
Do Crosscutting Concerns Cause Defects?
Marc Eaddy, Student Member, IEEE, Thomas Zimmermann, Student Member, IEEE,

Kaitlin D. Sherwood, Vibhav Garg, Gail C. Murphy, Member, IEEE Computer Society,

Nachiappan Nagappan, Member, IEEE, and Alfred V. Aho, Fellow, IEEE

Abstract—There is a growing consensus that crosscutting concerns harm code quality. An example of a crosscutting concern is a

functional requirement whose implementation is distributed across multiple software modules. We asked the question, “How much

does the amount that a concern is crosscutting affect the number of defects in a program?” We conducted three extensive case

studies to help answer this question. All three studies revealed a moderate to strong statistically significant correlation between the

degree of scattering and the number of defects. This paper describes the experimental framework we developed to conduct the

studies, the metrics we adopted and developed to measure the degree of scattering, the studies we performed, the efforts we

undertook to remove experimental and other biases, and the results we obtained. In the process, we have formulated a theory that

explains why increased scattering might lead to increased defects.

Index Terms—Crosscutting concerns, fault proneness, feature location, requirements traceability, mining software repositories,

metrics, statistical analysis, empirical software engineering, open source software.

Ç

1 INTRODUCTION

DESPITE the significant effort that developers put into
producing reliable software, defects still surface after

the software is deployed. Defects creep in at every stage of
the development process, avoid detection during testing,
and all too often appear as failures to the user. Enormous
effort goes into avoiding defects (e.g., defensive program-
ming) and, when that fails, detecting defects (e.g., code
inspections, program analysis, prerelease testing) to reduce
the number of defects in a delivered software system. These
efforts might be better directed if we had a better under-
standing of what causes defects.

This paper considers the possibility that one cause of
defects is poor modularization of the concerns of the
program. A concern is any consideration that can impact the
implementation of a program [53]. A software requirement is
an example of a kind of concern. When a concern’s
implementation is not modularized, that is, the implemen-
tation is scattered across the program and possibly tangled
with the source code related to other concerns, the concern
is said to be crosscutting [42]. Several empirical studies [25],
[28], [29], [30], [47], [60], [64] provide evidence that
crosscutting concerns degrade code quality because they

negatively impact internal quality metrics (i.e., measures
derived from the program itself [41]), such as program size,
coupling, and separation of concerns.

But, do these negative impacts on internal quality
metrics also result in negative impacts on external quality?
Internal metrics are of little value unless there is convincing
evidence that they are related to important externally
visible quality attributes [35], [38], such as maintenance
effort, field reliability, and observed defects [21].

We argue in this paper that crosscutting concerns1 might
negatively impact at least one external quality attribute—
defects, i.e., mistakes in the program text. Our theory is that
a crosscutting concern is harder to implement and change
consistently because multiple—possibly unrelated—loca-
tions in the code have to be found and updated
simultaneously. Furthermore, crosscutting concerns may
be harder to understand because developers must reason
about code that is distributed across the program and must
mentally untangle the code from the code related to other
concerns. We hypothesize that this increased complexity
leads to increased defects.

To formulate our theory, we present a formal model of
concerns and their relationship to program elements and
we introduce a set of metrics that measure the extent to
which that relationship is crosscutting. To test our hypoth-
esis, we conducted three case studies to gather data on
scattering and defect counts. We then applied correlation
analysis to gather empirical evidence of a cause-effect
relationship between scattering and defects.

We found a moderate to strong correlation between
scattering and defects for all three case studies. This
suggests that scattering may cause or contribute to defects,
which—if true—has many implications. First and foremost,
our evidence suggests that one way we can improve
software reliability is to modularize crosscutting concerns
—or at least ensure they are well tested. Second, our

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008 497

. M. Eaddy, V. Garg, and A.V. Aho are with the Department of Computer
Science, Columbia University, 1214 Amsterdam Avenue, New York, NY
10027. E-mail: {eaddy, vgarg, aho}@cs.columbia.edu.

. T. Zimmermann is with the Department of Computer Science, University
of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4.
E-mail: zimmerth@cpsc.ucalgary.ca.

. K.D. Sherwood and G.C. Murphy are with the Department of Computer
Science, University of British Columbia, 201-2366 Main Mall, Vancouver,
BC, Canada V6T 1Z4. E-mail: ducky@webfoot.com, murphy@cs.ubc.ca.

. N. Nagappan is with Microsoft Research, Software Reliability Research,
One Microsoft Way, Redmond, WA 98052. E-mail: nachin@microsoft.com.

Manuscript received 24 Sept. 2007; revised 15 Jan. 2008; accepted 12 Feb.
2008; published online 16 May 2008.
Recommended for acceptance by H. Ossher.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2007-09-0274.
Digital Object Identifier no. 10.1109/TSE.2008.36.

1. For this paper, we consider a crosscutting concern to be synonymous
with a scattered concern [26].

0098-5589/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

findings suggest that cognitive complexity measures (e.g.,
concern-oriented metrics) are perhaps more appropriate
predictors of software quality than structural complexity
measures (e.g., coupling, code churn). Third, it prompts the
need for independent replication of our results to build
confidence that the relationship between scattering and
defects is real. Finally, our findings call for additional
research to determine the root cause of the supposed
relationship: Are changes to highly crosscutting concerns
more likely to be applied inconsistently? Are crosscutting
concerns inherently more difficult to understand?

This paper proceeds as follows: In Section 2, we present
a theory of the relationship between crosscutting and
defects and state our research hypothesis. In Section 3, we
describe our model of concerns and our suite of concern
metrics that are based on the model. In Section 4, we
outline the methodology we used to validate our theory. In
Section 5, we describe our case studies. We present the
results of our studies and a discussion in Section 6. We
address threats to internal and external validities in
Sections 7 and 8. We summarize related research in
Section 9. Section 10 concludes.

2 WHY MIGHT CROSSCUTTING CONCERNS CAUSE

DEFECTS?

Our theory is a set of models [31] that formalizes concepts
such as “concerns,” “program elements,” and “defects,”
and describes their interrelationships, along with how they
relate to the developer. In this section, we model the
relationship between developers and concerns. We use the
model to justify why crosscutting might cause defects,
which we need to draw meaningful conclusions from our
results [21].

Every line of code exists to satisfy some concern.
Concerns may be described in many ways and at various
levels of abstraction:

. Features from a feature list.

. Requirements from a software requirement docu-
ment.

. Design patterns and design elements from a UML
design document.

. Low-level programming concerns such as pro-
gramming language used, coding style, program-
ming idioms, code reuse, information hiding, and
algorithms.

When faced with the task of implementing a concern, a
developer creates—perhaps without realizing it—a concern
implementation plan that guides her implementation deci-
sions. It is in this plan that crosscutting first emerges. One
developer’s plan may entail scattering the implementation
(e.g., she plans to copy-and-paste code), whereas another
may localize it (e.g., she plans to create a shared function).
The plan chosen depends on many variables, including the
development process (e.g., priorities, time, resources),
programming technology (e.g., program language), and
the developer’s aptitude.

The relationship between the concerns and the program
is rarely documented [44]. This makes it difficult for
maintainers of the program to answers questions such as

“Where are all the places that the undo feature is implemented?”

(i.e., top-down analysis [48]) and “What is this piece of code

for?” (i.e., bottom-up analysis [48]). Without a proper

understanding of the scattered nature of the concern

implementation, maintainers may make changes incor-

rectly or neglect to make changes in all the right places.
Our conjecture is that, when the implementation of a

concern is distributed (scattered) across many program

elements, the complexity of that implementation increases,

as does the difficulty of making changes correctly and

consistently, increasing the likelihood of defects. Stated

simply, crosscutting concerns are hard to find, understand,

and work with. More formally, our research hypothesis is

given as follows:

Hypothesis. The more scattered a concern’s implementation is,

the more defects it will have, regardless of the implementation

size.

The last stipulation about size is necessary since past

research has established that size, in terms of lines of code,

is already a strong predictor of defects [22]. Since we expect

scattering to be related to size, we must rule out the

possibility that an increase in defects is caused by an

increase in size alone. We will revisit this technicality in

Section 6.3—so, for now, we ask the reader to ignore it.
Some controlled experiments on program understanding

suggest our theory is valid. Letovsky and Soloway use the

term delocalized plan to refer to a concern whose imple-

mentation is “realized by lines scattered in different parts of the

program.” They observed that programmers had difficulty

understanding delocalized plans, resulting in several kinds

of incorrect modifications [46]. Similarly, Robillard et al.

observed that programmers made incorrect modifications

when they failed to account for the scattered nature of the

concern they were modifying:

“Unsuccessful subjects made all of their code modifications in one
place even if they should have been scattered to better align with
the existing design” [54].

Other studies indicate that programmers make mistakes

when modifying classes whose implementations are scat-

tered due to inheritance. Harrison et al. found that “systems

without inheritance are easier to modify than systems with either

three or five levels of inheritance” [32]. From the perspective of

our theory, inheritance scatters the implementations of the

underlying concerns.
In another study, Bruntink et al. observed that the idiom

used to implement a specific crosscutting concern (excep-

tion handling) made it “too easy to make small mistakes [that]

can lead to many faults spread all over the system” [9].
Finally, enhancements or fixes applied to a crosscutting

concern may induce changes in multiple source files,

leading to increased code churn. Nagappan and Ball

showed that code churn is a good predictor of system

defect density [49] and we propose that changes to

crosscutting concerns may be the root cause.
To validate our theory empirically and test our hypoth-

esis, we next describe our concern model and a suite of

metrics that operationalize the concept of “highly scattered.”

498 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

3 A MODEL OF CONCERNS

Abstractly, a program specification, or simply specification, is a

description of a program. A specification may be executable,

e.g., a set of program elements, or nonexecutable, e.g., a

requirements specification or architectural design. Our

operational definition of a concern is an item from a

program’s nonexecutable specification. Thus, a nonexecutable

specification represents a concern domain of the program.
We define our concern-program element mapping as a

tuple M ¼ ðS; T ; CS; CT ; RÞ. S is a set of concerns

organized into a hierarchy [59] described by

CS ¼ fðs1; s2Þjs1; s2 2 S; s1 6¼ s2; s1 is the parent of s2g. T is

a set of program elements organized according to CT ¼
fðt1; t2Þjt1; t2 2 T; t1 6¼ t2; t1 is the parent of t2 in the

abstract syntax tree [1] of the program}. Finally, R is

the relation of interest between the two specifications,

R ¼ fðs; tÞjs 2 S; t 2 Tg. This is depicted in Fig. 1.
Note that CT does not describe a class inheritance

hierarchy. It describes a forest of trees, the roots of which

are the abstract syntax trees of the individual source files,

which syntactically contain class definitions, which in turn

contain class member definitions, and so forth.
The program elements that are meaningful depend upon

the language in which the program is expressed. The

projects analyzed in this paper were written in Java, so we

are primarily interested in classes, fields, methods, and

statements.

3.1 Terminology

We can now define some common terminology. A concern
is scattered if it is related to multiple target elements and
tangled if both it and at least one other concern are related to
the same target element [5], [17], [24] . For the purposes of
this paper, a crosscutting concern is a concern that is scattered
[26, p. 4].

This binary definition of scattering is simple and
unambiguous but is not very useful when most of the
concerns are scattered, which we believe to be the rule
rather than the exception [17], [62]. Hence, we need metrics
to determine the degree of scattering (DOS).

3.2 Concern Metrics

There are many ways to describe how a concern is
implemented. For the purpose of validating our theory,
we focused on four cognitive complexity metrics that
describe how scattered the concern’s implementation is, in
absolute terms and in terms of statistical distribution, and
with respect to classes and methods (the elements of
interest in an object-oriented implementation). This allows
us to determine which characteristic of scattering, if any, is
the best predictor of defects.

Complexity metrics tend to be heavily influenced by size
(in terms of lines of code), which can lead a researcher to
perceive a cause-effect relationship where none exists [22].
To test for a possible influence, we also measured the
concern’s size, i.e., the total number of lines of code
associated with the concern. We discuss the results of the
concern size tests in Section 6.3.

Table 1 provides a summary of the metrics, which we
will now describe in detail.

3.2.1 Program Element Contribution

Program element contribution (CONT) is the number of lines
of code in a program element that are associated with a
concern. The entire line is counted even if only a portion is
associated with the concern. Indeed, a line may be
associated with multiple concerns.

For a method or field associated with a concern, the
contribution is the number of lines in the method (method
declaration plus method body) or field declaration.

For classes, the contribution includes the lines of the
class declaration plus the contributions of the class’s

EADDY ET AL.: DO CROSSCUTTING CONCERNS CAUSE DEFECTS? 499

Fig. 1. Relation between concerns and program elements.

TABLE 1
Concern Metrics

methods and fields. Inner classes in Java are considered
separate from the enclosing class when determining
contribution and anonymous classes are considered part
of the enclosing method. Note that inheritance has no
bearing on contribution.

When the element is the entire program, P , the
contribution is the sum of the contributions of all the
classes, i.e., the total number of lines associated with the
concern s. We give this special case its own metric, lines of

concern code (LOCC), that is, LOCCðsÞ ¼ CONTðs; P Þ.

3.2.2 Scattering Metrics

The concern diffusion metrics, created by Filho et al., measure
scattering in absolute terms as a count of the number of
classes (CDC) or methods (CDO) that implement the
concern [25]. We include CDC and CDO in our correlation
analysis because they are rigorously defined, are validated
by several studies [25], [28], [30], and they nicely contrast
our degree of scattering metric.

The degree of scattering metric created by Eaddy et al. [17]
provides more information by further considering how the
concern’s code is distributed among the elements. We
believe this more accurately quantifies the modularity of a
concern and so should be a better predictor of defects than
absolute scattering metrics such as CDC and CDO. The
degreee of scattering metric builds upon the concentration

metric (CONC) introduced by Wong et al. [62]:

CONCðs; tÞ ¼ related to concern s
Source lines in element t

Source lines related to concern s
ð1Þ

¼ CONTðs; tÞ
CONTðs; P Þ : ð2Þ

For the object-oriented programs we studied, we measured
degree of scattering across classes (DOSC), in which case t is a
class, and degree of scattering across methods (DOSM), in
which case t is a method.

Degree of scattering is a measure of the statistical variance

[37, p. 57] of the concentration of a concern over all
program elements with respect to the worst case (i.e., when
the concern is equally scattered across all elements):

DOSðsÞ ¼ 1� V arianceðsÞ
V arianceidealðsÞ

; ð3Þ

where

V arianceðsÞ ¼
P

t2T ðCONCðs; tÞ � CONCworstÞ2

jT j : ð4Þ

The worst case occurs when the implementation of a concern
is uniformly distributed across all program elements inT , i.e.,
CONCworst ¼ 1=jTj. Substituting this into (4),

V arianceðsÞ ¼
P

t2T CONCðs; tÞ � 1
jT j

� �2

jT j : ð5Þ

The ideal variance occurs when CONC is 1 for one
component t and 0 for all other components, i.e., the concern
s is completely localized in t. Equation (5) reduces to

V arianceidealðsÞ ¼
jT j � 1

jT j2
: ð6Þ

Substituting (6) into (3) and simplifying,

DOSðsÞ ¼ 1�
jT j
P

t2T CONCðs; tÞ � 1
jT j

� �2

jT j � 1
: ð7Þ

Using the validation methodology and terminology

specified by Kitchenham et al. [43], DOS, and by extension

DOSC and DOSM, has the following properties:

. It is normalized to be between 0 (completely localized)
and 1 (completely delocalized; uniformly distributed)
(inclusive) so that concerns can be meaningfully
compared. DOS can theoretically take on any real
value within this range and is therefore continuous.
DOS is undefined when jT j � 1.

. DOS is proportional to the number of elements
related to the concern and inversely proportional to
the concentration. That is, the less concentrated the
concern is, the more scattered it is.

. DOS is a ratio-scale measure (0 means “no scatter-
ing”). Thus, it is meaningful to compare and rank
concerns by their DOS values and obtain the average
DOS.

. While DOS is unitless, the individual components of
the DOS equation do have units, specifically, the
units are lines of code (LOCs), T , and the structural
unit of T (e.g., classes, methods). One can directly
compare two DOS values only if they are both
obtained from DOS equations with identical units.
This implies that it is not meaningful to directly
compare DOS values for two different programs or
two different versions of the same program when S
or T is different.

3.2.3 Comparing DOSC and CDC

The difference between DOSC and CDC is illustrated in

Fig. 2. The pie charts show how the code related to the

concern is distributed among four classes. In the first

scenario, the implementation is evenly divided among the

four classes (the worst case). In the second, the implemen-

tation is mostly localized. We compute DOSC as follows:

500 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

Fig. 2. Comparing DOSC and CDC for two different implementations of

the same concern.

DOSC ¼ 1�
j4j 0:25� 1

j4j

� �2
þ 0:25� 1

j4j

� �2
þ 0:25� 1

j4j

� �2
� �

j4j � 1

¼ 1:

In the second scenario, the DOSC value is

DOSC ¼ 1�

j4j 0:97� 1
j4j

� �2
þ 0:01� 1

j4j

� �2
þ 0:01� 1

j4j

� �2
þ 0:01� 1

j4j

� �2
� �

j4j � 1

¼ 0:08:

DOSC is close to 0, indicating the implementation is mostly

localized. CDC cannot distinguish the two implementa-

tions, as evident by the value of 4 for both.

4 METHODOLOGY USED TO VALIDATE OUR

THEORY

To validate our theory, we chose to undertake a series of

case studies of open source Java programs. In particular, we

looked for medium-sized programs that had a clear set of

software requirements and documented defects (the rea-

sons for these criteria will become apparent in a moment).

For the three programs we selected, we reverse engineered

the concern-code mapping and the bug-code mapping. We

then inferred the bug-concern mapping. After obtaining the

three mappings, we were able to compute the metrics

described in the previous section and measure the correla-

tion between scattering and defects.
More formally, our methodology for obtaining the

mappings consists of the following steps:

1. Reverse engineer the concern-code mapping: S and CS
(Section 4.1), and R (Section 4.2). This part of our
methodology, depicted in Fig. 3, is subjective.
However, we defined assignment rules to improve
the repeatability of our mappings and chose
statistical methods designed to improve the relia-
bility of our correlation results.

2. Mine the bug-code mapping: S is the set of bugs and R
is automatically determined using bug fix data. This
is depicted in Fig. 5 and described in Section 4.4.

3. Infer the bug-concern mapping. Section 4.5 explains
how we associate a bug with a concern if the

concern’s implementation was modified to fix the
bug (depicted in Fig. 6).

4.1 Concern Selection

Selecting the right set of concerns to analyze is critical to
ensure that our theory is applicable, our statistical analysis
is valid, and our results are meaningful. However, our
broad definitions for “concern” and “nonexecutable speci-
fication” imply an infinite number of concerns from which
to choose. The context of our theory reduces the scope to
actual concerns, i.e., there is evidence that the concerns
provide the rationale for the implementation. For example,
maintainability is not an actual concern if the developer did
not consider it. This is important because our theory only
explains defects when they are related to actual cross-
cutting concerns. This requirement was difficult to satisfy
as most of the 75 open source projects2 we considered did
not have requirement documents.

Another criterion was that the set of concerns should
provide a rationale for most of the code. This reduces
sample bias since all concerns are considered, not just those
that are crosscutting. Furthermore, to ensure that our
correlations were statistically significant, we required that
the final concern set include at least 30 concerns [38, p. 64].
This is easily accomplished by making concerns more
granular; however, at some point, we must increase the
granularity of the program elements assignable to the
concerns or suffer a loss in precision. For example,
associating a concern with an entire method when it is
only related to a single statement inflates the concern’s size.
Unfortunately, our concern and bug assignment tools, and
time restrictions, limited us to field and method-level
granularity (e.g., we could not assign individual state-
ments). We discuss how this limitation affects internal
validity in Section 7.3.

The actual process of selecting concerns involved
determining 1) the appropriate concern domain (e.g., the
software requirement specification), 2) what constitutes a
concern in that domain, including the concern granularity,
and 3) the concern hierarchy. The final concern hierarchy is
entered into a tool we built, called ConcernTagger, so that
we may begin assigning program elements to the concerns.
We give examples of concerns for the three case studies in
Sections 5.1, 5.2, and 5.3. We describe the tool and
assignment procedure in Section 4.2.

4.2 Concern Assignment

Concern assignment is the process of determining the
relationship between a concern and a program element [6].
In our methodology, an analyst determines the relationship
by examining a set of concern descriptions and the source
code (see Fig. 3). For our studies, the most relevant
relationship between concerns and program elements would
be based on a likely-to-contain-defect rule:

A program element is relevant to a concern if it is likely to harbor
defects related to that concern.

In other words, if a bug is reported for a concern, the defect
is likely to lie in one of these program elements. Obviously,

EADDY ET AL.: DO CROSSCUTTING CONCERNS CAUSE DEFECTS? 501

Fig. 3. Associating concerns with program elements.

2. The list is available in the Online Appendix, which can be found at
http://www.cs.columbia.edu/~eaddy/concerntagger.

this relationship is difficult, perhaps impossible, to estab-
lish with any certainty. Instead, we approximate this rule
using the prune dependency rule created by Eaddy et al. [17],
which is easier to decide:

A program element is relevant to a concern if it should be removed,
or otherwise altered, when the concern is pruned.

To properly interpret this rule, consider a software
pruning scenario where a developer is removing a concern
to reduce the footprint of a program or otherwise tailor the
program for a particular environment. In this case, they
want to remove as much code as possible, short of a
redesign,3 and without affecting other concerns.

A benefit of the prune dependency rule is that the
mapping can be directly obtained by actually removing
each concern in turn and noting which elements require
changes. However, this task is very labor-prone and was
not feasible for the scale of the projects we studied. We
therefore relied on a human analyst to estimate the
mapping. Based on our experience assigning the concerns
of five small to medium-sized projects (13-44 KLOCs) by
hand, we believe a prune dependency is easier to estimate
than other types of relationships (e.g., implements [50],
contributes-to [25], [52]) and produces relevant results [17].
In this context, relevance is the extent to which the prune
dependency mapping agrees with the likely-to-contain-
defect mapping.4 Both rules will exclude “obviously”
irrelevant program elements, including methods shared
by all concerns (e.g., the main function), general purpose
methods (e.g., String.concat), and elements contained in
system and generic libraries.5 On the other hand, a prune
dependency assignment will include some elements that
are unlikely to contain defects, e.g., field declarations and
accessor methods.

Deciding if a prune dependency relationship exists
requires human judgment and is therefore subject to
human error. Fortunately, our statistical analysis method
(Spearman’s correlation) mitigates the impact of these
measurement errors since it only considers the relative
ordering of values, not the absolute values themselves. We
revisit the issue of assignment error in Section 7.1.

The actual assignment of elements to concerns was done
by two of the authors using an extension to ConcernMap-
per [55], a plug-in for the Eclipse6 development environ-
ment, developed by Robillard et al. ConcernMapper allows
the user to associate program elements with concerns via
drag-and-drop and so forth. Our extension to Concern-
Mapper, named ConcernTagger,7 further allows the user to
create a hierarchy of concerns and obtain concern metrics
and assignment coverage statistics (see Fig. 4).

The analyst carries out the concern assignment task by
systematically inspecting each program element and

deciding if the prune dependency rule applies to any of
the concerns. In some cases, this decision is easy, e.g., any
field named “log” has a prune dependency on the logging

concern. However, we found that the accuracy of the
majority of the decisions hinged on how well the analyst
understood the program. To aid program understanding,
we relied on project documentation, source code com-
ments, code navigation and search tools, change history
comments, and, in the case of the Rhino study, unit tests.

4.3 Ensuring Independence of Concern Metrics

Correlation and regression analysis can only be applied to
concerns whose concern metrics are independent [37,
pp. 114, 206]. As we mentioned, concerns may be organized
in a containment hierarchy, in which case the observation
below applies.

Observation. The program elements associated with a concern

via the prune dependency rule must (at least) include the

program elements associated with the concern’s descendants.

Justification. The prune dependency assignment rule states
that a program element is associated with a concern if
removing the concern would require modification or
removal of the element. Therefore, when concerns are
organized in a containment hierarchy, removing a
parent concern implies that the parent’s descendants
are also removed. Since removing the parent’s descen-
dants requires modification or removal of the program
elements associated with the descendants, it follows that
the parent concern must also be associated with those
elements.

Our concern metrics are derived from the program
elements associated with a concern. The observation above
implies that the concern metrics for a parent concern are
dependent on those of its descendant concerns (i.e., the
metrics are collinear). For example, the root concern has the
largest size and bug count and is the most scattered.8

Correlation and regression analysis is undefined when the
metrics of the concerns are interdependent [22]. Therefore,
although we assigned all of the concerns, we only
performed statistical analysis on sets of concerns where
no two concerns were descendants of each other (specifi-
cally, leaf concerns). Restricting our analysis in this way does
not introduce sample bias since the leaf concerns provide
the rationale for most of the code, as our concern coverage
statistics (discussed in Section 6) show.

4.4 Bug Assignment

As is typical, we did not have records of individual defects.
Instead, we relied on records of bugs: bug reports stored in
an issue tracking system (ITS) and bug fixes stored in a source

code control system (SCCS) [56]. A bug is caused by one or
more defects. For example, a user might report a crash (i.e.,
a failure [34]) that is caused by multiple defects, whereas a
developer might report access to an uninitialized variable
(a single defect). To validate our theory, we approximate

502 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

3. Assume that disabling the concern using a flag, preprocessor macros,
or code generation is not allowed.

4. If we knew the likely-to-contain-defect mapping, we would measure
similarity directly using the Jaccard similarity metric [58], for example.

5. It is not necessary to consider elements contained in system and
generic libraries because application-specific concerns generally do not
provide a rationale for general-purpose code (a similar argument is made in
[19]).

6. http://www.eclipse.org.
7. http://www.cs.columbia.edu/~eaddy/concerntagger.

8. Except in rare cases, the DOS metrics for a parent will be greater than
or equal to its children.

defect counts, which are not directly measurable, with bug

counts, which are directly measurable, as we will soon see.

4.4.1 Associating Bugs with Bug Fixes

When a bug report is filed in the ITS, the bug is given a

unique bug ID. The open source projects we analyzed had

publicly accessible issue tracking systems, so the filer could

be a developer on the project or a user (or both). If the bug

is genuine, not a duplicate, and is caused by defects in one

or more source files, a developer eventually fixes it, submits

the updated files to SCCS along with a reason for the

changes, and then changes the bug status to “fixed.” We

use the term bug fix to refer to the set of lines in the source

code—which may span multiple files—added, removed, or

modified to fix a bug.
Common SCCSs typically record the changes made to

source files in the form of one or more deltas. A delta

provides a list of the lines added, removed, and modified

and the reason for the change (called the commit message).

The SCCS systems used by the projects we studied were

CVS [12] and Subversion [15]. For CVS, the unit of change

described by a delta is a single file, so a fix may consist of

multiple deltas. For Subversion, the unit of change can

include multiple files, so a fix consists of one delta.

A common approach for associating bugs with program
elements is to search for deltas whose commit messages
include keywords such as “bug” or “fix” [51] or include
strings that look like bug IDs [16], [27], [57]. However,
relying on this information alone is insufficient. For one
project we studied, the IDs in 87 (37 percent) of the commit
messages referred to enhancements instead of bugs, which
would have inflated the bug counts for some concerns. This
is easily prevented by using the issue tracking system to
verify that IDs refer to actual bugs. Of course, bugs
identified by keywords instead of IDs cannot be system-
atically verified using this approach.

Furthermore, it is common for a bug to be fixed
incorrectly the first time [51] or be worked on in stages,
requiring multiple updates to the same file [2]. This can
result in the same bug being counted multiple times. Again,
using bug IDs helps us minimize noise since we only count
unique bug IDs.

Our approach for recognizing bug fixes is depicted in
Fig. 5 and described in detail by �Sliwerski et al. [57], which
is similar to the approaches used by Fischer et al. [27] and
by �Cubrani�c et al. [16]:

A delta is called a “bug fix” and associated with a bug if the
change reason refers to a valid bug ID according to the issue
tracking system.

EADDY ET AL.: DO CROSSCUTTING CONCERNS CAUSE DEFECTS? 503

Fig. 4. ConcernTagger screenshot showing (a) a Rhino source file, (b) the Rhino concern hierarchy showing the program elements assigned to the

“Regular Expression Literals” concern (program elements can be assigned to concerns via drag-and-drop and right click), (c) a view showing which

concerns are assigned to the methods of the Decompiler class, and (d) the Rhino bugs.

For Bugzilla, a valid bug is an issue in the ITS with a
resolution of “fixed,” a status of “closed,” “resolved,” or
“verified,” and a severity that is not “enhancement.” For
Jira, the type must be “bug,” the resolution must be “fixed,”
and the status must be “closed” or “resolved.” We included
bug fixes associated with any branch in the version
database (not just the main branch).

Here are examples of commit messages from the projects
we studied that our approach associates with a bug:

“NEW—bug 172515: Synchronizing queries with Bugzilla stuck
when empty results. https://bugs.eclipse.org/bugs/show_bug.
cgi?id=172515”

“Fix for 305323: Rhino fails to select the appropriate overloaded
method.”

“Fix for JIRA IBATIS-260: “Hash conflict with groupBy
resultMaps””

We required that the majority of bugs in the ITS be
traceable to bug fixes using this approach. This helps
ensure that we do not miss bugs that should be assigned to
program elements (false negatives) and that our correlation
results are statistically significant. This turned out to be a
very stringent requirement. Out of the 75 medium-sized
(less than 50 KLOCs) open source projects we considered
for our case studies, very few followed the practice of
including bug IDs in commit messages. However, this
requirement ensured that our defect counts would be
sufficiently accurate for our purposes.

4.4.2 Associating Bugs with Program Elements

To decide if a bug is associated with a program element, we
created the fixed-for-bug rule:

A program element is relevant to a bug if it was modified to fix
the bug.

For the first case study (Mylyn-Bugzilla), the first author
associated bugs with bug fixes and then program elements,
by hand.9 We realized that this procedure (depicted in
Fig. 5) could be easily automated, which would eliminate
inconsistencies caused by human error. We created a plug-
in for Eclipse, named BugTagger, which automatically
associates bugs from a Bugzilla or Jira issue tracking system
with methods, fields, and types, using change history from
a CVS or Subversion database.

4.5 Automatically Assigning Bugs to Concerns

Once we have mapped concerns and bugs to program
elements, it is trivial to automatically associate bugs with
concerns:

A bug is associated with a concern if the bug occurs in the
concern’s implementation, i.e., the intersection of the sets of
program elements associated with the bug and the concern is
nonempty.

This is depicted in Fig. 6. Our underlying assumption is that it
is reasonable to associate a bug with a concern if the source
code associated with the concern must be changed to fix the
bug. This echoes the approach that is common in the software
engineering literature (for example, see [22]), where a defect
is assigned to a class if it occurs in the class’s implementation.
The bug count for a concern is therefore the number of unique

bugs associated with the concern.
Our bug-concern assignment methodology does not

consider the similarity of the sets of program elements
assigned to the concern and bug, other than requiring that
at least one element is shared. We therefore make no claims
about the strength of the association between a bug and a
concern. For example, if all of the program elements
modified to fix a bug were associated with one concern,
we would say that the bug was strongly associated with
that concern. For the purposes of validating our theory, we
only need to know how defective a concern is and, for this,
our bug-concern assignment rule is adequate.

5 OUR CASE STUDIES

Case studies in software engineering test theories and collect
data through observation of a project in an unmodified
setting [63]. In this section, we summarize the programs we
studied, explain how we selected the concerns, and provide
some sample concerns.10 We required all three projects to
share the following characteristics:

. Open source—Ensures that our studies can be
replicated. In addition, program understanding,
which is required for concern assignment, is very
difficult without access to the source code [6].

. Written in Java—Limitation imposed by our tooling.

504 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

Fig. 5. Associating bugs with program elements.

9. To prevent bias, concern assignment was performed by a different
author.

10. Due to space limitations, we could not list all of the concerns we
analyzed. However, the complete list is available in the Online Appendix,
which can be found at http://www.cs.columbia.edu/~eaddy/concern
tagger.

. Production quality—Helps us to argue that our
results generalize to an industrial setting.

. Maintained by several people—This is more represen-
tative of industrial projects. Furthermore, our theory
has greater applicability to highly collaborative
projects, where we suspect the adverse effects of
scattering to be more evident.

. Easily identifiable set of at least 30 relevant concerns (see
Section 4.1).

. Publicly accessible ITS (see Section 4.4.1).

. Majority of bugs are referenced consistently by ID in
commit messages (see Section 4.4.1).

To improve the generalizability of our results, we purpo-
sely varied some context parameters, such as application
domain and project size. Table 2 summarizes the high-level
project differences.

5.1 Case Study 1: Mylyn-Bugzilla

Mylyn11 is a production-quality plug-in for the Eclipse
development environment that enables a task-focused
development methodology [39]. It was developed by a team
of graduate students and professional developers in con-
junction with one of the authors of this paper. Version 1.0.1
consists of 168,457 lines of Java code (LOCs)12 computed
using the Unix wc command; however, we limited our
analysis to two components: bugzilla.core and bugzilla.ui,
totaling 56 classes, 427 methods, 457 fields, and 13,649 lines
of Java code. We refer to this subset as Mylyn-Bugzilla.

The requirements for Mylyn-Bugzilla were reverse
engineered based on the “New and Noteworthy” section
of the Mylyn Web site and the personal experience of one of
the authors with the development and usage of the
components. We identified 28 of Mylyn’s functional and
nonfunctional requirements related to the bugzilla.core and
bugzilla.ui components (i.e., requirement concerns). This is
somewhat short of the 30 concern requirement we put forth
in Section 4.1. We explain how this affected statistical
significance in Section 6.1. The requirements were orga-
nized as a list so they were all leaf concerns. Examples of
requirement concerns are “Convert query hits to tasks” and
“Support search for duplicates.”

For Mylyn-Bugzilla, one author (heretofore referred to as
“Author A”) manually assigned concerns to program
elements using the procedure outlined in Section 4.2. To
avoid potential bias, a different author (“Author B”)
manually assigned bugs to program elements using the
procedure explained in Section 4.4. As explained in
Section 4.5, the assignment of bugs to concerns was
completely automated for all the case studies.

5.2 Case Study 2: Rhino

Rhino13 is a JavaScript/ECMAScript interpreter and
compiler. Rhino began life as an industrial project at
Netscape and was then transitioned to open source. Due
to its large user base and extensive test suite, Rhino has a
healthy number of bugs in its bug database. Version 1.5R6
consists of 32,134 source lines of Java code (SLOCs),
138 types (classes, interfaces, and enums), 1,870 methods,
and 1,339 fields (as reported by ConcernTagger).

Unlike the other case studies, Rhino implements a formal
specification: the ECMAScript Standard [18]. Obviously, this
specification provides a strong rationale for at least part of
the source code of any program that claims to conform to the
specification. It was therefore an obvious choice for the
concern domain. Every normative section and subsection of
the specification was considered a concern, resulting in a
hierarchy of 480 concerns. However, to ensure that our
samples were independent (as explained in Section 4.3), we
only performed statistical analysis on 357 mapped leaf
concerns.

The screenshot of ConcernTagger in Fig. 4 shows a portion
of the Rhino concern hierarchy. The “7 Lexical Conventions”
concern is visible, along with its subconcern “7.8 Literals,”
which has the child leaf concern named “7.8.5 Regular
Expression Literals.” Also visible are some of the program
elements assigned to the Regular Expression Literals
concern, which would need to be modified or removed
if support for regular expression literals was removed.
Refer to [18] for detailed concern descriptions.

For Rhino, Author B manually assigned concerns to
program elements, while BugTagger automatically as-
signed bugs as explained in Section 4.4.2.

5.3 Case Study 3: iBATIS

iBATIS14 is a popular object-relational mapping (O/RM)
tool for persisting Java objects in a relational database. The
project was started by a single developer in 2001 and has
since gathered a community of collaborators. The commu-
nity currently includes 12 active developers, some with
industrial experience. Version 2.3 consists of 13,314 source
lines of Java code, 212 classes, 1,844 methods, and 536 fields
(as reported by ConcernTagger).

The iBATIS Developer’s Guide provides a good over-
view of functionality but makes for a poor concern domain.
One reason is that the guide was clearly written after
iBATIS was implemented—it is a stretch to say that the
guide provides a rationale for the implementation. Con-
cerns cause implementation, not the other way around, and
therefore concerns must precede the implementation in

EADDY ET AL.: DO CROSSCUTTING CONCERNS CAUSE DEFECTS? 505

Fig. 6. Associating bugs with concerns.

11. http://www.eclipse.org/mylyn.
12. For Mylyn-Bugzilla, line counts include comments and whitespace

(i.e., LOCs). They are excluded for the other two case studies so that only
source lines are counted (i.e., SLOCs).

13. http://www.mozilla.org/rhino.
14. http://ibatis.apache.org.

time. Furthermore, the concepts in the guide are clearly
organized and presented in a way that guides learning, not
implementation. We therefore constructed a mock require-
ment document based on the guide consisting of 183
requirement concerns organized in a hierarchy. Of these
concerns, 132 were leaves. An example of a requirement
concern is “Caching,” which has subconcerns “Class
Caching,” “Request Caching,” and “Statement Caching.”

For iBATIS, Author B manually assigned concerns, while
BugTagger automatically assigned bugs.

6 EMPIRICAL RESULTS AND DISCUSSION

Table 3 shows the amount of source code covered by the
selected concerns and bugs. The concern coverage for Mylyn-
Bugzilla is relatively poor, considering that only 43 percent of
the code is covered by the requirement concerns we reverse
engineered. This is likely due to a lack of a complete set of
requirements for the Mylyn-Bugzilla component. In contrast,
the bug coverage is high (92 percent).

The concern coverage for Rhino is high (88 percent),
confirming that the ECMAScript specification explained
most of the code. The remaining 12 percent is dead code,
general purpose, or implements other concerns. For example,
Rhino implements some nonstandard extensions to ECMA-
Script, as well as the E4X and LiveConnect standards. The
bug coverage was somewhat low (66 percent), probably
because some bugs were mapped to program elements
that were absent in the version of Rhino we studied
(1.5R6) or were related to concerns other than the ones we
analyzed (e.g., LiveConnect).

Among studies that map concerns manually and
exhaustively—as opposed to the more common approach

of only mapping a subset of the concerns or a portion of the
code—Rhino is the largest and most comprehensive study
that we know of.

We obtained 98 percent concern coverage for iBATIS,
signifying that the developer’s guide we used to create the
requirements described all the functionality. The bug
coverage was somewhat low (53 percent), probably because
of the issues already mentioned for Rhino. Low bug
coverage is not necessarily bad, as we explain in Sec-
tion 7.2.4.

6.1 Is Scattering Correlated with Defect Count?

Fig. 7 shows the scatter plots for all of the concern metrics
versus bug count for the Rhino project. DOSC and DOSM
appear to have a logarithmic relationship with bug count.
CDC, CDO, and LOCC have a clear linear relationship with
bug count. We therefore used Spearman’s rank-order
correlation coefficient, which supports both linear and
curvilinear relationships, and mitigates to a certain extent
the unreliability of our measurements (we discuss this
further in Section 7.1). Table 4 shows our correlation results
for the three projects. Correlation coefficients range from
�1:00 (a perfect negative correlation) to þ1:00 (a perfect
positive correlation). A coefficient of 0 means no correlation.

The Mylyn-Bugzilla results (see Table 4a) show that our
DOS metrics (DOSC and DOSM) are moderately correlated
with bug count (0.39 and 0.50) and the concern diffusion
metrics (CDC and CDO) are strongly15 correlated (0.57 and
0.61). These correlations were statistically significant at the
5 percent confidence level. In other words, there is a small
(5 percent) probability that the relationship between the

506 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

TABLE 3
Size and Assignment Coverage Statistics

a A program element is “mapped” if it is assigned to at least one concern.
b Comments and whitespace are included for Mylyn-Bugzilla but excluded for Rhino and iBATIS.
c “All” means all concerns in the concern domain. “Mapped” means those concerns that were assigned to at least one program element.
d “All” means all “fixed” bugs (nonenhancement issues) found in the ITS on or before the version of the program we studied. “Mapped” means bugs

TABLE 2
Project Summaries

15. Our use of the qualitative descriptions of correlation strength,
“strong” and “moderate,” is based on convention [14, pp. 79-80].

scattering metrics and the bug count is coincidental. Thus,

even though we obtained only 28 concerns for Mylyn-

Bugzilla instead of 30, as prescribed in Section 4.1, our

results are still statistically significant.
The correlations are stronger and more statistically

significant for Rhino (see Table 4b). All scattering metrics

(DOSC, DOSM, CDC, and CDO) have substantial correlation

coefficients—ranging from 0.65 to 0.74—indicating a strong

association with bug count. The probability that the associa-

tion exists by chance is minute (less than 0.01 percent).
For iBATIS (see Table 4c), we see correlations of similar

strength as Mylyn-Bugzilla. All scattering metrics have a

nontrivial association with defects with correlation coeffi-

cients ranging from 0.29 for DOSM to 0.58 for CDC.

Similarly to Rhino, the probability that the association

exists by chance is minute (less than 0.01 percent).
Taken together, these results support our hypothesis:

Concern scattering is correlated with defects.

It is interesting to consider one of the crosscutting

concerns revealed by our analysis. In Rhino, the require-

ment “10.1.4—Scope Chain and Identifier Resolution” was

the most scattered according to its DOSC (0.91) and CDC

(68) values. This requirement specifies the scoping rules for

identifier lookup in ECMAScript. Its physical realization in

the source code entails passing around a scope parameter

to most of the method calls in Rhino, resulting in the

concern being scattered across the code base. Considering

its highly scattered nature, it is not surprising that the

concern is also the most error prone (73 bugs).

6.2 Correlations between the Scattering Metrics

From Tables 4a, 4b, and 4c, we observe that the scattering
metrics are strongly correlated with each other. For
example, for Rhino, CDC is almost perfectly correlated
with DOSC (0.96). This is expected since CDC and CDO are
coarser versions of DOSC and DOSM. In addition, the
member-level metrics were strongly correlated with their
class-level counterparts. This is also expected since a class
is only associated with a concern if at least one of its
members is associated.

Although we were hoping to determine if it is more
profitable to analyze scattering at the class or method level
when correlating defects, our results were inconclusive. For
Mylyn-Bugzilla and Rhino, method-level scattering (CDO)
had the strongest correlation (0.61 and 0.77, respectively),
whereas, for iBATIS, class-level scattering (CDC) was the
strongest (0.58).

By and large, CDC and CDO were more strongly
correlated with defects than DOSC and DOSM. We were
somewhat surprised by this result. We expected DOSC and
DOSM to decidedly outperform CDC and CDO because we
believe degree of scattering more faithfully quantifies the
scattered nature of a concern. However, our results indicate
that simply knowing the number of classes and methods
involved in the implementation of a concern is sufficient. It
may be that degree of scattering is more useful when
concern assignment is performed at the level of statements
(or below). For example, moving redundant code into a
shared function reduces degree of scattering, but is
undetected by CDC and CDO.

6.3 Testing for the Confounding Effect of Size

For all the projects, the size of the concern implementation
(LOCC) had the strongest or second strongest correlation

EADDY ET AL.: DO CROSSCUTTING CONCERNS CAUSE DEFECTS? 507

15. Our use of the qualitative descriptions of correlation strength,
“strong” and “moderate,” is based on convention [14, pp. 79-80].

Fig 7. Scatter plots of the concern metrics versus bug count for Rhino.

with bug count (0.77, 0.90, and 0.53). This is consistent with

several other studies [8], [11], [33] that found strong

correlations between size metrics and defects (although

Fenton and Ohlsson [23] found no correlation). This

indicates that larger concerns have more defects. This also

suggests that a refactoring that reduces scattering but

increases concern size might actually increase defects.
Previous studies have found correlations between object-

oriented metrics, such as the CK metrics [13] and fault-

proneness. However, El Emam et al. showed that after

controlling for the confounding effect of size the correlation

disappeared [22]. The reason is that many object-oriented

metrics are strongly correlated with size and therefore

serve as surrogates for size.
Looking at Tables 4a, 4b, and 4c we see a strong

correlation between the scattering metrics and size (LOCC).

For example, for Rhino (Table 4b), the strength of the

correlation between CDO and LOCC is very strong (0.80).

The reason is obvious if one considers that, as more classes

and methods become involved in a concern’s implementa-

tion (CDC and CDO), the number of lines (LOCC) grows. In

fact, CDC and CDO cannot increase without a simulta-

neous increase in LOCC. DOSC and DOSM are not directly

dependent on the number of lines associated with a concern

but rather on how those lines are distributed across classes

and methods. There is, however, a significant correlation

between these metrics and size, ranging from 0.38 to 0.68.
The strong correlation between all of the scattering

metrics and size and between size and bug count indicates

that we must test for a confounding effect. For the sake of

thoroughness, we performed two tests: stepwise regression

analysis and principal component analysis (PCA).

6.3.1 Size Test 1: Stepwise Regression Analysis

For stepwise regression analysis [37, pp. 263-264], we build
a regression model that initially consists of the concern
metric that has the single largest correlation with bug
count. We then add metrics to the model based on their
partial correlation with the metrics already in the model.
With each new set of metrics, the model is evaluated and
metrics that do not significantly contribute toward the
statistical significance are removed so that, in the end, the
best set of metrics that explain the maximum possible
variance is left. The amount of variance explained by a
model is signified by the model’s R2 value [37, p. 229].

For completeness, we also include the Adjusted R2 and
Standard Error of Estimate values. Adjusted R2 explains
any bias in the R2 measure by taking into account the
degrees of freedom of the predictor variables and the
sample population. From Tables 5 and 6, we see that the
Adjusted R2 values are almost the same as the R2 values,
which indicates that the bias is absent from our models.
Standard Error of Estimate (Std. Error) measures the
deviation of the actual bug count from the bug count
predicted by the model.

We can now state our test: If size explains all of the
variance in bug count, we would not expect stepwise
regression to include any of our scattering metrics. Table 5
shows our stepwise regression results for the three projects.
Narrowing our focus to Mylyn-Bugzilla (Table 5a), we see
that the stepwise regression completed after two steps.
From the first step, we can see that the most significant
metric is size (LOCC). The R2 value of 0.73 means that we
can explain 73.0 percent of the variance in bug count using
size alone. The second step adds a scattering metric (CDC),
which improves R2 only slightly.

508 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

TABLE 4
Spearman Correlation Coefficients (a) Mylyn-Bugzilla, (b) Rhino, (c) iBATIS

In (a) all values are statistically significant at the 5 percent level (two-tailed). The sample size N (number of concerns) is 28. In (b), all values are
statistically significant at the 0.01 percent level (two-tailed). The sample size N (number of concerns) is 357. In (c), all values are statistically
significant at the 0.01 percent level (two-tailed). The sample size N (number of concerns) is 132.

Shifting our attention to iBATIS (Table 5c), we find

results similar to Mylyn-Bugzilla. While all of the scattering

metrics in the final model (Model 5) contribute to

explaining the variance in bug count to some extent, size

explains the most variance.
This is to be expected. Our theory states that scattering is

responsible for some—not all—of the defects in the program.

We therefore expect that size explains most of the defects. The

stepwise regression models for Mylyn-Bugzilla and iBATIS

indicate that scattering explains some of the variance in bug

count, which supports our hypothesis.
The stepwise regression results for Rhino (Table 5b) are

strongly in favor of our hypothesis. As explained in

Section 6.1, DOSC and DOSM have a clear logarithmic

relationship with bug count for Rhino. Since stepwise

regression expects a linear relationship, we first took the

logarithm of these metrics, which explains the terms

LogDOSC and LogDOSM in Table 5b. From the table, we

see that the regression terminated after three steps and that,

at each step, the metric that explains most of the remaining

variance was chosen. From the R2 value, we see that the

model with scattering metrics LogDOSC, CDC, and

LogDOSM explains 92.8 percent of the variance in bug

count—size (LOCC) does not factor into the prediction at all.
In summary, stepwise regression analysis supports our

hypothesis because it indicates that scattering explains

some—and, for Rhino, most—of the variance in bug count

for the three projects we studied independent of size.

6.3.2 Size Test 2: Principal Component Analysis

Because the scattering metrics and LOCC are highly

correlated among themselves, it is likely that the Spearman

and stepwise regression models do not explain as much of

the variance in bug count as the coefficients imply (i.e., they

overfit the data). To overcome this collinearity, we used

principal component analysis (PCA) [36]. With PCA, a

small number of uncorrelated weighted combinations of

metrics (that account for as much sample variance as

possible) are generated such that the transformed variables

are independent. These weighted combinations of metrics

are called principal components.
Running PCA on the metrics for the three projects resulted

in the generation of the principal components shown in

Tables 6a, 6b, and 6c, which account for greater than

95 percent of the sample variance. For Mylyn-Bugzilla

(Table 6a), three components were generated. The first

component explains the highest amount of variance, the

second component explains the second highest, and so on.

The first component weighs all of the metrics highly—DOSC

has a weighting of 0.70, DOSM has 0.80, and so forth. This

indicates that the scattering metrics are significant contribu-

tors to explaining the variance in bug count. The results for

Rhino (Table 6b) and iBATIS (Table 6c) are similar.
We then used the principal components to build a

regression model for each project. From Table 7, we see that

the models are highly accurate at predicting bug count—as

indicated by the high R2 values—further indicating the

EADDY ET AL.: DO CROSSCUTTING CONCERNS CAUSE DEFECTS? 509

TABLE 5
Stepwise Regression Model Summaries: (a) Mylyn-Bugzilla, (b) Rhino, (c) iBATIS

For (a): a Metrics Used: LOCC, b Metrics Used: LOCC, CDC.
For (b): a Merics Used: LogDOSC, b Metrics Used: LogDOSC, CDC, c Meetrics Used: LogDosc, CDC, LogDOSM.
For (c): a Metrics Used: SLOCC, b Metrics Used: SLOCC, CDO, c Metrics Used: SLOCC, CDO, CDC, d Metrics Used: SLOCC, CDO, CDC, DOSM,
e Metrics Used: SLOCC, CDO, CDC, DOSM, DOSC.

TABLE 6
Principal Components: (a) Mylyn-Bugzilla, (b) Rhino, (c) iBATIS

importance of the scattering metrics. The models are also
statistically significant at the 99 percent confidence level.

From the stepwise regression analysis and PCA results,
we conclude that concern size is not the single dominating
factor—the scattering metrics contribute toward explaining
the variance in bug count, thus signifying their importance
and reaffirming our hypothesis.

6.4 Do Crosscutting Concerns Cause Defects?

A correlation by itself does not imply causality [37, p. 213].
Isolating cause and effect is easier for controlled experi-
ments than for correlation studies such as our own [38,
pp. 80-81]. Kan outlines three criteria for causality that
correlation studies must meet before making causality
claims [38, pp. 80-81]. The first is that the cause must precede
the effect. This is equivalent to saying that crosscutting
concerns precede defects related to those concerns. In our
theory, crosscutting first manifests itself in the concern
implementation plan, which precedes the defects that are
introduced during the implementation of that plan.

The second criterion is that a correlation must exist. The
results of our three case studies indicate that a moderate to
strong statistically significant correlation exists between
scattering and defects.

Finally, the correlation must not be spurious. We argue that
the correlation is not spurious because 1) there is a
plausible reason (i.e., a theoretical justification) for the
correlation to exist, 2) we verified that the scattering metrics
are not surrogates for size, and 3) the correlation is not
coincidental since we observed similar correlation results
for three separate case studies.

This brings us back to our original question: Do
crosscutting concerns cause defects? Our theory and the
results of our studies suggest “yes.” Independent verifica-
tion in the form of empirical studies and controlled
experiments is needed before we can be confident that a
causal relationship exists.

7 THREATS TO INTERNAL VALIDITY

7.1 Concern Assignment Unreliability

Our concern metrics are unreliable because of the subjectivity
inherent in our concern assignment methodology. This limits
the consistency and repeatability of our measurements.
Indeed, studies [45], [52] have shown disparities between
concern assignments produced by different analysts. Un-
reliability can also reduce the strength and significance of the
relationship between scattering and defects [21].

While automated assignment techniques [2] produce
consistent results, we believe that the assignment produced
by our interactive technique more accurately captures the

rationale behind the code [17], which we need before we
can apply our theory. Thus, we tolerate some loss in
measurement reliability for improved relevance.

We compensated for this unreliability in two ways. First,
we used a rank-order correlation (Spearman) that can
tolerate unreliable measurements as long as the relative
ordering (rank) of the measurements is correct [38, p. 78].
Comparing measurements by relative order instead of
absolute value is consistent with how the concentration
metric upon which our DOS metric is based should be
interpreted [62]. This implies that it is sufficient for the
concern assignment to be a close approximation of the
“correct” concern assignment.

Second, two of our studies had large sample sizes
(N ¼ 357 and 132). The correlation results show a moderate
to strong statistically significant relationship between
scattering and defects for all three case studies, which we
would not expect if the measurements were completely
unreliable.

Our future work is to measure the reproducibility
(variance across analysts), repeatability (variance across
trials), and accuracy (variance with respect to a reference
assignment, i.e., a gold standard) of our prune dependency
assignment technique. We will then be able to properly
compensate for measurement errors by incorporating error
estimates into our regression model.

7.2 Bug Assignment Errors

In the context of bug assignment, a false positive means that
a bug should not have been associated with a program
element and a false negative means a bug should have been
associated with a program element (but was not). These
false observations may perturb bug counts. Bug assignment
errors fall into three categories:

1. Incorrect bug metadata.
2. Bugs mapped to the wrong elements.
3. Bugs mapped to “missing” elements.

7.2.1 Incorrect Bug Metadata

Many of the Mylyn-Bugzilla bugs were clearly enhance-
ments although they were not classified as such. This is an
example of a Category 1 error.

7.2.2 Bugs Mapped to the Wrong Elements

Category 2 errors can occur when a commit message is
misleading. For example, a sequence of numbers may be
mistaken for a valid bug ID (Category 2a, false positive) or
a bug ID may be referenced coincidentally (Category 2b,
false positive) or not at all (Category 2c, false negative). We
eliminated Category 2a errors by validating all bug IDs
against the ITS, which allowed us to eliminate 32 false
positives for one project. By choosing projects that use bug
IDs in commit messages in a disciplined and consistent
(and, in the case of Mylyn-Bugzilla, completely automated)
way, we believe there are no instances of Category 2b or
2c errors.

It is also possible that the real defect does not lie in the
lines changed by the bug fix (Category 2d). For example,
instead of fixing the defect (e.g., because it lies in a third-
party library), a “workaround” is made to another part of

510 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

TABLE 7
PCA Regression Model Summary

the code so that the defect no longer manifests itself. This
leads to a false positive and negative since the bug should
be mapped to a completely different program element. We
agree with Purushothaman and Perry, who concluded that
detecting Category 2d errors would require more informa-
tion than “is available or automatically inferable” [51].

It is common for a bug fix to include modifications
unrelated to the bug (Category 2e) [10], [21], [51] or fixes for
multiple bugs (Category 2f). To reduce Category 2e errors,
we ignored insignificant changes such as changes to
whitespace and comments. We also ignored bug fixes
associated with the first version of a file. To avoid false
positives due to Category 2f errors, we ignored bug fixes
that referenced multiple bug IDs.

For two case studies, the bug assignment task was
completely automated using BugTagger. This eliminates
Category 2 errors caused by the inconsistencies inherent in
a manual assignment and guarantees assignment repeat-
ability. However, there is always the possibility that
BugTagger is faulty. We used the Jaccard similarity metric
[58] to compare the bug assignment produced by BugTag-
ger with the one we created by hand for Mylyn-Bugzilla
and found the Jaccard similarity was 0.87, indicating the
assignments were very similar. On closer inspection, we
found that many of the disagreements were due to human
errors made during manual assignment, further vindicating
our decision to mechanize.

7.2.3 Bugs Mapped to “Missing” Elements

Category 3 errors can occur when a bug is mapped to some
methods and fields that were present at the time of the bug
fix but were subsequently removed or renamed. For Rhino,
initially 37 bugs (21 percent) were mapped entirely to
missing methods and fields and therefore could not be
associated with any concern. Our assignment technique
uniquely identifies program elements by their signature (the
fully qualified element name and, in the case of methods,
the list of parameters). Therefore, we investigated the
possibility that the element’s signature had been changed,
e.g., the element was renamed or the parameter list was
modified. BugTagger automatically detects changes to the
parameter list, e.g., foo(int, int) changed to foo(float, float);
however, name changes were harder to detect automati-
cally. We therefore tracked down name changes by hand
and were able to halve the number of bugs that could not
be mapped to any concern. To further reduce these errors,
we would need a concern mapping for every revision—not
just the latest.

We would like to point out that the studies we are aware
of that analyze defects based on mining software reposi-
tories [16], [22], [27], [50], [57] suffer from the same
problems. We believe that our enumeration of the possible
errors and recommendations for avoiding them will be a
welcome contribution to this area of research.

7.2.4 Impact of Assignment Errors on Our Results

Ultimately, we care about the extent to which false bug-code
assignments propagate to false bug-concern assignments,
which will increase errors in our defect counts and
correlations. Some bug assignment errors may be masked.

For example, we may miss a program element that should
have been assigned to the bug, but, as long as another
assigned program element causes the bug to be associated
with the correct concern, the false negative is masked. False
positives can be masked similarly.

A bug that is not associated with a concern is not
necessarily a problem. For example, in Mylyn-Bugzilla, 9
of the 110 defects were mapped to methods or fields not
covered by any concern. In most cases, this is not an
issue since a program element may be related to a
concern from a different concern domain (e.g., “resource
deacquisition” is a programming concern rather than a
requirement or design concern). However, it may also
mean that some concerns were not accounted for, which
can skew the measurements.

7.3 Assignment Aggregation Error

Our concern and bug assignment techniques aggregate at
the member level the LOCs associated with the concern or
defect. This loss in granularity makes our assignments less
precise [65]. For example, often sibling leaf concerns16 in
Rhino are implemented using switch statements.17 For
instance, the parent concern “15.2.4—Properties of Object
Prototypes” has the following child concerns:

. 15.2.4.1—constructor;

. 15.2.4.2—toString;

. 15.2.4.3—toLocaleString;

. 15.2.4.4—valueOf.

In this case, even though each concern is really only
associated with an individual case in the switch statement
[19], they will be assigned at the method level and will
therefore have inflated concern sizes. Let us further
suppose a bug is associated with one of the cases. The
bug will also be assigned at the method level and will
therefore inflate the bug counts for the concerns not
associated with the case statement.

In addition to inflated sizes and bug counts, the metrics
computed for the concern subset will be very similar. For
the Rhino project, we found that the standard deviations for
all of the metrics were much lower for sibling leaf concern
clusters than for the entire population of concerns. For
example, the standard deviation of the bug count was 3.31
for sibling leaf concerns but 14.07 for the entire population.

It is hard to predict the impact that aggregation error has
on our results. Aggregation error appears to be biased in
favor of supporting our main hypothesis in the sense that
the more scattered a concern is, the more methods
contribute to its implementation, increasing the number
of opportunities for aggregation error to inflate the concern
size and defect count.

Despite this bias, we argue that eliminating aggregation
error would not reverse our conclusions for the following
reason: It only occurs when method level assignment is not
granular enough to faithfully represent the implementation
of a concern. This is true for Rhino, where concerns were

EADDY ET AL.: DO CROSSCUTTING CONCERNS CAUSE DEFECTS? 511

16. Sibling leaf concerns have the same parent and no children.
17. Rhino inherits many of these quirks from the JavaScript interpreter it

was based on, which was written in C. If Rhino had been written in Java
from scratch, virtual methods might have been used instead of switch
statements, which would have reduced aggregation error.

very fine grained and switch statements were prevalent.
However, this is not the case for Mylyn-Bugzilla and
iBATIS. Since the correlations for all three studies were
moderate to strong and statistically significant, we con-
clude that eliminating aggregation error would not reverse
our conclusions.

8 THREATS TO EXTERNAL VALIDITY

External validity is the degree to which we can draw
general conclusions from our results. As stated by Basili
et al., drawing general conclusions from empirical studies
in software engineering is difficult because any process
depends to a large degree on a potentially large number of
relevant context variables. For this reason, we cannot
assume that the results of a study generalize beyond the
specific environment in which it was conducted [4].
El Emam concurs: “It is only when evidence is accumulated
that a particular metric is valid across systems and across
organizations can we draw general conclusions” [21].

There are many possible sources of defects, including the
complexity of the problem domain, developer experience,
mental and physical stress, tool support, etc. [21]. Our
theory only attempts to explain a small portion of defects,
namely, those caused by the complexity associated with
implementing crosscutting concerns.

We expect that the programming language has a large
impact on how scattered a concern’s implementation is.
Because the programs we studied were written in Java, we
cannot generalize our results to other programming
languages. Interesting future work would be to compare
Rhino with SpiderMonkey,18 an implementation of ECMA-
Script written in C.

The open source projects we studied had many simila-
rities to projects developed in industry including the use of
change management systems, extensive test suites, and
descriptive commit messages. Therefore, we expect our
results to hold in an industrial setting for Java programs of
similar size (13-44 KSLOCs).

It is possible that the relationship between scattering and
defects only holds for requirement concerns and not for
concerns from other domains, such as the ones mentioned
in Section 2.

9 LITERATURE REVIEW

9.1 Feature Location

The goal of feature location (or, more generally, concern
location) is to learn the how, where, and why of software:
How and where is a feature implemented? Why is the code
implemented this way? In a study of the information needs
of developers, Ko et al. concluded that the information
most sought after—and most difficult to obtain—was “the
intent behind existing code and code yet to be written” [44]. This
information is essential for making changes correctly, yet is
largely undocumented.

Researchers have employed a variety of automated
techniques to recover links between concerns and code.
Antoniol et al. employed information retrieval (IR) to find the

correspondence between requirement documents and

identifiers and comments in the source code [2]. Zhao et

al. augment IR results with branch-reserving call graph

information to improve relevancy [65]. Several researchers

[20], [61], [62] have analyzed execution traces of the program

to see which methods are called when a feature is invoked.

Poshyanyk et al. showed that accuracy can be improved by

combining static and dynamic analysis techniques [50].
Automation is essential for feature location to scale to

large continuously evolving systems. However, the rele-

vancy of the concern-code mapping they produce is

debatable. For example, links between concerns and code

may be missed by IR techniques if meaningful identifier

names are not used [50], [65] and by execution tracing

techniques if features cannot be exercised completely and

orthogonally [50].
While the mappings produced by these automated

techniques are well suited for guiding program compre-

hension and maintenance activities, we felt they would not

be sufficiently relevant for validating our theory. Further-

more, we sought to eliminate the possibility that deficien-

cies, mistakes, or biases in the assignment algorithm could

skew our results. We therefore required all assignment

decisions to be made by a human analyst using our

interactive concern assignment tool, ConcernTagger, as

explained in Section 4.2. Obviously, this limited the size of

the programs we could analyze.

9.2 Empirical Studies of Crosscutting Concerns

Many researchers have studied the impact of crosscutting

concerns on code quality. Most of the effort has concen-

trated on developing new internal metrics or adapting

existing ones for quantifying crosscutting and assessing the

impact of modularizing crosscutting concerns using tech-

niques such as aspect-oriented programming.
For example, some researchers [45], [52], [64] have

created concern metrics that measure scattering in absolute

terms (e.g., number of classes that contribute to the

implementation of the concern). Garcia et al. used their

concern diffusion metrics in several studies [25], [28], [30] to

show that, in general, modularizing crosscutting concerns

using aspect-oriented programming improves the separa-

tion of concerns. As explained in Section 3.3, we believe our

DOS metrics complement the concern diffusion metrics by

providing a more fine-grained measurement of scattering.
We know of one study besides our own that correlates

aspect and concern-related metrics with external quality

attributes. Bartsch and Harrison examined change history

data for a set of aspects and found a statistically significant

correlation between aspect coupling and maintenance effort

[3]. Their metrics were different from ours (aspect coupling

versus concern scattering) and their external quality

indicator was different (effort versus defects). Whereas

we investigated the impact of a crosscutting concern on

code quality prior to refactoring using aspects, they looked

at the impact after refactoring. A benefit of our scattering

metrics is that they may help identify the crosscutting

concerns that would benefit the most from refactoring.

512 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

18. http://www.mozilla.org/js/spidermonkey.

9.3 Empirical Studies of Software Quality

In this section, we discuss some of the earlier work related
to investigations of using historical measures of complexity,
code churn, prerelease defects, etc., as predictors of
software quality in large software systems.

Letovsky and Soloway [46] use file status information
such as “new,” “changed,” and “unchanged” along with
other explanatory variables such as LOCs, age, prior faults,
etc., as predictors in a negative binomial regression
equation to predict the number of faults in a multiple-
release software system. The predictions made using their
binomial regression model had high accuracy for faults
found in both early and later stages of development [46].
Khoshgoftaar et al. [40] studied two consecutive releases of
a large legacy system for telecommunications. The system
contained over 38,000 procedures in 171 modules. Dis-
criminant analysis identified fault-prone modules based on
16 static software product metrics with types 1 and 2
misclassification rates of 21.7 percent and 19.1 percent,
respectively, and an overall misclassification rate of
21.0 percent. Nagappan and Ball [49] investigated the use
of a set of relative code churn measures in isolation as
predictors of software defect density for the Windows
Server 2003 system. Relative churn measures are normal-
ized values of the various measures obtained during the
measurement of churn. They found that relative code churn
measures were strong statistically significant predictors of
code quality. In contrast, Eisenbarth et al. found no
correlation between code churn and code quality [19].

Several researchers have attempted to find a relationship
between defects and internal product metrics, such as code
churn [49], size metrics [11], [22], [23], [33], object-oriented
metrics (e.g., the CK metrics [13]) [11], [22], [33], design
metrics [11], and prerelease defects [7]. We add to this body
of research by examining the relationship between concern
metrics and defects.

10 CONCLUSION

This paper is the first to provide empirical evidence
suggesting that crosscutting concerns cause defects. We
examined the concerns of three small to medium-sized
open-source Java projects and found that the more
scattered the implementation of a concern is, the more
likely it is to have defects. Moreover, this effect is evident
independent of the size of the concern’s implementation (in
terms of LOCs).

This evidence, although preliminary, is important for
several reasons. It adds credibility to the claims about the
dangers of crosscutting concerns made by the aspect-
oriented programming and programming language com-
munities. By establishing a correlation between concern
metrics and an external quality indicator—defects—we
provide a stronger form of validation for these metrics
than previous empirical studies that focused on internal
quality indicators (e.g., [25], [28]).

We also proposed a theory that suggests why cross-
cutting concerns might cause defects and described our
concern model and metrics. These can serve as the
foundation for future empirical work.

It is important to realize that the novelty of our
experiment and the subjectivity inherent in our methodol-
ogy limit the conclusions we can draw from our results.
Further studies are needed before we can draw general
conclusions about the relationship between scattering and
defects. To facilitate this, we are working on automating
our concern assignment technique, which is needed to
make application of our metrics practical for large systems
(greater than 50 KLOCs).

Several questions remain. Can we reduce the likelihood
of defects by reducing crosscutting (assuming concern size
does not increase)? Are crosscutting concerns a byproduct
of programming technology, developer aptitude, or the
inherent complexity of the concern? What is the relation-
ship between code churn and scattering? If a relationship
exists, we can use code churn to help identify crosscutting
concerns [10] and as a cost-effective surrogate for measur-
ing scattering. When code churn levels are dangerously
high, concern analysis may provide an explanation and an
actionable plan for reducing churn (e.g., by modularizing
the underlying crosscutting concerns).

APPENDIX

ONLINE APPENDIX

We invite researchers to replicate our case studies. Source
code for the subject programs and our measurement tools,
complete concern and bug lists, concern-code and bug-code
mappings, and our results are available at http://
www.cs.columbia.edu/~eaddy/concerntagger.

ACKNOWLEDGMENTS

This research was funded in part by the Natural Sciences
and Engineering Research Council of Canada. The authors
are extremely grateful to the anonymous reviewers for their
feedback and suggestions.

REFERENCES

[1] A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman, Compilers:
Principles, Techniques, and Tools, second ed. Addison Wesley, 2006.

[2] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering Traceability Links between Code and Documenta-
tion,” IEEE Trans. Software Eng., vol. 28, no. 10, pp. 970-983, Oct.
2002.

[3] M. Bartsch and R. Harrison, “Towards an Empirical Validation of
Aspect-Oriented Coupling Measures,” Proc. Workshop Assessment
of Aspect Techniques, 2007.

[4] V. Basili, F. Shull, and F. Lanubile, “Building Knowledge through
Families of Experiments,” IEEE Trans. Software Eng., vol. 25, no. 4,
pp. 456-473, July/Aug. 1999.

[5] K.v.D. Berg, J.M. Conejero, and J. Hernández, “Analysis of
Crosscutting across Software Development Phases Based on
Traceability,” Proc. Workshop Aspect-Oriented Requirements Eng.
and Architecture Design (Early Aspects), 2006.

[6] T.J. Biggerstaff, B.G. Mitbander, and D. Webster, “The Concept
Assignment Problem in Program Understanding,” Proc. 15th Int’l
Conf. Software Eng., pp. 482-498, 1993.

[7] S. Biyani and P. Santhanam, “Exploring Defect Data from
Development and Customer Usage on Software Modules over
Multiple Releases,” Proc. Ninth Int’l Symp. Software Reliability Eng.,
1998.

[8] L. Briand, J. Wuest, J. Daly, and V. Porter, “Exploring the
Relationships between Design Measures and Software Quality in
Object Oriented Systems,” J. Systems and Software, vol. 51, pp. 245-
273, 2000.

EADDY ET AL.: DO CROSSCUTTING CONCERNS CAUSE DEFECTS? 513

[9] M. Bruntink, A.v. Deursen, and T. Tourwé, “Discovering Faults in
Idiom-Based Exception Handling,” Proc. 28th Int’l Conf. Software
Eng., 2006.

[10] G. Canfora, L. Cerulo, and M.D. Penta, “On the Use of Line Co-
Change for Identifying Crosscutting Concern Code,” Proc. 22nd
Int’l Conf. Software Maintenance, 2006.

[11] M. Cartwright and M. Shepperd, “An Empirical Investigation of
an Object-Oriented Software System,” IEEE Trans. Software Eng.,
vol. 26, no. 8, pp. 786-796, Aug. 2000.

[12] P. Cederqvist et al., Version Management with CVS. Network
Theory, Ltd., 2002.

[13] S. Chidamber and C. Kemerer, “A Metrics Suite for Object
Oriented Design,” IEEE Trans. Software Eng., vol. 20, no. 6, pp. 476-
493, June 1994.

[14] J. Cohen, Statistical Power Analysis for the Behavioral Sciences,
second ed. Lawrence Erlbaum Assoc., 1988.

[15] B. Collins-Sussman, B.W. Fitzpatrick, and C.M. Pilato, Version
Control with Subversion. O’Reilly, 2004.

[16] D. �Cubrani�c, G.C. Murphy, J. Singer, and K.S. Booth, “Hipikat: A
Project Memory for Software Development,” IEEE Trans. Software
Eng., vol. 31, no. 6, pp. 446-465, June 2005.

[17] M. Eaddy, A. Aho, and G.C. Murphy, “Identifying, Assigning,
and Quantifying Crosscutting Concerns,” Proc. Workshop Assess-
ment of Contemporary Modularization Techniques, 2007.

[18] ECMA, “ECMAScript Standard,” vol. ECMA-262 v3, ISO/IEC
16262, 2007.

[19] T. Eisenbarth, R. Koschke, and D. Simon, “Locating Features in
Source Code,” IEEE Trans. Software Eng., vol. 29, no. 3, pp. 210-
224, Mar. 2003.

[20] A.D. Eisenberg and K. De Volder, “Dynamic Feature Traces:
Finding Features in Unfamiliar Code,” Proc. 21st Int’l Conf.
Software Maintenance, pp. 337-346, 2005.

[21] K. El Emam, “A Methodology for Validating Software Product
Metrics,” Technical Report NRC 44142, Nat’l Research Council of
Canada, 2000.

[22] K. El Emam, S. Benlarbi, N. Goel, and S.N. Rai, “The Confounding
Effect of Class Size on the Validity of Object-Oriented Metrics,”
IEEE Trans. Software Eng., vol. 27, no. 7, pp. 630-650, July 2001.

[23] N.E. Fenton and N. Ohlsson, “Quantitative Analysis of Faults and
Failures in Complex Software Systems,” IEEE Trans. Software Eng.,
vol. 26, no. 8, pp. 797-814, Aug. 2000.

[24] E. Figueiredo, A. Garcia, C. Sant’Anna, U. Kulesza, and C.
Lucena, “Assessing Aspect-Oriented Artifacts: Towards a Tool-
Supported Quantitative Method,” Proc. Ninth ECOOP Workshop
Quantitative Approaches in Object-Oriented Software Eng., 2005.

[25] F.C. Filho, N. Cacho, E. Figueiredo, R. Maranhao, A. Garcia, and
C.M.F. Rubira, “Exceptions and Aspects: The Devil Is in the
Details,” Foundations of Software Eng., pp. 152-162, 2006.

[26] R.E. Filman, T. Elrad, S. Clarke, and M. Aksit, Aspect-Oriented
Software Development. Addison-Wesley, 2005.

[27] M. Fischer, M. Pinzger, and H. Gall, “Populating a Release
History Database from Version Control and Bug Tracking
Systems,” Proc. 19th Int’l Conf. Software Maintenance, pp. 23-32,
2003.

[28] A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. Lucena,
and A.v. Staa, “Modularizing Design Patterns with Aspects: A
Quantitative Study,” Proc. Int’l Conf. Aspect-Oriented Software
Development, 2005.

[29] C. Gibbs, C.R. Liu, and Y. Coady, “Sustainable System Infra-
structure and Big Bang Evolution: Can Aspects Keep Pace,” Proc.
19th European Conf. Object-Oriented Programming, pp. 241-261,
2005.

[30] P. Greenwood, T.T. Bartolomei, E. Figueiredo, M. Dósea, A.
Garcia, N. Cacho, C. Sant’Anna, S. Soares, P. Borba, U. Kulesza,
and A. Rashid, “On the Impact of Aspectual Decompositions on
Design Stability: An Empirical Study,” Proc. 21st European Conf.
Object-Oriented Programming, pp. 176-200, 2007.

[31] J.E. Hannay, D.I.K. Sjøberg, and T. Dybå, “A Systematic Review of
Theory Use in Software Engineering Experiments,” IEEE Trans.
Software Eng., vol. 33, no. 2, pp. 87-107, Feb. 2007.

[32] R. Harrison, S. Counsel, and R. Nithi, “Experimental Assessment
of the Effect of Inheritance on the Maintainability of Object-
Oriented Systems,” J. Systems and Software, vol. 52, pp. 173-179,
2000.

[33] R. Harrison, L. Samaraweera, M. Dobie, and P. Lewis, “An
Evaluation of Code Metrics for Object-Oriented Programs,”
Information and Software Technology, vol. 38, pp. 443-450, 1996.

[34] IEEE Standard 610.12-1990, IEEE Standard Glossary of Software
Engineering Terminology, IEEE, 1990.

[35] ISO/IEC, “Information Technology—Software Product Evalua-
tion,” IDS 14598-1, 1996.

[36] E.J. Jackson, A User’s Guide to Principal Components. John Wiley &
Sons, 1991.

[37] S.K. Kachigan, Statistical Analysis. Radius Press, 1986.
[38] S.H. Kan, Metrics and Models in Software Quality Engineering,

second ed. Addison-Wesley, 2003.
[39] M. Kersten and G.C. Murphy, “Using Task Context to Improve

Programmer Productivity,” Foundations of Software Eng., 2006.
[40] T.M. Khoshgoftaar, E.B. Allen, N. Goel, A. Nandi, and J.

McMullan, “Detection of Software Modules with High Debug
Code Churn in a Very Large Legacy System,” Proc. Seventh Int’l
Symp. Software Reliability Eng., pp. 364-371, 1996.

[41] T.M. Khoshgoftaar, E.B. Allen, W.D. Jones, and J.P. Hudepohl,
“Classification-Tree Models of Software Quality over Multiple
Releases,” IEEE Trans. Reliability, vol. 49, no. 1, pp. 4-11, 2000.

[42] G. Kiczales, J. Irwin, J. Lamping, J.-M. Loingtier, C.V. Lopes, C.
Maeda, and A. Mendhekar, “Aspect-Oriented Programming,”
ACM Computing Surveys, vol. 28, no. 4es, p. 154, 1996.

[43] B. Kitchenham, S.L. Pfleeger, and N. Fenton, “Towards a
Framework for Software Measurement Validation,” IEEE Trans.
Software Eng., vol. 21, no. 12, pp. 929-944, Dec. 1995.

[44] A.J. Ko, R. DeLine, and G. Venolia, “Information Needs in
Collocated Software Development Teams,” Proc. 29th Int’l Conf.
Software Eng., 2007.

[45] A. Lai and G.C. Murphy, “The Structure of Features in Java Code:
An Exploratory Investigation,” Proc. Workshop Multi-Dimensional
Separation of Concerns, 1999.

[46] S. Letovsky and E. Soloway, “Delocalized Plans and Program
Comprehension,” IEEE Software, vol. 3, no. 3, pp. 41-49, 1986.

[47] M. Lippert and C.V. Lopes, “A Study on Exception Detection and
Handling Using Aspect-Oriented Programming,” Proc. 22nd Int’l
Conf. Software Eng., pp. 418-427, 2000.

[48] A.v. Mayrhauser, A.M. Vans, and A.E. Howe, “Program Under-
standing Behaviour during Enhancement of Large-Scale Soft-
ware,” Software Maintenance: Research and Practice, vol. 9, pp. 299-
327, 1997.

[49] N. Nagappan and T. Ball, “Use of Relative Code Churn Measures
to Predict System Defect Density,” Proc. 27th Int’l Conf. Software
Eng., 2005.

[50] D. Poshyvanyk, Y.-G. Guéhéneuc, A. Marcus, G. Antoniol, and V.
Rajlich, “Feature Location Using Probabilistic Ranking of Meth-
ods Based on Execution Scenarios and Information Retrieval,”
IEEE Trans. Software Eng., vol. 33, no. 6, pp. 420-432, June 2007.

[51] R. Purushothaman and D.E. Perry, “Toward Understanding the
Rhetoric of Small Source Changes,” IEEE Trans. Software Eng.,
vol. 31, no. 6, pp. 511-526, June 2005.

[52] M. Revelle, T. Broadbent, and D. Coppit, “Understanding
Concerns in Software: Insights Gained from Two Case Studies,”
Proc. 13th IEEE Int’l Workshop Program Comprehension, 2005.

[53] M.P. Robillard, “Representing Concerns in Source Code,” PhD
thesis, Computer Science Dept., Univ. of British Columbia, Nov.
2003.

[54] M.P. Robillard, W. Coelho, and G.C. Murphy, “How Effective
Developers Investigate Source Code: An Exploratory Study,”
IEEE Trans. Software Eng., vol. 30, no. 12, pp. 889-903, Dec. 2004.

[55] M.P. Robillard and F. Weigand-Warr, “ConcernMapper: Simple
View-Based Separation of Scattered Concerns,” Proc. Workshop
Eclipse Technology eXchange, 2005.

[56] M.J. Rochkind, “The Source Code Control System,” IEEE Trans.
Software Eng., vol. 1, no. 4, pp. 364-370, 1975.

[57] J. �Sliwerski, T. Zimmermann, and A. Zeller, “When Do Changes
Induce Fixes,” Proc. Workshop Mining Software Repositories, 2005.

[58] P.H. Sneath and R.R. Sokal, Numerical Taxonomy. W.H. Freeman,
1973.

[59] S.M. Sutton Jr. and I. Rouvellou, “Concern Modeling for Aspect-
Oriented Software Development,” Aspect-Oriented Software Devel-
opment, pp. 479-505, Addison-Wesley, 2005.

[60] S.L. Tsang, S. Clarke, and E. Baniassad, “An Evaluation of Aspect-
Oriented Programming for Java-Based Real-time Systems Devel-
opment,” Proc. Seventh Int’l Symp. Object-Oriented Real-Time
Distributed Computing, 2004.

[61] N. Wilde and M.C. Scully, “Software Reconnaissance: Mapping
Program Features to Code,” J. Software Maintenance and Evolution:
Research and Practice, vol. 7, no. 1, pp. 49-62, 1995.

514 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

[62] W.E. Wong, S.S. Gokhale, and J.R. Horgan, “Quantifying the
Closeness between Program Components and Features,”
J. Systems and Software, vol. 54, no. 2, pp. 87-98, 2000.

[63] M.V. Zelkowitz and D.R. Wallace, “Experimental Models for
Validating Technology,” Computer, vol. 31, no. 5, pp. 23-31, May
1998.

[64] C. Zhang and H.-A. Jacobsen, “Quantifying Aspects in Middle-
ware Platforms,” Proc. Int’l Conf. Aspect-Oriented Software Devel-
opment, pp. 130-139, 2003.

[65] W. Zhao, L. Zhang, Y. Liu, J. Sun, and F. Yang, “SNIAFL: Towards
a Static Noninteractive Approach to Feature Location,” ACM
Trans. Software Eng. and Methodology, vol. 15, no. 2, pp. 195-226,
2006.

Marc Eaddy received the dual BS degree in
electrical engineering and computer science
from Florida State University in 1995 and the
MS degree in computer science from Columbia
University in 2001. From 1995 to 2003, he
worked at News Internet Services, where he
helped develop the TV Guide Online Listings,
and at Thomson Financial, where he built real-
time stock market data applications. He is
currently working toward the PhD degree in

computer science at Columbia University under Alfred Aho. His
research goal is to better understand—and solve—the crosscutting
concern problem. He is a student member of the IEEE.

Thomas Zimmermann received the Diploma
degree in computer science from the University
of Passau in 2004. He is currently a PhD
candidate at Saarland University, Saarbrücken,
Germany, and an assistant professor in the
Department of Computer Science at the Uni-
versity of Calgary. In 2006, he was a summer
intern at Microsoft Research, where he analyzed
the bug database of Windows Server 2003. His
research interests are in software evolution,

mining software repositories, empirical software engineering, program
analysis, and development tools. He is a student member of the IEEE
and the IEEE Computer Society.

Kaitlin D. Sherwood received the BS degree in
metallurgical engineering and the MS degree in
general engineering from the University of
Illinois at Urbana-Champaign in 1984 and
1996, respectively. She is currently working
toward the MS degree in computer science at
the University of British Columbia under Gail
Murphy. She has extensive experience in high-
tech industries. She is keenly interested in
personal productivity. She has written two books

on managing e-mail overload and is currently researching individual
programmer productivity.

Vibhav Garg received the BS degree in electronics engineering from
Bangalore University, India, the MS degree in information technology
from Bond University, Gold Coast, Australia, and the MS degree in
computer science from Columbia University, New York. He is currently a
senior consultant at CGI Technologies. He is keenly interested in
languages, compilers, and software engineering issues.

Gail C. Murphy received the BSc degree in
computing science from the University of Alberta
in 1987 and the MS and PhD degrees in
computer science and engineering from the
University of Washington in 1994 and 1996,
respectively. From 1987 to 1992, she was a
software designer in industry. She is currently
an associate professor in the Department of
Computer Science at the University of British
Columbia. Her research interests are in software

evolution, software design, and source code analysis. She is a member
of the IEEE Computer Society.

Nachiappan Nagappan received the BTech
degree from the University of Madras in 2001
and the MS and PhD degrees from North
Carolina State University in 2002 and 2005,
respectively. He is a researcher in the Software
Reliability Research Group at Microsoft Re-
search. His research interests include software
reliability and measurement, statistical model-
ing, and defect analysis. He is a member of the
IEEE and the ACM.

Alfred V. Aho received the PhD degree in
electrical engineering and computer science
from Princeton University. He is the Lawrence
Gussman Professor of Computer Science in the
Department of Computer Science at Columbia
University, New York. His research interests
include software engineering, programming lan-
guages, compilers, and algorithms. He is a fellow
of the American Association for the Advance-
ment of Science, the ACM, and the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

EADDY ET AL.: DO CROSSCUTTING CONCERNS CAUSE DEFECTS? 515

