08-10 2012-09-14 2012-10-26 2012-11-30 2013-01-04 < 2012707-06" 2012-08-10 2012-09-14 2012-10-26 2012-11-30' '2013-01-04
Time Time
Topic 5 block metadata bug namespace enable click wait item placement invalid ... Topic 6 default version request updated means error merge investigate packets. ...
8o = 8o =
g : §" :
3 : 3 :
< : < H
EN H E- H
€ H £ H
S~ 3
© H 8 H
E — = £5 =
s
< 2012707-06" '2012-08-10 2012-09-14 2012-10-26 2012-11-30 2013-01-04 < 2012-07-06" '2012-08-10 2012-09-14 2012-10-26 2012-11-30 2013-01-04
Time Time
Topic 7 removed works file ammaraskar slot level accumulation snow saving die .. Topic 8 files pdelvo player.dat client minecraftclient tracking game removes p ...
g g
g : : g : :
e H 30 H
°° : o= :
] : Se H
o H H
3 p 83 :
99 99
< <501 2-07-06 2012-08-10 2012-09-14 2012-10-26 ~ 2012-11-30 2013-01-04 < <301 2-07-06 2012-08-10 2012-09-14 2012-10-26 2012-11-30 2013-01-04
Time Time
Topic 9 mono packet fix solution. stops struct hope movement possible. home wa ... Topic 10 projects error reference craft.net.data craft.net.data.csproj assembly ...
g 2
8 8 = -
§s § :
3 32 .
So 3o H
@ i « .
E E< H
E° EoS :
8™ 3 i
S0 go| 0 0 |
< c,2012—07—06 2012-08-10 2012-09-14 2012-10-26 2012-11-30 2013-01-04 < c,2()12-07—06 2012-08-10 2012-09-14 2012-10-26 2012-11-30 2013-01-04
Time Time
o Topic 11 code https converted trailing enforcement change summary determines wr ... Topic 12 items correct changes. information If repository crif doors properly n ...
a °
g3 gu
g g
g g
3 3
%N T ©
o To
Eo g
2 <
RV V\/ o
5] H S
98 H 99
< 2012-07-06 2012-08-10 2012-09-14 2012-10-26 2012-11-30 2013-01-04 < c,2(')12—07—06 2012-08-10 2012-09-14 2012-10-26 2012-11-30 2013-01-04
Time Time
Topic 13 sircmpwn add entity completed work test values server falling implemen ... Topic 14 sircmpwn ipacket client.world commenting client.entity dimension chunk ...
2 2
8 8 = -
o € H
g s H
83 8o :
& es :
=0 = H
EZ £ :
s° §° H
o o
98 99
< 2012-07-06 2012-08-10 2012-09-14 2012-10-26 2012-11-30 2013-01-04 < <3()12—07—06 2012-08-10 2012-09-14 2012-10-26 2012-11-30 2013-01-04
Time Time
Topic 15 blocks type projects reference error craft.net.data.csproj craft.netd ... Topic 16 time issue tool inventory working light mode happen fixed lighting ran ...
g <
: g3
2s : 3.
2o M eo
Eeo Eo
5° s°
o o
28 99
4 =)
< 2012707-06" '2012-08-10" 2012-09-14 2012-10-26 2012-11-30 2013-01-04 < 2012-07-06" '2012-08-10" 2012-09-14 2012-10-26 2012-11-30 2013-01-04
Time Time
Topic 17 make git strwarrior errors .bat log.txt. growth warning. //www.medi: Topic 18 project framework solution craft.net.server spaces whitespace platform ...
g 2
8 8
e 1=
B
k) k)
< <
= =<
£s £°
3 3
o o
o9 : 99
< C‘2012707706 2012-08-10 2012-09-14 2012-10-26 2012-11-30 2013-01-04 < %012707706 2012-08-10 2012-09-14 2012-10°26 '2012-11-30' ' 2013-01-04
Time Time
Topic 19 entities drew start view physics logging key dropped drop todo strwarr ... Topic 20 refactor drops update things vector3 pass seconds lost omitted cost ru ...
o g
s S
2 2
%o °
<= <
E Ex
EQ ES
3o 3
[$] S
o9 oo
< 92012—07—06 2012-08-10 2012-09-14 2012-10-26 2012-11-30 2013-01-04 < o2()12—07—06 2012-08-10 2012-09-14 2012-10-26 2012-11-30 2013-01-04
Time Time

Fig. 3: Issue Topic-Plots of All FLOSS Developer authors of Craft.NET. X axis
is time, Y axis the average per time window (greater is more relevant). Red
dashed lines indicate a release or milestone of importance (major or minor).
Topic Labels are the top ranked topic words from LDA.

10 Abram Hindle et al.

gorithm. Then LDA processed the requirements documents and produced the
requested number of topics.

The implementation of LDA we used was built by Microsoft and it was
a parallel implementation of CVBO0, a collapsed variational Bayes LDA im-
plementation [2,29]. LDA was configured hyper-parameters of @« = 0.1 and
B = 0.1, and 1000 iterations were used to extract topics from the require-
ments documents.

While authors such as Grant et al. [13] have proposed heuristic methods of
suggesting the best number of topics, their idea relies on fitness functions that
are not necessarily human-centric. Thus we took a more subjective approach.
This subjective, manual, human-approach was taken because we were not con-
vinced that silhouetting or genetic algorithms [27] would be appropriate given
our lack of a topic coherency or topic readability oracle. We instead decided to
act as this oracle, aiming for distinct and readable topics. This means we were
biased to a fewer number of topics based on the effort we spent to interpret
each topic. Thus we made a decision to ignore automated methods of deter-
mining the optimal number of LDA topics and instead opted for a subjective
search based on qualities of semantic coherency and topic readability /inter-
pretability.

To determine the number of topics to use, we ran LDA multiple times,
generating 5, 10, 20, 40, 80, and 250 topics. We then chose the number where
the extracted topics were distinct enough. This meant the first author ap-
plied his own judgment to ensure that topics did not have much overlap in
top terms, were not copies of each other in terms of top words, and did not
share excessive disjoint concepts or ideas. Conceptual overlap required human
readers who understood some of the semantics of the words. Our number of
topics selection process was like a manually applied fitness function with the
first author evaluating the fitness of each set of topics.

Based on these requirements 20 topics seemed to produce the most optimal
topics given our previous requirements. Thomas et al. [37] reported similar
results. We argue that if practitioners were following this methodology they
would not want many topics because it takes time to label each topic, as
we personally noticed from this tuning step. This was later confirmed by our
survey respondents took approximately 1 to 4 minutes (2 on average) for each
topic, as discussed ahead in Section 7. Thus we used LDA to produce 20 topics.

3.2.1 Labelling of Requirements Topics

Once the topics were extracted from the requirements documents we then
labelled each of the topics to the best of our knowledge by reading the top
ranked topic words (we kept all topics words) and tried to label them using our
non-expert domain knowledge. Only one author, the first author, labelled the
topics. We refer to these topics labels as non-expert labels as the first author
did partake in the development of the project being studied. Labelling topics
was difficult as there were many project specific terms that did not have a
clear definition (such as GAT, setup, and RIL).

Do Topics Make Sense to Managers and Developers? 11

The motivation behind labelling topics is that they are time consuming to
interpret and are faster to reason about if labelled. Furthermore we wished to
compare our labels to those of domain experts (the relevant developers).

3.3 Version Control Mining

To correlate topics and development activity we extracted the change log mes-
sages from 650 000 version control system commits of a popular Microsoft prod-
uct. We had approximately 10 years’ worth of commits from more than 4 000
unique authors. Our properties per commit consisted of user name, machine
name, branch name and the change description (also known as the commit log
message).

For the FLOSS projects we had to mine a variety projects listed in Table
1. Note that Table 1 names the FLOSS participants directly because those
participants chose to self-identify; they were given the choice of anonymity,
project-level anonymity, or full identity with attribution. All of the FLOSS
participants chose full identity with attribution. Those on Google Code tended
to use SVN so we used git-svn 2 to convert SVN to Git. Git repositories were
processed using a custom script, git-grep.pl ® that extracted the commits
into a common JSON * format.

3.4 Issue Tracker Topic Mining

We mined issue trackers of both Github ® and Google Code ¢ using our own
issue tracker mining programs.

We extracted their issues and the comments associated with the issues and
converted them into a custom, but common schema in a JSON format.

To extract LDA topics from issues extracted from Google Code or Github
we followed much of the same methodology in Section 3.2.

Much like in Section 3.2 we removed stop words from the texts (for the
stop words used please see Footnote 1 in Section 3.2). We were not able use the
same stemmer for this system so we did not stem the issues at all. There was no
identifier splitting applied either. Also the texts were composed of the author,
owner, subject and bodies of an entire issue, joined into a single document
concatenated with the author and comment bodies of the associated issue
comments (the discussion of the issue in the issue tracker). This is because
the requirements contained similar information about authorship in-lined in

2 git-svn man page: https://www.kernel.org/pub/software/scm/git/docs/git-svn.
html

3 git-grep.pl is located here: https://github.com/abramhindle/gh-1lda-extractor

4 JSON Definition: http://JSON.org

5 Github Issue Extractor: https://github.com/abramhindle/github-issues-to-json

6 Google Code Issue Extractor: https://github.com/abramhindle/
google-code-bug-tracker-downloader

12 Abram Hindle et al.

their texts. Since users and developers could get into the industrial topics
we thought it was necessary to emulate requirements documents by including
authorship information. These documents were tokenized and fed into LDA.
We did not filter out any issue tracker documents.

We used a different implementation of LDA for the FLOSS issue tracker
study, Vowpal Wabbit. 7 The source code for the FLOSS issue tracker part of
the study can be found on-line® (Vowpal Wabbit is required).

209 projects were extracted, and 13 eventually used; many of which were
small. To maintain consistency with the industrial case study the same number
of topics were extracted, n = 20. The minimum requirement of a project was
that it needed at least 20 issues in order to provide enough data to make
topics from. Vowpal Wabbit (VW) was configured with LDA hyper-parameters
a = 0.1, 8 = 0.1, and 2 online iterations. VW uses an online algorithm for
LDA, thus iterations are done in batches. Vowpal Wabbit uses a variational
Bayes LDA algorithm [16]. Figure 3 shows the results of extracting and plotting
topics of Craft. NET.

3.5 Relating Requirements Topics to Commits

To relate commits to requirements topics we used LDA inference. LDA infer-
ence is similar to how LDA trains and learns topics except it does not learn
from this inference — it relates documents to pre-existing topics. This allows
us to reuse the existing requirements topics. LDA inference takes topics and
documents as input and produces a new topic-document matrix (see Section
2.2) that represents the association of a document (a commit message in our
context) to each of the 20 topics we had already extracted from requirements.
LDA inference allows us to relate existing topics to new documents without
modifying the existing topics. A new topic-document matrix is created that
describes this topic-document inference. The LDA inference technique was
previously used by Lukins et al. [22] to query bug reports.

In order to relate commits to requirements topics that were already gen-
erated, we had to convert the requirements topics to word distributions and
then infer the relationship between their word distribution and the topic word
distribution via LDA inference, rather than rerunning LDA to produce new
topics. Thus we tokenized the commit log message of each commit and pro-
duced a word distribution per commit. We treated these documents in the same
manner as the requirements documents: we removed stop words, stemmed the
terms with a custom Porter stemmer, and used the intersection of the vocab-
ulary shared by the requirements documents and topics. We intersected the
commit and requirements vocabulary because we were using LDA inference
and thus were not learning new topic words. We did not split words, or split
identifiers, as we were worried about adding semantics or removing seman-

7 Vowpal Wabbit: https://github.com/JohnLangford/vowpal_wabbit/wiki
8 Our Github LDA Extractor: https://github.com/abramhindle/gh-1da-extractor

Do Topics Make Sense to Managers and Developers? 13

tics since these topics might be interpreted by experts. The commits were not
filtered by the quality or length of their commit messages.

Thus we intersected each commit’s words by the words in our topics and
then inferred (via LDA inference) the relationship between the requirements
topics and the changes over time. We inferred the topics related to each change,
leaving us with a topic-document matrix of changes associated with topics. Fig-
ure 1 depicts this relationship between the version control system, LDA topics
and the requirements documents. Topics are extracted from and related to re-
quirements documents and then the relationship between topics and commits
is inferred. We did not train on the commits because our goal is to use topics
that were requirements relevant. Also, inference allows for fewer topic updates
as requirements updates are less frequent than commits. This can allow us to
plot time-series of commits that are relevant to topics. In Section 3.7, after
the next section, we discuss how this matrix allows us to plot the relationship
over time between requirements topics and commits. In the next section we
discuss how apply this methodology to issue tracker topics.

3.6 Relating Issue Tracker Topics to Commits

To relate issue tracker topics to commit we follow the same methodology as
Section 3.5 except our LDA corpus extracted from an issue tracker instead.
In error we failed to apply stemming to relate issue tracker commits to issue
tracker issues, and this was not correctable as the surveys had already been
sent. The inference is exactly the same except we use Vowpal Wabbit for
the LDA inference implementation and we did not stem words. To remain
consistent with the industrial case study 20 topics were used, except 20 topics
were extracted from each of the 13 FLOSS project’s issue tracker. Extraction
of issue reports is described in Section 3.4. Commits were not filtered based
on the length of the commit log message or the quality of the commit log
message.

3.7 Topic-Plots of Effort Relevant to Topics of Requirements

In order to communicate the effort that was associated with a requirements
topic and the related requirements documents, ones has to present summaries
of this effort to the users. We used a time-line overview, a topic-plot (see Figure
2) that shows the relevant commits over time. We also utilize our non-expert
topic labels to label these plots as shown in Figures 2 and 4. These topic-plots
can be generated at various levels of granularity: entire projects, entire teams,
or individual developers. Using one single global analysis we can select subsets
of the commits by attributes such as time, topic, author, or team in order
to produce more localized topic relevance plots. In particular we found that
developers were more likely to remember their own effort thus we produced
topic-plots based solely on their own commits; we called these plots personal

14 Abram Hindle et al.

Topic 13 P set policy service mode high —— 14 track structure ...

1

Avg. Commit Relevance
00 05 10 15 20 25

b el

LLLLLAR R R R R R R RN RN R NN R RN RN RN RN RN R RN RN RN RN R RN RN R RN R R R RN IR R RN RN RE RN RN
2010/04/15 2010/06/02 2010/07/21 2010/09/07 2010/10/25 201011212 2011/01/29 2011/03/18 2011/05/06 2011/06/23

Fig. 4: Personal topic from 1 industrial developer. Topics and Relevant re-
visions over time. X axis is time, Y axis is the average relevance per time
window (greater is more relevant). The topic label provided is a non-expert
label created by the authors.

topic-plots. Figure 4 is an example of one of these personal topic-plots. These
topic-plots are appropriate representations as they provide stakeholders with
an overview of topic relevant effort and would be a welcome addition to a
project dashboard.

In this study we assume that commits are a reasonable proxy for effort.
We recognize that commits could actually be months of work, expressed as 1
sole commit, or many commits could be created in the same hour. Thus we
look to the prior work of Koch et al. [18] and Capiluppi et al. [6] who argue
and provide evidence that commits are correlated with project activity and
are both related and correlated with development effort. We argue that the
topic relevance of a commit is relevant to the effort related to that topic and
the associated documents that the topic was extracted from. While it might
not be an exact measure, a strong relevance would indicate that potentially
similar concepts are being expressed in the commit comments that are relevant
to the topic at hand. Thus we argue that not only are commits relevant to
effort, but that topic relevant commits indicate topic relevant effort.

Note that a single commit can be associated with multiple topics [13].
Figure 2 shows a topic-plot of 20 topics that show the focus on these topics by
average commit relevance over time. We put the commits into bins of equal
lengths of time and then plot their average relevance (a larger value is more
relevant) to that topic. Bins will be of an equal length of time (such as 7
days) and thus they will not be equal size in terms of the number of commits.
Some bins will have few or 0 commits, some will have 10s to 100s of commits
depending on the project and how busy development was at that time. Then
for the commits within a bin, their topic-document relevance values from the
topic-document matrix, extracted by LDA inference, will be averaged together.
The average relevancy of 0 commits is set to 0.

Note that indicates a redaction, within this study we redacted some
tokens and words that would disclose proprietary information. This is the

Do Topics Make Sense to Managers and Developers? 15

long dash that is featured in Figure 2. Within this figure we can see distinct

behaviours such as certain topics increasing or decreasing in importance.
The figures produced are interesting but we have to evaluate if they are

representative of the developer’s perception of their relevant behaviour.

3.8 Topic-Plots of Effort Relevant to Issue Tracker Topics

For the Issue Tracker Topic-Plots we followed a similar methodology to the
previous Section 3.7. But we executed this methodology per each project and
per each author of that project.

Figure 3 shows the topic-plots of Craft. NET, while Figures 6 and 7 show
the topic-plots given to 13 different FLLOSS developers on 13 different FLOSS
projects.

3.9 Qualitative Evaluation

Our goal is to determine the utility of the global revision topic-plots and the
personal topic-plots (e.g. Figure 4). Thus we interviewed relevant stakehold-
ers and developed a survey. Our interviews and surveys were designed using
methodologies primarily from Ko et al. [17] and those described by the em-
pirical software engineering research of Shull et al. [34] and Wohlin et al. [40],
regarding interviews, surveys and limited study sizes.

3.9.1 Microsoft PM and Developer Interviews

Our goal is to determine if labelled topics are relevant to developers and pro-
gram managers (PMs), all of whom are development engineers. Our first study
occurred at Microsoft and thus the initial interviews were with Microsoft em-
ployees. Relevance to a developer is subjective, but we define it as “the devel-
oper worked on a task that had at least a portion of it described by the topic”.
We scheduled and interviewed 1 PM and 1 developer for 1 hour each. During
the interviews with PMs and developers we asked if the topic-plots of the 20
requirements topics were relevant to developers and PMs. We did not provide
our labels to the PMs and developers until after they had provided labellings.
We also asked, “Are they surprised by the results?” and, “Can they identify
any of the behaviours in the graphs?” We then summarized the comments
and observations from these interviews and used them to design the survey,
discussed in the next section.

3.9.2 Microsoft Developer Survey

To gain reliable evidence about the utility of requirements topics and topic-
plots, we produced a survey to be administered to developers, that asked

16 Abram Hindle et al.

developers to label topics and to indicate if a personalized plot of their be-
haviour matched their perception of their own effort that was related to that
topic and its keywords. We analyze these results in the Section 5.2.

The survey asked developers to label three randomly chosen topics, evalu-
ate the three personal topic-plots of these topics, and to comment about the
utility of the approach. Each of the topic labelling questions presented an un-
labelled topic with its top 20 words and asked the respondents to label the
topic. Another question asked if this topic was relevant to the product they
worked on. They were then asked to look at a personal topic-plot and see
if the plot matched their perception of the effort they put in. Finally they
were asked if these plots or techniques would be useful to them. The surveys
were built by selecting the developer’s commits and randomly selecting topics
that the developer had submitted code to. Three topics were randomly chosen
for labelling and these topics were ordered randomly in an attempt to limit
ordering effects.

Initially, we randomly selected 35 team members who had committed
changes within the last year and had over 100 revisions. We sent these de-
velopers an email survey. After only 4 developers responded we switched to
manually administering surveys. We repeated the previous methodology for
choosing participants and chose 15 candidates, 8 of whom agreed to be admin-
istered the survey. Administering the surveys in person would reduce training
issues and allow us to observe more. The administered surveys included an
example topic question, used for training, where we verbally explained how
the topics were extracted and how the commit messages were analyzed during
the in-person administration of the survey. We then walked them through this
example, reading the topic words out loud and thinking out loud. We pro-
vided a concrete example and abstract explanation to increase survey success
or completion.

Surveys were administered by the first two authors, the first author spoke
aloud each question to the respondents in order for their answers to conform
to the survey. An example of a labelling that perceptually matched was when a
respondent gave the label “Design/architecture words” to the following Topic
8 (seen in the 2nd column of the 4th row of Figure 2):

component set policy context service mode high —— 14 track structure check
type hresult feature gat ap follow data dynamic.

Later, similar surveys were produced for FLOSS developers.

3.9.83 FLOSS Dewveloper Survey

We sought to replicate the Microsoft case study, described in Section 3.9.2,
that was executed on industrial participants, on FLOSS Developers.

The FLOSS survey was meant to be shorter than the MS survey since the
FLOSS survey had a lengthy consent form attached to it. Much like the original
survey the FLOSS developer survey asked developers to label three randomly
chosen topics, determine if these topics were relevant to their project, and

Do Topics Make Sense to Managers and Developers? 17

evaluate if three personal issue tracker topic-plots presented matched their
perception, and then they were asked to comment about why or not the plot
did not match their perception. We did not replicate one set of questions:
we did not ask FLOSS developers about the utility of the plots in the survey
because we assumed that we would have a higher rate of interview participation
and thus we could go beyond just yes/no answers. Furthermore we needed to
keep the time to fill out the survey low due to the lengthy consent form.
We found in the Microsoft study that a simple yes/no question was probably
oversimplifying the response of the survey participants.

These surveys were built by selecting the FLLOSS developer’s commits and
randomly selecting topics that the developer had submitted code to. Three
topics were randomly chosen for labelling from 20 generated topics for their
project. These topics were ordered randomly in an attempt to limit ordering
effects if there were any.

The surveys were uploaded to a website, and later we added the surveys
to Google Drive. We uploaded an HTML survey, an open document survey
(LibreOffice/OpenOffice), a DOC file survey (Microsoft Word), a PDF survey,
and sometimes a Google Doc survey. Each of these surveys were identical. Our
hope was to be as convenient as possible for the respondents, some respondents
mentioned that Google Docs was the most convenient. For the other file types
the respondents would email back the modified files. We did not send HTML
email to the FLOSS developers because there is some backlash in the FLOSS
community against HTML email.

To find FLOSS developers we started by browsing Google Code and find-
ing projects that were used but not exceptionally busy and popular. We
then extracted their issue tracker and commits. Surveys and suggested emails
were generated by an email/survey generator script and we emailed many
of these off. After receiving limited response from the developers of Google
Code projects we switched to Github projects. We then decided to approach
developers more directly using real-time chat.

Our recruitment strategy was to join Freenode 9 a popular Opensource
Internet Relay Chat (IRC) network, and look for channels that advertised
Github repositories. Channels can advertise a repository by having the URL to
the repository in their channel topic (e.g, the project github3.py had a channel
topic of “https://github.com/sigmavirus24/github3.py current version: 0.5 ||
http://developer.github.com/v3/ || http://github3py.rtfd.org/”). We browsed
the Freenode channels using the /LIST command in IRSSI '°. Then we filtered
the channels by those that had Github URLs in them. If their Github project
had over 20 issues in the Github Issue Tracker and more than 3 months of
development in the Github git repository we would enter the channel, announce
that we have extracted the topics of their project and paste a hyperlink to
a gallery of the extracted global issue tracker topic-plots. We selected the
channels by number of participants and in alphabetical order. We started with

9 FreeNode: http://freenode.org
10 IRSSI IRC Client: http://irssi.org/

18 Abram Hindle et al.

the lowest number of participants first as we expected the idle participant
would probably be a developer for that project. Thus for each channel we
joined, we had already mirrored their issue tracker and git repository, and
extracted the issue tracker comments and pre-generated all the surveys for all
the developers in the project’s git repository.

We would target the known developers in the IRC channel by prefixing our
gallery URL with their nicknames (e.g, “devname: hello! I've plotted the issue
topic of your repository at: URL”). Then if a developer responded we would
engage them in conversation and ask if they would interested in taking part
in our survey. Of these Freenode developers, about 11 positively responded.

In total we had sent out 156 emails, this included the emails to the Freen-
ode based developers. We had already extracted and generated surveys for
209 different projects. We received 13 responses. Our response rate overall
was 12%, much lower than our Microsoft response rate but we had less devel-
opers per project to choose from. We found that the direct developer engage-
ment resulted in more respondents. Some developers mention they had been
contacted before by other researchers. Developers who responded, and their
corresponding FLOSS projects, which had issues and commits, are listed in
Table 1. Once the surveys were collected we summarized the results.

3.10 Summarizing the results

After the surveys were administered we discussed the results with each other,
analyzed the data and collated our observations about the topic labelling,
topic interpretation and if the topic-plots matched the developers’ perception
of effort. Figures 6 and 7 depict the issue report topic-plots from the FLOSS
developers, while Figure 2 shows the requirements topic-plots of the Microsoft
product that we studied. In the next sections we discuss the results of these
interviews and surveys.

4 Topics of Requirements, Issues and Topic-Plots

We argue that leveraging these topics provides some traceability between re-
quirements documents and the commits themselves. When one combines these
links into a topic-plot (Figure 2) one gains a powerful high-level overview of
the effort that is relevant to certain requirements.

Figure 2 depicts a set of topic-plots based on the 20 requirements topics
that we extracted, and manually labelled, from the large Microsoft project
that we studied. What is important about this style of plot is that it provides
an overview of the per topic focus of effort during an entire system’s lifetime.
One can observe the evolution of how efforts are focused on different kinds of
requirements topics at different times in the system.

The data being processing is large and cumbersome, yet such a simple plot
can provide insights into a project. For instance, the 6th topic (3 down, right

Do Topics Make Sense to Managers and Developers? 19

FLOSS Developer Project Issues | Commits

Julian Harty Open reader for DAISY 2.02 Audio Books 59 529
https://code.google.com/p/android-daisy-epub-reader/
An Android EBook Reader

Lisa Milne nodau 14 52
https://github.com/darkrose/nodau
A commandline based note taker

Tobias Leich SDL for Perl 242 2714
https://github.com/PerlGameDev/SDL
Perl bindings for the SDL Library

Ian Cordasco github3.py 72 816
https://github.com/sigmavirus24/github3.py
Python bindings to Github’s API

Ricky Elrod dagd 13 220
https://github.com/CodeBlock/dagd
RESTful PHP Network Tools

Anthony Grimes refheap 107 475
https://github.com/Raynes/refheap
A Clojure Pastebin-like Webservice

Geoffrey Greer sublimetext2plugin 28 226
https://github.com/Floobits/sublime-text-2-plugin
Floobits plugin for Sublime Text 2

Nicolas J. Bouliane DNDS 28 1065
https://github.com/nicboul/DNDS
A Peer-2-Peer (P2P) Virtual Private Network (VPN)

Drew DeVault Craft.NET 147 479
https://github.com/SirCmpwn/Craft.Net
MineCraft utility library for .NET

Daniel Huckstep kindlebility 49 113
https://github.com/darkhelmet /kindlebility /
Makes Readable (Readability) PDF's of Webpages for the Kindle

Chad Whitacre Aspen 160 1243
https://github.com/zetaweb/aspen
Pythonic Web Framework

Devin Joel Austin Form-Sensible-Reflector-DBIC 8 102
https://github.com/dhoss/Form-Sensible-Reflector-DBIC
DB Schema based Form Generator

Gerson Goulart Aura 216 367
https://github.com/aurajs/aura
Javascript Ul Framework

Table 1 FLOSS Developers and their Projects

most), in Figure 2 shows a lack of behaviour for the first 7 years followed by
a distinct and constant increase in focus and importance. In Section 5.1.1 an
interview with a program manager reveals that the spikes in the topic-plots 7
and 9 are relevant to actual changes (topic-plots 7 and 9, 4th and 5th rows
in the first column of Figure 2). Another example of interesting behaviour
includes the use cases and testing topics (8th and 10th topics, 4th and 5th in
the second column) became less important, information that would be useful

to a manager.

Figure 2 is a global plot; while relevant to managers it might not be rel-
evant to individual developers. Developers could be more interested in fine-

20 Abram Hindle et al.

grained and local information about themselves, their teammates and their
entire team. Example fine-grained and local topic-plots are depicted in Figure
5a which shows the topic-plots of 2 developers drawn only from commits made
by those developers. By examining Figure 5a, we observe that the developers’
behaviour with respect to a particular topic does indeed change over time, and
each developer exhibits a different focus. Plots like Figure ba illustrate that
different authors’ focus evolves over time.

Analysis of groups of developer via topic-plots is possible. Figure 5b de-
picts different teams (developers with the same manager) rather than different
authors. These plots can be generated based on the work of multiple authors
or an organization, in this case we leveraged the organizational knowledge of
teams (who manages who). This allows the attribution of effort relevant to
requirements topics to teams. For Topic testing, metrics and milestones in
Figure 5b, the trend was similar but the behaviour was not. This manager
level view provides a summary of a team’s development effort and allows one
to compare teams and see the behaviour relevant to that team.

In summary, we can track commits related to topics extracted from require-
ments over time. We are able to extract and plot global topic-plots depicting
global trends, and produce local topic-plots of teams and developers that can
be used to investigate more personally relevant and local trends. This informa-
tion can help provide feedback to a manager who could augment their project
dashboard with these topic-plots in order to observe global trends, personal
trends or team-wise trends within these plots. The potential for dashboard
use was later confirmed in interviews with a program managers (see Section
5.1.1).

In the next section we discuss the results of the surveys and interviews and
the perceptions that developers and managers hold regarding these topic-plots.

5 Qualitative Evaluation

In this section we validate if developers and managers were able to label topics
and if the topic-plots matched their perception of the effort that occurred
relevant to that topic and its associated requirements.

5.1 Interviews

Initially, we needed to understand requirements use at Microsoft. Thus our
initial interviews helped direct the rest of the study. We interviewed one pro-
gram manager and one developer for one hour each. The interviewees were
chosen specifically because they had participated in writing the requirements
documents that we had access to. Later during the FLOSS extension of the
Microsoft study we interviewed 5 developers over Skype, and IRC. In the fol-
lowing sections we discuss interviews with a program manager and a developer
at Microsoft in 2011, and then we summarize the interviews with FLOSS de-
velopers in 2013.

Do Topics Make Sense to Managers and Developers?

21

use cases features: what's GAT? is this
just a cross-general topic of common terms?

use cases features: what's GAT? is this
just a cross-general topic of common terms?

2005005009 2006101/12 20060917 200710522 2008101725 200809128 2009/06/03 201002005 20101011 2011/06/16
Time

average
commit relevance

048

2005005109 200610112 2006/09/17 200710522 200810125 200809128 2009/06/03 2010102005 2010101 2011106116
Time

average
commit relevance

testing and power? testing and power?

2005/05/09 2006101112 2006/09/17 2007105122 200810125 2008/09/28 2009/06/03 2010102105 201010/11 2011106116
Time

average

commit relevance
average

commit relevance
0 10 20

2005/05/09 2006/01/12 2006/0917 2007/05/22 2008/01/25 2008/09/28 2009/06/03 2010/02/05 2010/10/11 2011/06/16
Time

(a) topic-plots of 2 developers

testing, metrics and milestones: testing, metrics and milestones:

g o
3 ‘et g o
L& is this process? £ is this process?
23° &3
g 5. A M g3 -
5 [\ o
>e] =t - - L= _
®E R L L s e AL LI s s
g 2002005721 20030524 2004105125 2005105727 2006/05/29 2007/06/101 2008/06/02 2009/06/04 201000606 2011106008 £ 20020521 200310524 2004005725 2005005727 200610529 2007/06/01 2008/06/02 2009/06/04 2010/06/06 2011/06/08
o
© Time o Time
. music player: volume, song, controls and music player: volume, song, controls and
o
]
e e controls? g e controls?
g 32 oS
o S
gee €.
= A Qo o o
© £o TOCTTTT I T T LTI O T T T TiTT "‘Eo TOOTTTTT T T T T T T T T LTI T I T T O T T T T T T T T T T T Tt
E 20020571 20030524 20040525 20050527 20060529 2007061 20090502 20030604 20100505 201I0G08 £ 20020521 20030574 2004025 20050527 2006029 0070GT 2008002 20090604 20100GDS 201110508
o
o Time 5} Time

(b) topic-plots of 2 teams

Fig. 5: Topic-plots of 2 topics for 2 different developers and teams. The topic
labels provided are our non-expert labels. The topic labels shown are non-
expert labels.

5.1.1 An Interview with a Program Manager

We interviewed a program manager at Microsoft and asked him to label 3
topics. He walked through each topic word by word and pieced together what
he thought the topic was about. Program managers often write requirements
and he immediately indicated the relationship of topics to requirements,“I
know which specs this came from”.

The program manager also indicated that a series of correlated spikes were
most likely caused by a Design Change Request (DCR), shown in the topics 7
and 9 (first column on the 4th and 5th row of Figure 2). DCRs are management
decisions about implementation. They are caused by management wanting
a particular change or by external stakeholders, such as vendors, imposing
limitations or requirements on certain product features. The particular peak
he indicated had to do with bluetooth support.

After the initial topics were labelled the PM voluntarily help label some
more topics. When shown a topic-plot (topic 3, 1st column, 2nd row of Figure
2) of a feature that he knew about, the program manager pointed to a dip and
mentioned that the feature was shelved at that time only to be revived later,
which he illustrated as the commits dipped for a period and then increased.
This indicated that his perception of the topic and topic-plot matched reality:

22 Abram Hindle et al.

many of the labelled topic-plots mapped to the perception of the program
manager. This match between topic and topic-plot is important because the
topic-plot might not depict the relevant effort related to the topic or the label
given to that topic.

The program manager expressed interest in the research and suggested it
would be useful in a project dashboard. He additionally suggested that he
would like to be able to “drill down” and see related documents. We then
interviewed a developer to see if their view of the project differed.

5.1.2 An Interview with a Developer who Writes Requirements and Design
Documents

The Microsoft developer we interviewed had written design documents based
on the requirements document. At first he seemed apprehensive about labelling
topics, potentially due to the unstructured nature of the task. We had him
successfully label the 3 topics that the program manager had labelled. The
developer labels correlated (contained similar words and concepts verified by
the paper authors) with the program manager as well as our non-expert labels.
Some topics were relevant to concepts and features he had worked on. The
developer quickly recognized them and explained to us what the topic and
those features were actually about.

The developer also mentioned that some topics were more cohesive and less
general than others. Since the developer had made commits to the project’s
source code, we were able to present him with a personal view of his commits
across the topics. The developer expressed that this personal view was far more
relevant to him than a global view. The developer also agreed that for 2 of the
3 topic-plots, which the developer had labelled, we presented, the plots were
accurate and clearly displayed the effort he put into them at different times.
When asked about the usefulness of this approach, the developer indicated
that it was not useful for himself but might be for managers.

Our preliminary conclusions from the interview were that developers could
label topics with some prompting, but were far more comfortable dealing with
topics relevant to their own code. The developers preferred topic-plots relevant
to themselves over plots about entire project and could pick out and confirm
their own behaviour. Whether or not this would be evident in the surveys
remained to be seen.

5.2 Survey Responses

In this section we discuss the survey responses for both Microsoft managers
and developers, and FLOSS developers.

We administered surveys over email, over IRC, once over Skype, and in
person. The surveys at Microsoft occurred during the last Summer and early
Fall of 2011, the FLOSS surveys occurred during February and March 2013.
In IRC and person surveys were favoured due to low response from the email

Do Topics Make Sense to Managers and Developers?

23

g Commt Relevance. g Commit Relevance.

g Commt Relevance.

g Commt Relevance.

vg. Commit Relevance

g Commt Aslevance.

‘Aug. Comnit Rlevance

g Commt Relevance.

Fig. 6: Issue Report Topic-Plots presented to FLOSS Developers. Each shows
the topic-plots that developers were asked to label in the survey in no par-
ticular order. See figure 7 for more. Red dashed lines indicate a release or
milestone of importance (major or minor). The topic labels shown are the top

0 15 20

05

T

05

04

02 04 o8

00

00 01 02 03 04 05 05

Open reader for DAISY 2.02 Audio Books

Topic 13 add menu navigation users interface ui including current basic julianh ...

110608 20110006 2011-12-08 2012-03-09 20120610 2012-09-11 20121212

Topic 17 code display npe reliable specifi¢ discovered accessibility long means ...

0 H
110608 20110808 2011-12-08 20120909 2012-06-10 2012-08-11 20121212
Tine

Topic 19 folder http files mp3 emulator created stored store books default run ...

2110608 20110906 20111208 20120909 2012-06-10 20120911 2012-12-12

e

Topic 3 /nodau ./nodau existing e’}u‘c?yﬂ?ls&%ommil 0.3 src/db.c cc nodau note ...

2012-00-28 2012-05-19 2012-06-16 2012-07-07 2012-07-28 20120825 2012-09-15 2012-10-06

Topic 16 0.3rc4 sid gdb lisa ca test src/config.o jun info helps version src/no ...

. - P]
W0 WO NZ0MIE 002007 020728 20120828 120015 20121008
T

Topic 19 cflags environment Idflags flags makefile passed clibs commit change a ...

2120028 2012-05-19 2012-06-16 2012:07-07 2012-07-28 2120825 20120915 2012-10-0

Time

Topic 2 dist .. include wr?sPalv_vbfngyl;irF a?ernl site testing version header ...

1 15 20 28

00

2211009 01106-11 2110730 2011-10-01 2012.02.08 20120926 2012-05-26

Topic 9 controller libs perl mac connection os objects alien perl5.14.1 51900 ...

15

10

o5

00

21009 N06-11 070 N-10-01 V1200 0120204 212-03-24 20120528

Time

ranked LDA topic words.

Avg. Commi Reevance

github3.py

Topic 1 https /number doismellburning commit git issue. null python github /sh

| o
.
LK
g 34
TS TS VU O S O S Y S S
e
Topic 2 id mind link equality. sha _url githu ...
¢ 9]
i.
-
i
HE
o | omeen manw | maces mews mem @
e
Topic 19 mbox docs run_tests.py readme obj ylfra

Avg. Commit Reevance

Aug. Commit Relevance

‘Aug.Comit Relevance.

00 01 02 03 04 05 06

2012-03-19 2012-00-16 20120507 20120604 20120625 20120716 2012-0-06

Toe

20110826 2001118 20120210 20120504 20120727 2012-10-19 2013-01-11

Topic 16 duckinator /wp plan support codeblock /ec/ cd4709¢ enwiki stuff redire

10

3
s ‘ AA A A A A
010028 2011118 20120210 2012004 20120727 20021019 20130111

010826 20011118 20120210 020504 2012:07-27 2012-10-19 2030111

Tine

refheap
Topic 4 pretty works great id close set highlighting it. ahead mo

dagd
Topic 14 html browsers template title duckinator codeblock content body verbose ...

Topic 20 /wpe/ projects /ec/ duckinator enwiki plan wiktionary phuzion names wi ...

ngo aaelony a ..

00 01 02 03 04 05 08 07

20120113 20120916 20120518 20120720 20120907 20121109 20190111

Topic 7 click js case ids added information’ medown good. organize now. icon ...

2120113 2012.0316 20120518 20120720 20120907 20121109 2013-01-11

Topic 20 page linked return code actual B";sled too. awesome button existing fac ...

0113 2016 2020518 2072-0720 20720907 20721109 20130111

Time

g Commit Alevance.

24 Abram Hindle et al.

sublime-text-2-plugin SP!EN
al

Topic 3 plugin import bulk directories/files directory add ggreer select modul ... Topic 7 hook hooks whit537 run plp@ns 5Tam 58am js assets thing 50am 57am cs ..

g, ot Relevarce.

Ll

TOTe-10-24 B0T-1-07 2912121 20T2-12-05 20721218 207-01-02 2073-01-16 208-01-30 2073-0210 18- 27 O g SO
Topic 5 terminal sharing editor ssh plugin. thinkin 2 . termina ... e
opic 5 terminal sharing editor ssh plugin. g separate product. termina Topic 9 error pjz default version make point current nice config ticket fixes ...

N :]
€ ol H i<
5 P
s 5
¢ - |
£s 1)
© SET0a BE 07 I RS BT EH0TGE B0 B0 20 BTG g AR
e S S e VL O VL P HTL P L P
Topic 17 shared readme location share_dir wpowers dir /.floobits/shared! /floo .. Topic 17 file aspen simplate whits37 piz Simplates files python true users apac ..
i oo
It] E
E S .
§e § .
£: EER
§ <] A i)
2002026 20121107 20121121 212.12.08 20121219 10102 010116 0130150 20150213 2015.02.27 rw e mon maw mmaw mr mmes

Time
T

Topic 6 duthils shared /usrlhlnBL\lIJIBInSg collect2 libdnds.so linking status ...

I
§ . : TnplcSNOTFOUED?LNB%&M;hpslﬁ_lfbgﬂsgtvgy?g?h%!gmnnymoro. ad...
£° : 2 : :
s z] t :
e e o0 B mcs moees 2010 i :
Topic 7 dsd files configuration nicboul /étc install cmake reconnect installed ... § : :
i s s
g H 2000-12-07 2000-12-21 2010-01-04 2010-01-18 2010-02-01 2010-02-15
S Topic 19 curiosity keys dhoss auto yeah hey relevant module maintainership mess ..
F 29
s] 3 34
R L S LS g 2]
Topic 14 left list head cll_!ree_emry_awvreelng null jamael loop pointer dir ... E 24
] ER
P Topic 20 row reflect previous tests githidb. demonstrate content git. screwing a ..
£

0612 20N0014 0NI06 N2 20120205 20120408 2012-06-10

Tino

g, Commit Relevance

Topic 6 default version requasl(agdaal 'muE|'|;rermr merge investigate packets. ...

H H 2000207 o121 00101 100118 2010201 20100215
§ a H Tima
I : ﬁura
: : Topic 1 sandbox data atesgoral dependencies widget module sandbox. sandboxes W ...
HE H A o
— VRV 1 HIR .
S S S VL R VS S ; °
o € 5]
Topic 7 removed works file ammaraskar sfot level accumulation snow saving die ... i
] . H [RE
i : :
iz : B R S A
H .
E 3 H Topic 9 widgets widget aura demo app options multiple application support conf ...
£y w
020708 NR0T-27 DN WDCROT N WIZ-0G WIS HNZ-12-14 2012-01-08 I
Topic 9 mono packet fix solution. stops struct hope movement possible. home wa ... i H
s £
g8 NE
£ meore wwoa | weten meer wwen weme mee
e
5. Topic 14 error running npm server reading kariwestin tasks...ok parsing tasks. ...
-
Sl — T T — T g
120706 200727 V0BT D007 W00 NN TN U221 20100108 i
mo P]
Kindlebility § e
Topic 4 library ipad option compress //github.
. B Y T S
R T~
i
£
E ol
N
S0
W00l - N0 W02 N2 1018 WNI-0k0s 2011-00-27 . L
- Kindlebilit
Topic 7 darkhelmet http closed readability div progress update existing presen ... Topic 9 content indication failure url timeouts running stuff grab well. 392fa ...
e .
i IR
- £ 39
5= 5.
P L R T L S L N T B T T P L T
Tene T

Fig. 7: Issue Report Topic-Plots presented to FLOSS Developers. Each shows
the 2 to 3 topic-plots that developers were asked to label in the survey in no
particular order. See figure 6 for more. Red dashed lines indicate a release or

milestone of importance (major or minor). The topic labels shown are the top
T T T VA et 1

Do Topics Make Sense to Managers and Developers? 25

survey. IRC surveys are surveys where we chatted with the developer and then
asked if we could send them an email survey. One developer requested voice
administration of the survey, and so we talked with that developer over Skype.
One email respondent expressed difficulty interpreting the topic-plots but did
associate the behaviour with their own experience:

Again, all my projects only lasted about 2-3 months — the closest
thing that made sense in the topics listed is the USB and video work
I did, which was done in June-Aug, possibly coinciding with the last
spike.

Our observation from some of the surveys was that some raw, unprocessed
LDA topics were far too complicated to be interpreted without the training
provided by our example topic that we labelled in front of the respondent. For
example one respondent described Topic 6 in Table 2 as:

These seem pretty random. The words from the topic that actu-
ally come close to identifying something in my work area are “device
update” and “connection”.

As the surveys used personalized plots, such as the plots in Figures 4
and ba, we gained insight on the perception of the respondent if their plot
matched their perceived effort. The respondent of this plot said that some of
the plot matched his architectural work that he had concluded that labelling
is a difficult activity. The respondent also said that the peaks were in sync
with the changes that he had made. In the two other topic-plots he could not
recognize any behaviour. Thus some of the topic-plots match his perception,
but not all topic-plots were relevant.

FLOSS developers were given personal topics plots as well. All of the per-
sonal topic-plots of the FLOSS developer topics are depicted in Figures 6 and
7.

Some respondents found that part of the plots presented to them matched
their behaviour while other parts of the same plots did not. “I would have
expected more activity,” said one Microsoft participant about a topic that
was related to client server interactions. FLOSS developers, such as Gerson
Goulart and Julian Harty, expressed some doubt:

I do recognize that I put some small work in this project at the
beginning and a bit more on it some time later on, but the dates and
plot alone are not enough for me to be confident about how much work
was put into each of the topics (which I don’t know either from the top
of my mind). But a combined plot with different colours labelling each
topic could certainly help with that.

— Gerson Goulart regarding AURA topic-plots in Figure 7.

I recognize my activity varied over the duration of the project; so
I would expect peaks and troughs. However I don’t know what the
graph is based on and I've not compared it to my actual activity on the
project.

— Julian Harty regarding Topic 19 of Open Reader in Figure 6.

26 Abram Hindle et al.

Other FLOSS developers were more positive: Ricky Elrod of dagd said, “I
was able to match up some of the spikes in this one. Very neat!” of Topic 14 of
dagd in Table 3. Lisa Milne of nodau said, “The plot shows the time leading
up to a release, it quite clearly shows where a release candidate was pushed
out, followed by the actions taken following feedback from users.” of Topic 3
of nodau in Figure 6.

The majority of topics were labelled by industrial respondents, and the
mode score was 4 for agreement (rather than 5 for strongly agree) that the
topic-plot matched the developer’s perception. Figure 8 displays the scores
for the industrial administered survey: 3 not applicable, 3 strong disagree, 4
disagree, 3 neutral, 10 agree and 1 strongly agree. This gives us a median
of 4 (agree) and an average of 3.09 (neutral to agree) from 21 topic ratings.
Disagree versus agree, ignoring neutral, had a ratio of 7:11.

The FLOSS developers rated the topic-plots differently: 1 strongly disagree,
8 disagree, 10 neutral, 15 agree, and 3 strongly agree. This is a median of 3
(netural), an average of 3.30 (neutral to agree), and a mode of 4 (agree) from 37
ratings. Floss developers also answered that for 6 of 36 topics that the topics
were not relevant to their project or development, while 30/36 were (83%).
Disagree versus agree, ignoring neutral had a ratio of 1:2 (9 to 18), and were
not statistically different from the industrial respondents (7:11) according to
a X2 test (p > 0.94) of FLOSS Agree (18) and FLOSS Disagree (9) counts
versus Industrial Agree (11) and Industrial Disagree (7). The X? test run was
the Pearson’s Chi-squared test with Yates’ continuity correction, resulting in
1 degree of freedom and an X? value of 0.004.

“This plot matches my perception of the effort
that went into that topic and/or its features,”
46 — 48% of topic-plot ratings were in agreement
with this statement for both industrial and
FLOSS developers (see Figure 8).

After the surveys were administered to FLOSS developers we interviewed
those who had volunteered for a follow up interview.

5.3 Interviews with FLOSS Developers

We interviewed the FLOSS developers as part of this extension to the original
study, thus they were interviewed in February and March of 2013, 1.5 years
after the initial Microsoft Study. The FLOSS interviews occurred after they
had been administered a survey.

Some of the FLOSS developers who answered our survey agreed to be
interviewed. We interviewed the FLOSS developers after the Microsoft study,
thus we focused more on issues of bug/issue report quality and topic coherency
while talking with FLOSS developers.

Do Topics Make Sense to Managers and Developers? 27

Rating of Topic Plot Matching Perception of Effort

O Microsoft Developers on Requirements Topics
-] B FLOSS Developers on Issue Topics

= E:ii —

NA Strongly Disagree Disagree Neutral Agree Strongly Agree

25

15
1

10
1

Fig. 8: Distribution of topic-plot perceptual ratings performed by Industrial
Participants (light grey) and FLOSS developers (dark grey). On this stacked
bar-chart, the top number represents the count of Microsoft Developer ratings,
the bottom number is the count of ratings from FLOSS developers. The total
height indicates how many total ratings combined.

In total we interviewed 5 out of 13 FLOSS developers. Most interviews
with FLOSS developers were executed using textual private messages on the
FreeNode IRC Network (4 interviews) and one interview used voice over Skype
(1 interview). The interview language used was English although one of the
discussions started in French. IRC private messages were beneficial because
they were transcribed. The Skype interview was recorded via note-taking.

When we asked FLOSS developers about how they felt labelling topics,
Bouliane answered, “I was feeling happy, it’s fun to see someone interested
in what you’re doing. But I felt at the same time confused a bit, by what
I was suppose to realize by reading the keywords.” Geoffrey Greer said he
felt, “mostly confusion with a little bit of amusement”. Ian Cordasco said
that topics were easy to label, but the quality of the topic suffered due to
tokenizing employed, “When listed in plain text separate from the image it
was easy. I think the inclusion of punctuation also made it misleading because
I unconsciously tried to read it as a sentence.” Chad Whitacre pointed out
punctuation causing issues in Topic 9 of ASPEN (2nd row, 2nd column of Fig-
ure 7), “Here we’ve got a username again, and a few cases where punctuation
doesn’t seem to be properly accounted for. The remaining terms don’t really
call to mind a coherent concept, issue, or feature, however.” Tobias Leich said:

28 Abram Hindle et al.

Well, it is easy to spot single words and make connections in [my]
mind [about which] problems/features are meant [by the topic]. The
hard part was to guess what was meant by them [(the words)] together
because the words [themselves| mean so [many] different things.

When asked about the quality of issue reports, FLOSS developers such
as Nicolas J. Bouliane lamented the lack of training or templates given to
issue reporters. Bouliane suggested that guidelines used by projects such as
Asterisk!'! should be helpfully posted so that issue reporters can understand
what programmers need.

Some FLOSS developers, such as Bouliane of DNDS, could forsee this kind
of work being integrated into Github, or similar tools, in terms of prediction
and effort estimation:

What I see could be nice is something that can evaluate the velocity
of task effort put infto] a task is fun to know, but then is nice when
you can relate that [information] with a task you haven’t done yet [in
order] to approximate how much time it could take you.

I guess checking only the past would be easier at first — this task
took you that long , that much effort, that much code, and you need
to interfere that much with the existing code.

5.4 Did Respondents Agree on Topic Labels?

We wanted to see if respondents labelling the same topic agreed on the same
labels. Only our industrial study had topic label overlap since we never had
more than 1 FLOSS developer from 1 project at a time.

In table 2 we can see a selection of industrial topics, their topic words,
expert labels and non-expert labels. We can see examples of agreement and
disagreement, for instance topic 18 we can see all of the respondents and
interviewees agreed that the topic was about setup but whether or not it
was a networking device setup or application setup was undetermined. We
perceived that familiarity of a developer the requirements documents relevant
to the topic aided their ability to label the topic. Topic 15 described in 2
suffered from many experts claiming a lack of coherency, while there was some
agreement on the topic of networking. Topic 15 has some agreement with the
non-expert, as the redacted term is the same redacted term in the expert
labels. This table helps illustrate how agreement exists along a gradient that
is subject to subjectivity.

One topic, Topic 19 (depicted in Figure 2) was non-expertly labelled “wifi
networks and access points”, had agreement between 2 of the respondents.
One said: “Configuration of [access point]”, the other said “ but really [it
is] | access point]. [In particular], the [user interface] related to configuring
network broadcast, connectivity and sharing.”

11 Asterisk issue tracker guidelines: https://wiki.asterisk.org/wiki/display/AST/
Asterisk+Issue+Guidelines

Do Topics Make Sense to Managers and Developers? 29

Topic 4 pretty works great id close set highlighting it. ahead mongo aaelony a ...

Avg. Commit Relevance
EEEEEEEEEEEEN

1
T T T T T T
2012-11-09 2013-01-11

00 01 02 03 04 05 06 07

T T T T
2012-01-13 2012-05-18 2012-07-20 2012-09-07

Time

Fig. 9: Topic-plot of Topic 4 from refheap with topic words: pretty works
great id close set highlighting it. ahead mongo aaelony avoid issue. defined lein2
jquery.hotkeys implement query make site. Red dashed lines indicate a release
or milestone of importance (major or minor). The topic label shown consists
of the top ranked LDA topic words.

For Topic 5 (in Table 2), two of the respondents had agreed it was a user
scenario “End user usage pattern” and “Functionality related network mode
, allowing uses to select and their preferred network ——”. We cannot be
sure that either interpretation is more accurate. This illustrates that there can
be disagreement in terms of the meaning of a topic.

6 Discussion
6.1 Topic Labelling

We have demonstrated that stakeholders can indeed label topics. Furthermore
we have demonstrated that many of these topics are relevant to the task at
hand.

6.1.1 Developers

Developers seemed to express difficulty labelling topics, but to be clear, many
developers did not write the requirements or the design documents, or the
issue reports that the topics were derived from. We argue that some of the
difficulty of labelling topics derives from the experience one has with the topic’s
underlying documents.

There was some expression of irrelevance of some of the topics from the
FLOSS developers. Anthony Grimes of refheap gave Topic 4, depicted in
Figure 9, this label:

jquery.hotkeys is from when we were giving refheap keyboard short-
cuts. Highlighting is probably related to highlighting a line number
when you click it. The rest are way too vague to be of use.

30 Abram Hindle et al.

Words 0 IC state thread return connection call wininet cm

dword api feature component system nat callback
Topic 1 query guid dns typedef
Non-Expert — wifi code?

Expert 71 guess it’s about and connection sharing” para-
phrased

Expert Deliverable plan, message plan , delivering messages
to networks

Expert About tech and network tech (talk to team)

Words network connect wifi hotspot connection probe

state notification cm time service ui ie authenti-
Topic 5 cation reconnect go hotel delete
Non-Expert —— networks? Stuff like hotspots, hotel wift and ——
—— network

Expert is like hotspot, it’s a wifi service.

Expert End user usage pattern (SQUM)

Expert Functionality related network mode , allowing
uses to select and their preferred network

Expert Wifi services

Words supl node hslp request —— use SETUP certifi-
cate registry configuration occurrence mode valid de-
fault gat dfproperties shall dftype accesstype

Non-expert —— and SETUP + certificates??
Topic 6 Expert Supl & are protocols for

Expert core team in OSPlat Commercialization connec-
tivity (making a)

Expert ”Didn’t touch code”

Expert These seem pretty random. The words from the topic
that actually come close to identifying something in
my work area are “device update” and “connection”

Expert related — does not apply to shell code

Expert and support; lack of coherence filled with
buzzwords (keywords that managers like).

Expert Same domain (networking). ——

Expert Update a supported on device

Words test device scenario case use pass team au-
tomation document feature work change network

. ran plan —— ——
Topic 15 Non-Expert —— testing and power?

Expert Not coherent

Expert —— Connectivity

Expert Not coherent

Expert — networking + generic words

Words data use file request change service new send time
fix gat follow feature registry value application —

Topic 18 — - —
Non-Expert use cases feature : whats GAT? : is this just a cross-
general topic of common terms?

Expert About RIL (radio interface). Relevant to . Service
plan visibility. GUID for something related to SETUP
and —.

Expert SETUP something that changes state (over air
or internal)

Expert Setup application - setup or kind of configuration of
an application. SETUP device through setup

Table 2 Topic labelling: the emphasized labels are the non-expert labeling made by the
authors. The first list of words is the top 20 words in the topic. The labels are from program
managers and developers working on the project (both survey and interviews). indicate
redactions.

Do Topics Make Sense to Managers and Developers? 31

Some FLOSS developers, such as Julian Harty pointed that some topics
are indeed irrelevant and hard to label, “The terms you have collected are
nonsensical and don’t really communicate much about the project at all.”
Ricky Elrod also noticed that topics, such as Topic 20 shown in Figure 6,
might be relevant to the project, but not exactly useful:

/wpe/ refers to a url route that an issue referenced, but was never
used in the project (It was decided against — we used /ec/ instead).
“duckinator” and “phuzion” are both usernames of contributors. Rele-
vant to the project, but not to the logic of the project.

Table 3 depicts 1 topic from each participating FLOSS Developer. It also
shows the associated discussion or label that the developer associated with
that topic.

6.1.2 Managers

Managers seemed to have a higher level view of the project, as they had the
awareness that there were other teams and other modules being worked on
in parallel. This awareness of the requirements documents and other features,
suggested that topic labelling is easier if practitioners are familiar with the
concepts. These plots are relevant to managers investigating who have to in-
terpret development trends.

One manager actually gave the labelled topics a scope ranking: low, medium,
or high. This scope related to how many teams would be involved, a cross cut-
ting concern might have a high or broad scope, while a single team feature
would be have a low scope. This implies that global awareness is more impor-
tant to a manager than a developer.

6.1.3 Non-FExperts

We consider ourselves to be experts in software, but not experts about the
actual products that we studied. Thus we relied on the experts to help us
label the topics. At the same time we also labelled the topics in the industrial
case study. We examined all of the topic labels and checked to see if there
was agreement between our labellings and theirs. If our label intersected the
semantics or concepts of another label we manually marked it as a match. Of
46 separate industrial labellings (10 labellings from interviews, 12 labellings
from email, and 24 labellings from face to face surveys), our labels agreed with
the respondents only 23 times.

Only 50% of expertly labelled topic labels were
similar or agreed with the non-expert topic
labels.

Furthermore at a per-topic level, the average manual agreement between
developer expert labels and non-expert labels was agreement with 40% of the

32 Abram Hindle et al.

Julian Harty [Open reader for DAISY 2.02 Audio Books [19

folder http files mp3 emulator created stored store books default run developer properly update suggestion
3. copied force directory /

The terms you have collected are nonsensical and don’t really communicate much about the
project at all.

Lisa Milne [nodau [19

cflags environment Idflags flags makefile passed clibs commit change automake make additional e.g. sense
darkrose salvatore add carnil variables. version

A: Appears to be related to the Makefile changes that were [incorporated] after discussions
with distribution package maintainers.

Tobias Leich [SDL for Perl [2

dist .. include perl strawberry bin alien site testing version header installed path copying run script installation
module http directory

This topic is about windows specific issues, like what library version was chosen during
installation using Alien::SDL. And I’d say this is about issues where files dont get copied to
the right directory.

Tan Cordasco [github3.py [1

https /number doismellburning commit git issue. null python github /sha fairly events_url merging fork lack
object contents_url indent repos_url /key_id

This seems more Iike work I performed on the repository section of the API. doismellburning
contributed a pull request that changed the behaviour of some repository related methods
and the rest of the words seem to agree with this association.

Ricky Elrod [dagd [14

html browsers template title duckinator codeblock content body verbose pursue handle cc doctype output
/head head /body /html simple simple.

Ah, this is much better. Tt includes words relevant to the application’s purpose. It still
includes usernames though. Consider filtering them out?

Anthony Grimes [refheap [7

click js case ids added information dropdown good. organize now. icon languages tiny migrate started
necessarily antares_ questions revisions shortened

Looks like it is related to when we switched to using the ’chosen’ javascript library for
the language dropdown. Antares_ switched it to using a different mongodb library called
monger. Not sure how those two things are related. That’s all I can work out for sure.

Geoffrey Greer | sublimetext2plugin [5

terminal sharing editor ssh plugin. thinking separate product. terminals. it. nodejs reverse source require
plugins belong check fun parts bright

These seem to be some phrases from commit messages and github issues. Its weird how it
focuses on the terminal sharing feature that we decided to drop.

Nicolas J. Bouliane [DNDS [7

dsd files configuration nicboul /etc install cmake reconnect installed path packages config_file coded /us-
r/local/etc conf /etc/dnds/dnc.conf hard .deb current define

— T feel Tike these words are related with the fact that T moved from autotools to cmake and
the effort to make it work. It also reflect the fact that I did some cleanup in the way I was
linking my libraries.

Drew DeVault | Craft.NET [7

removed works file ammaraskar slot level accumulation snow saving die errors strwarrior effort additional
jump detection reduction savedlevel worth organization

ammaraskar strwarrior devs phases of developers saving levels to disc refactoring levels
weather managment (accumulation snow) jump detection

Daniel Huckstep [kindlebility [4

library ipad option compress //github.com/senchalabs/connect/blob/master/lib/connect/middleware/gzip.js

gzip random catching invalid worth protocol error throws kind request darkhelmet
8bdfa63cb871bd6c557a589aefa7935328eda812 functions. 8bdfa63cb871bd6c557a589aefa7935328eda812.
Https

It’s a little all over the place, but it’s mainly about a third part Iibrary T used. It’s about
the http framework I used.

Chad Whitacre [Aspen [17

file aspen simplate whit537 pjz simplates files python true users apache work main module create web line
works virtual import

These are all words that more or less relate to Aspen, in terms of general concepts: Aspen is
a python web framework that uses the file system extensively and specifically a file pattern
called simplates, and whit537 and pjz are the two main authors. None of these really evoke
specific issues or features, however.

Devin Joel Austin [Form-Sensible-Reflector-DBIC [19

curiosity keys dhoss auto yeah hey relevant module maintainership messages taking things 2011 impact email
roles added anymore guess would.

email roles added anymore guess would.

Gerson Goulart [Aura [1

sandbox data atesgoral dependencies widget module sandbox. sandboxes widgets method data. fetch core
individual instance understand root collections list looked

At one point of the project I found another project on Github created by @atesgoral that
had better concept of sandboxes. I created an entry in Aura about it and @Qatesgoral himself
jumped in to share ideas.

Table 3 One Issue Tracker Topic per Project/FLOSS Developer associated with a Label
by the FLOSS Developer. The first row consists of the Developer’s name, the project and
the topic number (the identity of the topic) they labelled.

Do Topics Make Sense to Managers and Developers? 33

Manual Agreement between Non-Expert Labels and Expert Labels

O Non-expert to Expert Label Mismatches
B Non-expert to Expert Label Matches

1 2

2 3 1 3
2 2 1 2 2
~
1 1 1 1 1 1 1 1 1
o R
1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16 17 18 19 20

Total count of labels per topic
4

Microsoft Topics

Fig. 10: Agreement between Expert Labels and Non-Expert Labels per each
Industrial Requirement Topic. On this stacked bar-chart, the numbers on top
of dark grey bars indicate the number of matches (agreement in labels), the
numbers on top of light grey bars indicate the number of mismatches (dis-
agreement in labels).

labels (the mean of agreement divided by total per topic). See Figure 10 for a
chart of non-expert versus expert labels in terms of agreement. This indicates
that while non-experts can label these topics, there is inherent value in getting
domain experts to label the topics.

6.2 FLOSS Developers

All of the FLOSS developers who answered the survey required that their
contribution be attributed to them. Perhaps this is because most FLOSS li-
censes, including the permissive BSD and MIT licenses, all require attribution
as one of the main requirements of the license. Some of the motivation for
participation might have been to promote their project to a wider community.

6.2.1 Did FLOSS Developers differ from Industrial Participants?

In order to address the question, “Did FLOSS Developers differ from Indus-
trial Participants?” we compared the distributions of the two studies shown in
Figure 8 using the X? test (Pearson’s Chi-Squared Test). We used both im-
mediate and simulated tests X2, and we included and excluded Not Applicable
responses, but all our tests found that the FLOSS Developers and Industrial

34 Abram Hindle et al.

Developers perceptual distributions were not statistically significantly differ-
ent. Our X? tests had p-values between 0.12 and 0.44 described in the next
paragraph.

For all of the ratings including “not applicable” when we compare FLOSS
ratings and industrial ratings using Pearson’s Chi-squared test with 5 degrees
of freedom, an X?2 value of 8.7285 and resulting p > 0.12, which indicates the
ratings were similar between groups of developers. By excluding “not applica-
ble” ratings (because it has 0 ratings for FLOSS developers) using Pearson’s
Chi-squared test with 4 degrees of freedom, with an X2 of 3.9926 and a result-
ing p > 0.40, we conclude that the ratings were still similar between groups of
developers when “not applicable” ratings were excluded.

Thus the ratings of agreement between FLOSS and industrial developers
are similar. With more respondents we might achieve more clarity if there is a
difference. Thus we conclude we have no statistical evidence that the FLOSS
developers responded differently than the Industrial participants.

6.3 Commit-Topic-Plot

We found that the per author commit-topic-plots were often relevant to the
developers. Some higher level topics seemed out of touch with the developer’s
activity. If a plot did not match a developer’s perception, we perceived that
it could be due to a lack of familiarity with the topic. Perhaps the topic was
unclear rather than the plot missing efforts that they expected. We worry in
some cases that developers might be matching noise to noise. Many industrial
respondents indicated that we should talk to the team that produced the
requirements we used. Some FLOSS respondents suggested they did not have
much input into the project and were not the most relevant people to speak to.
This lends further evidence that it is easier for those familiar with the source
requirements to label topics than those who are not as closely associated.
Since respondents validated the majority of the plots as accurate, this provides
evidence that the results are not spurious.

Many FLOSS developers reported issues with the distance between com-
mits or the irrelevance of the topics to their actual work.

6.4 Why did the Administered and IRC initiated surveys work?

The improved response to in person and verbally administered surveys pro-
vides evidence to support that the examples we provided and the ability to
discuss issues and address uncertainty with the respondents enabled them to
better understand what topics were and what labelling topics entailed. Earlier
respondents might have been worried about labelling a topic incorrectly, when
in fact we sincerely did not know what the topic was about.

The strategy of presenting a FLOSS developer with the global topic plot
of their project could have been interpreted as gift, thus making the receiving
developer more amenable to give back in-kind.

Do Topics Make Sense to Managers and Developers? 35

6.5 Issues versus Requirements

One of the problems with our FLOSS replication of the industrial study was
that we lacked requirements documents and instead relied on issue tracker
issues. Issues in some FLOSS projects are potentially the closest documents
to requirements documents. Sometimes features and even user-stories are de-
scribed in issues. Unfortunately the use of issues is not uniform and the cat-
egorization of issues is lacking at best. Thus the issue tracker will usually
contain far more bug reports about the software than feature-requests or re-
quirements. This means that our analysis of topics of issues takes on a software
quality /software maintenance perspective that was not apparent in the indus-
trial requirements documents.

Furthermore the size of each issue was far smaller than any of the require-
ments documents and the number of issues per project often exceeded the
number of requirements documents we used. Other differences included how
we represented the issues to LDA: we explicitly provided authorship informa-
tion as that was part of the structure of an issue, and part of the structure
of the requirements document text. Yet the authorship information for issues
is not embedded in the subject or description of the issue, thus to simulate
requirements we prefixed the issue author to the issue documents we fed into
LDA.

The language and structure of the requirements documents was dictated
by a requirements document template. Issues have no such template and are
often free-form save for some categorical features such as severity or module
affected. This difference could cause LDA to produce template-related topics
for the requirements documents.

7 Recommendations on the Use of Topic Analysis in Software
Engineering

Based on our experience, the discussions we had with respondents and the
results of our surveys we have compiled general recommendations for the use
of topic analysis techniques in software engineering.

Many found that labelling a set of personally relevant topics are easier to
interpret. Respondents found that topics about familiar artifacts tended to
be easier to label. One should use the most specific domain experts to label
topics. For optimal results, the team responsible for the requirements should
label those topics.

Remove confusing, irrelevant and duplicated topics. Some topics do not
actually say anything. Some are structural and filled with common terms,
some are about the use of language itself and not relevant to requirements.
Most importantly, not all topics need to be shown.

Use domain experts to label topics! We found that non-experts have ques-
tionable labelling accuracy (only 50%, with a confidence interval of 35% - 65%).
Respondents with the most familiarity gave the most relevant topic labels.

36 Abram Hindle et al.

Unlabelled topics are not enough! It took respondents 1 to 4 minutes to
interpret a topic from its top topic words. Thus multiple topics multiply the
cost of interpretation.

Tokenization matters! Depending on the source text, how tokens are kept
or not matter. Splitting on punctuation naively can harm accented words and
hamper the interpretation of a topic.

Relationships are safer than content! The relationships between documents
and topics extracted by LDA are much safer to rely upon than the content of
the topic. The content of the topic can be interpreted many different ways and
LDA does not look for the same patterns that people do. Focusing on rela-
tionships between topics and documents avoids errors in topic interpretation
and attribution.

SE researchers should be careful about interpreting topics! Repeatedly in
this study we found that small innocuous words and acronyms often had im-
portant project specific meanings that were only clarified by the developers
themselves.

Topics linked to effort can provide some form of overview! Based on the
results of the original study and its replication we feel confident that top-
ics can be leveraged for the purposes of overview, summary, and dashboard
visualization.

8 Threats to Validity

Relevant construct validity threats include the fact we used only one large
project and 13 smaller projects and that personal topic-plots are relevant only
to a single person. We were able to partially mitigate this thread by evaluat-
ing with multiple people and multiple FLOSS projects. However, the largest
threat facing the construct validity of this work is that we did not have enough
respondents. Thus we need to rely on qualitative evidence. Our surveys showed
topics in a random order to avoid order bias. Training and verbal administra-
tion of surveys can also bias results. Although we administered the survey
from a script, the fact that we did so verbally and answered questions about
our methodology could introduce bias. Showing FLOSS developers a preview
of their project in the IRC channel could have biased their results. Commits
evaluated were not filtered if they had a small number of tokens which could
lead to low quality topics. Furthermore we rely on LDA topic relevance to as-
sociate commits with topics and thus assign effort to topics: construct validity
is potentially weakened by the use of commits as a proxy for effort.

In terms of internal validity, we built explanations and theories based on
the feedback we received from respondents. Since we lacked a large number
of respondents we were not able to do statistical analysis, but Ko et al. have
argued that this size of result is still relevant [17] qualitatively, as we observed
repeated answers. Some inconsistency could arise from our use of two different
LDA implementations, a CVBO0 implementation at Microsoft and the FLOSS
Vowpal Wabbit, but both methods use a variational Bayes LDA implementa-

Do Topics Make Sense to Managers and Developers? 37

tion. LDA has many derivations since it is a probabilistic technique. In our
FLOSS replication we did not apply stemming as we had in our Microsoft
study.

External validity is threatened by the fact that requirements study of this
study took place on one project, within one organization. We could not find an
alternative project that was publicly available that had enough requirements
and maturity. Thus we had to replicate using issue reports due to a general lack
of formal requirements documentation internal to FLOSS projects (some exists
but we would also need willing participants from those projects). External
validity was harmed by failing to replicate the utility questions on our FLOSS
developer survey that we used on our Microsoft developer survey.

9 Future Work

Future work relevant to this study includes further validation by expanding
the scope in terms of software domains, developers, managers, projects and
organizations.

The survey respondents had many great ideas. One respondent desired
a Ul to dive deep into the relevant artifacts to explain behaviour. Others
suggested that providing your own word distribution as a topic would help
exploration. One PM suggested that Figure 2 would be useful as a project
dashboard. Thus this work can be leveraged in research relevant to knowledge
management, project dashboards, project effort models and software quality
models.

We would like to investigate the effectiveness of automatic topic labels
versus those labels given by developers using methods such as those suggested
by Kuhn et al. [21] and De Lucia et al. [9]. The intersection of automatic topic
labelling and manual topic labelling could help evaluate automatic topic label
quality.

10 Conclusions

In conclusion, we conducted an evaluation of the commonly used practice of
LDA topic analysis for traceability research (at a high-level) with Microsoft
developers, rather than students, in a large project with comprehensive re-
quirements documents. We also replicated the Microsoft case study on 13
FLOSS developers from 13 FLOSS projects with similar conclusions.

We investigated the relevance of topics extracted from requirements to
development effort by interviewing developers and managers. To relate re-
quirements and development activities, we extracted topics from requirements
documents using LDA | and then inferred the relationship to the version control
commit messages.

We combined a large corpus of requirements documents with the version
control system and had stakeholders validate if these topics were relevant and

38 Abram Hindle et al.

if the extracted behaviours were accurate. We also confirmed the accuracy of
extracted behaviours from issue tracker extracted topics with FLOSS develop-
ers. Many topics extracted from requirements and issue reports were relevant
to features and development effort. Stakeholders who were familiar with the
underlying requirements documents or issues tended to be comfortable la-
belling the topics and identifying behaviour, but those who were not, showed
some resistance to the task of topic labelling. Topics labelled by non-experts
tended to be inaccurate compared with expert labels.

Stakeholders indicated that many of the commit-topic plots were perceptu-
ally valid. The efforts depicted often met with their expectation or experiences.
Managers could spot trends in the global plots while developers tended to spot
trends in their personal topic-plots. We found evidence that topics and their
relevant commits often match the practitioner’s perception of their own effort
relevant to a topic. But we also found that some topics were confusing and not
easy for practitioners to interpret and label. Our recommendations were that
topics need to be interpreted, pruned, and labelled by experts; thus future
topic-related research should use labelled topics.

We have shown that topics extracted from requirements are relevant, that
their version control inferred behaviour is perceptually valid. In short, we have
provided evidence that validates some of the assumptions that researchers had
previously made about LDA derived topics and have shown that practitioners
can interpret and label topics.

Acknowledgments

Thanks to the many managers and developers at Microsoft who volunteered
their time to participate in our research and provide their valuable insights and
feedback. Abram Hindle performed some of this work as a visiting researcher
at Microsoft Research. Thanks to the Natural Sciences and Engineering Re-
search Council of Canada for partially funding this work. Thanks to Abram
Hindle’s first student, Zhang Chenlei, for his feedback. Thanks to the FLOSS
developers who chose to participate: Julian Harty, Lisa Milne, Tobias Leich,
Tan Cordasco, Ricky Elrod, Anthony Grimes, Geoffrey Greer, Nicolas J. Bou-
liane, Drew DeVault, Daniel Huckstep, Chad Whitacre, Devin Joel Austin,
and Gerson Goulart.

References

1. Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., Merlo, E.: Recovering traceability
links between code and documentation. Software Engineering, IEEE Transactions on
28(10), 970-983 (2002)

2. Asuncion, A., Welling, M., Smyth, P., Teh, Y.W.: On smoothing and inference for topic
models. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence, pp. 27-34. AUAI Press (2009)

3. Asuncion, H.U., Asuncion, A.U., Taylor, R.N.: Software traceability with topic mod-
eling. In: Proceedings of the 32nd ACM/IEEE International Conference on Software

Do Topics Make Sense to Managers and Developers? 39

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Engineering - Volume 1, ICSE ’10, pp. 95-104. ACM, New York, NY, USA (2010).
DOI 10.1145/1806799.1806817

. Baldi, P.F., Lopes, C.V., Linstead, E.J., Bajracharya, S.K.: A theory of aspects as latent

topics. In: Proceedings of the 23rd ACM SIGPLAN conference on Object-oriented
programming systems languages and applications, OOPSLA ’08, pp. 543-562. ACM,
New York, NY, USA (2008). DOI 10.1145/1449764.1449807

. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3,

993-1022 (2003)

Capiluppi, A., Izquierdo-Cortédzar, D.: Effort estimation of floss projects: a study of the
linux kernel. Empirical Software Engineering 18(1), 60-88 (2013)

Cheng, B.H.C., Atlee, J.M.: Research directions in requirements engineering. In: 2007
Future of Software Engineering, FOSE 07, pp. 285-303. IEEE Computer Society, Wash-
ington, DC, USA (2007). DOI 10.1109/FOSE.2007.17

. Cleland-Huang, J., Settimi, R., BenKhadra, O., Berezhanskaya, E., Christina, S.: Goal-

centric traceability for managing non-functional requirements. In: Proceedings of the
27th international conference on Software engineering, ICSE ’05, pp. 362-371. ACM,
New York, NY, USA (2005). DOI 10.1145/1062455.1062525

De Lucia, A., Di Penta, M., Oliveto, R., Panichella, A., Panichella, S.: Using ir methods
for labeling source code artifacts: Is it worthwhile? In: Program Comprehension (ICPC),
2012 IEEE 20th International Conference on, pp. 193-202. IEEE (2012)

De Lucia, A., Marcus, A., Oliveto, R., Poshyvanyk, D.: Information retrieval methods
for automated traceability recovery. In: Software and Systems Traceability, pp. 71-98.
Springer (2012)

Ernst, N., Mylopoulos, J.: On the perception of software quality requirements during
the project lifecycle. In: R. Wieringa, A. Persson (eds.) Requirements Engineering:
Foundation for Software Quality, Lecture Notes in Computer Science, vol. 6182, pp.
143-157. Springer Berlin / Heidelberg (2010)

Gethers, M., Oliveto, R., Poshyvanyk, D., Lucia, A.D.: On integrating orthogonal in-
formation retrieval methods to improve traceability recovery. In: Software Maintenance
(ICSM), 2011 27th IEEE International Conference on, pp. 133-142. IEEE (2011)
Grant, S., Cordy, J.R.: Estimating the optimal number of latent concepts in source code
analysis. In: Proceedings of the 2010 10th IEEE Working Conference on Source Code
Analysis and Manipulation, SCAM ’10, pp. 65—74. IEEE Computer Society, Washington,
DC, USA (2010)

Hindle, A., Bird, C., Zimmermann, T., Nagappan, N.: Relating requirements to im-
plementation via topic analysis: Do topics extracted from requirements make sense to
managers and developers? In: Proceedings of the 28th IEEE International Conference
on Software Maintenance. IEEE (2012)

Hindle, A., Ernst, N.A., Godfrey, M.W., Mylopoulos, J.: Automated topic naming to
support cross-project analysis of software maintenance activities. In: Proceedings of
the 8th Working Conference on Mining Software Repositories, MSR ’11, pp. 163-172.
ACM, New York, NY, USA (2011). DOI 10.1145/1985441.1985466

Hoffman, M., Bach, F.R., Blei, D.M.: Online learning for latent dirichlet allocation. In:
advances in neural information processing systems, pp. 856-864 (2010)

Ko, A.J., DeLine, R., Venolia, G.: Information needs in collocated software development
teams. In: Proceedings of the 29th international conference on Software Engineering,
ICSE °07, pp. 344-353. IEEE Computer Society, Washington, DC, USA (2007). DOI
10.1109/ICSE.2007.45

Koch, S.: Effort modeling and programmer participation in open source software
projects. Information Economics and Policy 20(4), 345-355 (2008)

Konrad, S., Cheng, B.: Automated analysis of natural language properties for uml mod-
els. In: J.M. Bruel (ed.) Satellite Events at the MoDELS 2005 Conference, Lecture Notes
in Computer Science, vol. 3844, pp. 48-57. Springer Berlin / Heidelberg (2006)
Kozlenkov, A., Zisman, A.: Are their design specifications consistent with our require-
ments? In: Proceedings of the 10th Anniversary IEEE Joint International Conference on
Requirements Engineering, RE 02, pp. 145-156. IEEE Computer Society, Washington,
DC, USA (2002)

Kuhn, A., Ducasse, S., Girba, T.: Semantic clustering: Identifying topics in source code.
Information and Software Technology 49(3), 230-243 (2007)

40

Abram Hindle et al.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Lukins, S.K., Kraft, N.A., Etzkorn, L.H.: Source code retrieval for bug localization
using latent dirichlet allocation. In: Proceedings of the 2008 15th Working Conference
on Reverse Engineering, WCRE ’08, pp. 155-164. IEEE Computer Society, Washington,
DC, USA (2008). DOI 10.1109/WCRE.2008.33

Marcus, A., Maletic, J.I.: Recovering documentation-to-source-code traceability links
using latent semantic indexing. In: Software Engineering, 2003. Proceedings. 25th In-
ternational Conference on, pp. 125-135. IEEE (2003)

Marcus, A., Sergeyev, A., Rajlich, V., Maletic, J.I.: An information retrieval approach
to concept location in source code. In: Proceedings of the 11th Working Conference on
Reverse Engineering, WCRE ’04, pp. 214-223. IEEE Computer Society, Washington,
DC, USA (2004)

McMillan, C., Poshyvanyk, D., Revelle, M.: Combining textual and structural analysis
of software artifacts for traceability link recovery. In: Proceedings of the 2009 ICSE
Workshop on Traceability in Emerging Forms of Software Engineering, TEFSE ’09, pp.
41-48. IEEE Computer Society, Washington, DC, USA (2009). DOI 10.1109/TEFSE.
2009.5069582

Murphy, G.C., Notkin, D., Sullivan, K.J.: Software reflexion models: Bridging the gap
between design and implementation. IEEE Trans. Softw. Eng. 27(4), 364-380 (2001).
DOI 10.1109/32.917525

Panichella, A., Dit, B., Oliveto, R., Di Penta, M., Poshyvanyk, D., De Lucia, A.: How
to effectively use topic models for software engineering tasks? an approach based on
genetic algorithms. In: Proceedings of the 2013 International Conference on Software
Engineering, pp. 522-531. IEEE Press (2013)

Poshyvanyk, D.: Using information retrieval to support software maintenance tasks.
Ph.D. thesis, Wayne State University, Detroit, MI, USA (2008)

Ramage, D., Dumais, S.T., Liebling, D.J.: Characterizing microblogs with topic models.
In: ICWSM (2010)

Ramesh, B.: Factors influencing requirements traceability practice. Commun. ACM
41(12), 37-44 (1998). DOI 10.1145/290133.290147

Reiss, S.P.: Incremental maintenance of software artifacts. IEEE Trans. Softw. Eng.
32(9), 682-697 (2006). DOI 10.1109/TSE.2006.91

Sabetzadeh, M., Easterbrook, S.: Traceability in viewpoint merging: a model manage-
ment perspective. In: Proceedings of the 3rd international workshop on Traceability in
emerging forms of software engineering, TEFSE ’05, pp. 44-49. ACM, New York, NY,
USA (2005). DOI 10.1145/1107656.1107667

Savage, T., Dit, B., Gethers, M., Poshyvanyk, D.: Topicxp: Exploring topics in source
code using latent dirichlet allocation. In: Proceedings of the 2010 IEEE International
Conference on Software Maintenance, ICSM ’10, pp. 1-6. IEEE Computer Society,
Washington, DC, USA (2010). DOI 10.1109/ICSM.2010.5609654

Shull, F., Singer, J., Sjberg, D.I.K.: Guide to Advanced Empirical Software Engineering,
1st edn. Springer Publishing Company, Incorporated (2010)

Sneed, H.M.: Testing against natural language requirements. In: Proceedings of the
Seventh International Conference on Quality Software, QSIC ’07, pp. 380-387. IEEE
Computer Society, Washington, DC, USA (2007)

Thomas, S.W., Adams, B., Hassan, A.E., Blostein, D.: Validating the use of topic models
for software evolution. In: Proceedings of the 2010 10th IEEE Working Conference on
Source Code Analysis and Manipulation, SCAM ’10, pp. 55—64. IEEE Computer Society,
Washington, DC, USA (2010). DOI 10.1109/SCAM.2010.13

Thomas, S.W., Adams, B., Hassan, A.E., Blostein, D.: Modeling the evolution of topics
in source code histories. In: Proceedings of the 8th Working Conference on Mining
Software Repositories, MSR ’11, pp. 173-182. ACM, New York, NY, USA (2011). DOI
10.1145/1985441.1985467

Tillmann, N., Chen, F., Schulte, W.: Discovering likely method specifications. In: Z. Liu,
J. He (eds.) Formal Methods and Software Engineering, Lecture Notes in Computer
Science, vol. 4260, pp. 717-736. Springer Berlin / Heidelberg (2006)

Wiegers, K.E.: Software Requirements, 2 edn. Microsoft Press, Redmond, WA, USA
(2003)

Do Topics Make Sense to Managers and Developers? 41

40. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimen-
tation in software engineering: an introduction. Kluwer Academic Publishers, Norwell,
MA, USA (2000)

