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Abstract 
Objective: This paper aims to generate explanations from 
a series of data points obtained from a decision support 
system called ReleasePlanner® for supporting product 
release planning and considered to be a black box.  
Method: Concept analysis is applied to 1085 data points 
received from running 10 scenarios of a real world 
product release planning project with 35 candidate 
solutions generated by ReleasePlanner®.  
Results: Three main results are obtained: (1) patterns 
between inputs and outputs; (2) impact of individual input 
parameters on outputs; and (3) sensitivity level of outputs 
in dependence of inputs.  
Conclusion: Concept analysis is shown to be a feasible 
technique for gaining more insight into the structure of 
results obtained from a black box input-output system, 
such as, but not limited to, ReleasePlanner®. 
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1 Introduction 
Product release planning involves decision making on 
assigning features to different releases for incremental 
software product development. It must simultaneously 
consider several aspects, such as conflicting stakeholder 
priorities and objectives, feature interdependencies, and 
resource and risk constraints [15]. A decision support 
system called ReleasePlanner® [13] has been developed to 
support decision makers in the complex release planning 
process. It is based on computationally efficient 
optimization algorithms for the generation of a set of 
alternatives solution having a proven degree of optimality. 

However, the findings from a series of experiments 
conducted with ReleasePlanner® users revealed that they 
were reluctant to accept the solutions advised by this tool 
[6]. Similar observation has also been made on other 
systems [4] [10]. It was concluded in [1] that the major 
problems are not technical problems, but people problems 
in which people have very limited understanding on the 
support they get from decision support systems. In 
addition, according to [2], product release planning 
problem is classified as a wicked problem [14] which is 
hard to be precisely formulated. Thus the procedure 
needed to solve product release planning problems (as 

demonstrated in ReleasePlanner®) is more complex and 
requires more in depth explanations to achieve good user 
understanding on the tool support and its solutions. 

How can we facilitate better understanding of the 
ReleasePlanner® solutions? In this paper, a data analysis 
technique called concept analysis [11] is applied for this 
purpose. It is applied to investigate data within a specific 
product release planning problem and identifies hidden 
relationships between the project inputs and outputs. In 
particular, three types of relationships are analyzed: 

• Patterns between the input and output attributes 
• Impact of individual input attributes on the outputs  
• Sensitivity level of the outputs to the inputs 

The answers to these three research questions provide 
additional knowledge that is currently unavailable to users 
of the ReleasePlanner® system. As a result, the users’ 
acceptance and trust level on the tool and its solutions is 
expected to be improved.  

The remainder of this paper is organized as the follows. 
Section 2 gives an overview of product release planning 
and the related decision support tool ReleasePlanner®. 
Section 3 introduces the background of concept analysis. 
In Section 4, a sample product release planning project is 
investigated to demonstrate the application of concept 
analysis. Section 5 analyzes and interprets the results in 
the context of the three stated questions. Finally, Section 
6 summarizes the research and outlines future research. 

2 Product Release Planning 
Many formal approaches have been proposed for product 
release planning, such as incremental funding method [5], 
cost-value approach [9], planning software evolution with 
risk management [8], and hybrid intelligence (EVOLVE*) 
[15]. The latter is used in this paper. This section gives a 
short overview of this approach to the extent necessary to 
understand and judge the results obtained from concept 
analysis presented later in this paper. More details on the 
method are available from [15]. 

2.1 Technical Formulation  
In incremental product development, the goal of product 
release planning is to select from a set of features F = 
{f1,…,fn} and to assign them to one of K possible releases 
each of them having a weight (relative importance) of ξk 
(k = 1…K). A release plan is described by vector x with 



decision variables {x(1),…,x(n)}, where x(i) = k if feature 
fi is assigned to release option k∈ {1,…,K}; and x(i) = 
K+1 otherwise (i.e. the feature is postponed). 

Two types of feature dependencies are considered: 
coupling and precedence relationship. A coupling CC(fi, fj) 
indicates that both features fi and fj must be released 
jointly. A precedence PC(fi, fj) indicates that feature fi 
cannot be released later than fj. Some features can be 
fixed to certain release by the pre-assignment preassign-
x(i)=k, indicating that fi is fixed to release k. 

The planning approach considers T resource types for 
implementing the features. Capacities Cap(k, t) relate 
each release k to each resource type t∈{1,…,T}. Every 
feature fi requires an amount of resources of type t r(fi, t). 
Thus, each release plan x assigns feature fi to release k 
expressed as x(i) = k, for all releases k and resource types 
t, must satisfy Σx(i)=k r(fi, t) ≤ Cap(k, t). 

A set of stakeholders S = {s1,…,sq} is involved in release 
planning. Each of them has a relative importance λ ∈  
{λ1,…,λq}. It is a nine-point ordinal scale that provides 
differentiation in the degree of importance. The higher the 
importance value is, the more important the stakeholder is.  

In brief, the purpose of release planning is to provide the 
most attractive features at the earliest releases to the most 
important stakeholders. For the purpose of this paper, 
Value(s, fi), Urgency(s, fi), and Competitiveness(s, fi) are 
the three attributes of a feature’s attractiveness. Each 
feature can be prioritized from these three criteria with the 
value ranging from 0 to 9. These criteria are associated 
with the weights μ1, μ2, and μ3, respectively. 

The three prioritization criteria are the basis to formulate 
the objective of product release planning. The objective 
function Utility(x) is defined as a linear combination of 
the priority votes of stakeholders related to these criteria:  
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2.2 ReleasePlanner®  
ReleasePlanner® [13] is a decision support system that 
aims at performing systematic product release planning 
based on computationally efficient optimization 
algorithms. Users are able to perform what-if analysis to 
pro-actively explore different scenarios defined by a 
sequence of inputs of the same project under investigation. 
In addition, the tool is capable of generating a set of 
diversified solution alternatives for each instance.  

A series of studies on ReleasePlanner® revealed that its 
users tended to have higher confidence and trust on their 
manual solutions than the ones generated more efficiently 

by the tool [6]. The major reason is that the tool works in 
a black box manner and the rationale of solution 
generation is hard to understand by the users. This is even 
more complicated because the users usually investigate 
multiple scenarios with multiple solutions.  

3 Concept Analysis 
Concept analysis, firstly introduced in [17], is a theory of 
data analysis to identify conceptual structures among a set 
of data. It has been successfully applied to many fields 
[12], including in software engineering [11]. 

In this paper, concept analysis is investigated to address 
the three research questions presented in Section 1. 
Another two techniques, i.e. rough set analysis and 
dependency network analysis, have also been applied to 
explain release planning solutions by ReleasePlanner® [7]. 
However, they can only deal with the first two research 
questions and are not the focus of this paper. Detailed 
applications of these two techniques are available at [7]. 

3.1 Basic Terminology  
Concept analysis investigates the relations R between a 
set of objects O, and a set of attributes A. The triple C = 
(R, O, A) is called a formal context.  

Def. 1 (Common Attributes and Common Objects): 
For any set of objects b ⊆O, the set of common attributes 
having the same attribute value is called common 
attributes related to b and is denoted by ca(b) = {a∈A 
|∀ o ∈b : (o, a)∈R}. For a set of attributes A⊆A, their 
common objects are co(A) = {o∈b |∀ a∈A : (o, a)∈R}. 

Def. 2 (Formal Concept): Each pair c = (b, A) with b = 
co(A) and A = ca(b) is called a formal concept. It 
demonstrates a pattern, i.e. relation, between b and A.  

Def. 3 (Concept Lattice): All formal concepts for a given 
context C are called a complete concept lattice in which 
concepts can be partially ordered. If c1 = (b1, A1) and c2 = 
(b2, A2) are two concepts in the context C, a partial order 
c1 ≤ c2 can be defined whenever b1 ⊆b2 and A1 ⊇  A2.  

Def. 4 (Greatest Lower Bound and Least Upper 
Bound): The greatest lower bound of c1 and c2 is the 
concept with objects b 1∩b 2 and attributes held by all 
objects in b 1∩b 2. The least upper bound of c1 and c2 is 
the concept with attributes A1∩A2 and objects which have 
all attributes in A1∩A2. 

3.2 An Illustrate Example  
Applied to planning product releases, O constitutes the set 
of features F to be assigned to different releases. The 
input to and output from product release planning using 
ReleasePlanner® form set A. Figure 1 shows a simple 
example of concept analysis in this domain. The upper 
part is a data table of feature set F = {f1,…,f4} defined 
with the attribute set A = {a1,…,a3}. In this table, the 
value of each attribute for each feature can be H, M, or L. 



These values represent different value ranges. The lower 
part of this figure shows the corresponding concept lattice 
with all the concepts {c1,…,c8} and their order relations. 
In this lattice, the values of the attributes in each concept 
are also highlighted. Among all the concepts, c1 is the 
most general one and c8 is the most specific one. Some of 
the order relations among the concepts are c2 ≤ c1, c3 ≤ c1, 
and c7 ≤ c1. From this figure, we can also identify the least 
upper bound and greatest lower bound of a set of concepts. 
For example, c1 and c4 are the least upper bound and 
greatest lower bound of c2 and c3, respectively.  

 
Figure 1: Example concept analysis 

4 Applying Concept Analysis to Explain 
Product Release Planning Results 

4.1 Sample Project  
To illustrate the application of concept analysis to explain 
results generated by ReleasePlanner®, we investigate on a 
sample project based on the data from a real life product 
release planning problem. As a summary, this project is 
defined with the following inputs: 

• F = 31 features {f1, …, f31} to be assigned 
• K = 2 releases 
• S = 18 stakeholders {s1,…,s18} with weights {λ1,…, λ18} 
• Prioritization criteria Urgency(s,fi), Value(s,fi), and 

Competitiveness(s,fi) 
• T = 3 types of resources {Res1, Res2, and Res3}  

The full details of this project setting can be referred to 
http://pages.cpsc.ucalgary.ca/~dug/ConceptAnalysis. This 
project setting and the results obtained from it are taken as 
the baseline scenario. From this baseline, the tool user 
also generates another 9 scenarios that the user thinks to 
be the most important (but not necessarily the complete) 
scenarios for investigation. Together these 10 scenarios 
are used for what-if analysis which is useful and 
important for product release planning, as discussed in 
Section 2.2. For all these scenarios, in total 35 solutions 
are generated by ReleasePlanner® for later analysis.  

4.2 Data for Concept Analysis  
With the above project settings, each feature fi in each 
solution is associated with a data point used for concept 
analysis (see Table 1). The selection of the attributes is 
based on the experience of manual analysis of several 
product release planning projects [15]. The first six input 
attributes are relevant to stakeholder votes which are 
considered in the objective function for planning. In 
particular, ConfUrgency(fi), ConfValue(fi), and ConfComp(fi) 
are the standard deviation between different stakeholders’ 
votes for each feature fi from the three criteria, 
respectively. They indicate the degree of disagreement 
among stakeholder opinions. The other six input attributes 
address resource utilization and criticality of features.   

Table 1: Data defined for concept analysis 
Input Attribute Definition 
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Output Attribute Definition 
Release(fi) Release(fi) 

Based on our previous experience on the analysis of these 
attributes, each attribute is discretized according to Table 
2. The purpose of discretization is to scale attributes with 
continuous values to a nominal or ordinal scales.  

Table 2: Discretization of the defined attributes 
Input Attribute Value Range Discretization 

AverageUrgency(fi) High [6, 9] 
AverageValue(fi) Medium [4, 6) 
AverageComp(fi) 

A real number 
in [0, 9] 

Low [0, 4) 
RelConfUrgency(fi) High [0.7, 1.0] 

RelConfValue(fi) Medium [0.4, 0.7) 
RelConfComp(fi) 

A real number 
in [0, 1] 

Low [0.0, 0.4) 
High [0.10, 1.00] 

Medium [0.05, 0.10) RestUtiRatio(fi) 
A real number 

in [0, 1] 
Low [0.00, 0.05) 
No [0.00, 1.00] 

Low (-0.01, 0.00) RestCriticality(fi) 
A real number 

in [-1, 1] 
Medium [-1.00, -0.01] 

Output Attribute Value Range Discretization 

Release(fi) 
An integer in 

[1, 3] Not necessary 

c8=({Ǿ},{a1 :H, a1 :M, a1 :L, a2 :H, a2 :M, a2 :L, a3 :H, a4 :M, a3 :L})

c5 = ({f2},{a1 :H,
a2 :M, a3 :L}) 

c1 = ({f1, f2, f3, f4,},{a3 : L}) 

c2 = ({f1,f2},{a1 :H, a3 :L}) 

Concept Lattice  

c3 = ({f1,f3},{a2 :H, a3 :L}) 

Data Table (H: High M: Medium L: Low) 

c4 = ({f1},{a1 :H, 
a2 :H, a3 :L}) 

c6 = ({f3},{a1 :L,
a2 :H, a3 :L}) 

c7 = ({f4},{a1 :M,
a2 :L, a3 :L}) 



Based on the above definition and discretization, a table 
with 1085 data points (35 solutions with each containing 
31 features) is obtained for later concept analysis. The 
complete table is available at the website provided earlier.  

4.3 Concept Analysis of the Data 
We used an open source library called Colibri/Java [3] to 
perform concept analysis. It builds a concept lattice which 
contains all patterns (concepts) for the data prepared in 
Section 4.2. We then implemented a tool to traverse the 
concept lattice to select only those patterns where the 
distribution of the output values significantly changed 
along the (subset) relations between these patterns. To test 
significance, we used Fisher Exact Value and Chi Square 
tests (significance level of p=0.01) [16]. Using our tool, 
two filtered lattices were generated that contain the 
patterns which affect the distribution of releases the most: 

• Concept lattice #1 contains 64 patterns where the 
likelihood of assigning a feature fi to release 1 is 
increased by at least 45%. 

• Concept lattice #2 contains 1093 patterns where the 
likelihood of assigning a feature fi to any release, i.e. 
1, 2 or 3 (postponed), is increased or decreased by at 
least 30%. 

The first lattice is essentially a part of the second one. The 
details of these lattices are available at the website given 
earlier and will be analyzed in depth in Section 5. 

Table 3: Example record in the generated concept lattices 
Context Res3Criticality(fi)_Low 
Var AverageComp(fi)_High 
Δ_R1 0.49 Context_R1 548 Context+Var_R1 118
Δ_R2 -0.3 Context_R2 339 Context+Var_R2 1 
Δ_R3 -0.18 Context_R3 198 Context+Var_R3 0 

Each filtered lattice consists of a number of patterns and 
transitions between these patterns in the form shown in 
Table 3. This table is read as, for all the 1085 cases in the 
dataset, the distribution of features fi following the pattern 
of “Res3Criticality(fi) =  Low” (“context” part) is 548 data 
points for release 1 (“context _R1”); 339 for release 2 
(“context_R2”); and 198 for release 3 (“context_R3”). 
The pattern of “Res3Criticality(fi) = Low AND Average 
Comp(fi) = High” (“context” and “var”) is supported by 
118 data points for release 1 (“context+var_R1”); 1 for 
release 2 (“context+var_R2”); and 0 for release 3 
(“context+var_R3”). The transition between these two 
patterns can be understood as a rule: adding “Average 
Comp(fi) = High” (“var”) to the “context” part increases 
the likelihood of assigning a feature fi to release 1 by 49% 
(“Δ_R1”), and decreases the likelihood to release 2 and 3 
by 30% (“Δ_R2”) and 18% (“Δ_R3”), respectively.  

5 Analysis and Interpretation of Results 
In this section, we analyze the two lattices generated in 
Section 4.3 from three perspectives: similarity of patterns, 
importance of input attributes, and sensitivity of outputs. 

The findings from these aspects contain new knowledge 
that reveals the underlying relationships between the 
inputs to ReleasePlanner® and its outputs, for the studied 
sample project. They can be used as explanations for this 
decision support system and its solutions.    

5.1 Pattern Transitions and Data Similarity  
Each generated concept lattice covers the most significant 
patterns discovered from the product release planning 
data used for concept analysis. These patterns are 
presented in the “context” part and of the different 
granularities, i.e. from the most general to the most 
specific. A general pattern can be transformed to more 
specific ones, and vice versa. By examining the 
generalization or specification relationships among these 
patterns, the transitions among the patterns become 
visible. In addition, the discovered patterns demonstrate 
the similarities shared among the data used for analysis. 
Data that are categorized under a same pattern are of the 
similarity as demonstrated by the pattern. For any two 
patterns that can be generalized to the same more general 
pattern, the two data sets supporting these patterns must 
be similar to each other in the way that is represented 
from the general pattern. 

To illustrate the pattern transition and data similarity in 
this sample project, the concept lattice #1 is analyzed for 
simplicity. Any other lattices can be analyzed similarly. 

Figure 2 shows the top four levels of patterns within this 
concept lattice and the transitions of these patterns. The 
complete transitions of all the patterns in this lattice can 
be referred to the website provided earlier. In this lattice, 
the most general pattern is #1, as shown in the very top of 
the figure. It can be specified to pattern #2, #3, and #4 at 
the second level. In this case, we say pattern #1 is the 
generalization of pattern #2, #3, and #4. On the other 
hand, pattern #2, #3, and #4 are the three specifications of 
pattern #1. Each of these three patterns can be further 
specified to other patterns until no more specific pattern 
can be found. For example, one of the most specific 
patterns is pattern #60. It follows the specification path of 
pattern #1→#3→#6→#41→#50→#60. 

 
Figure 2: Transition of patterns (concept lattice #1) 

8 {R3R,R1C, 
R2C,R3C} 

16 {AC,R1R, 
R3R,R3C} 

7 {R1R,R2R, 
R1C,R3C} 

17,18 {RCC,R3R, 
R1C,R3C} 

5 {R1R,R1C,R3C} 6 {R1R,R2R,R3C}

2 {R1C,R3C} 3 {R1R,R3C} 4 {R2R,R3C}

1 {R3C} 

AV: AverageValue(fi)     

R2R: Res2UtiRatio(fi)    
R2C: Res2Criticality(fi)    

RCV: RelConfValue(fi)   
AU: AverageUrgency(fi)  

R1R: Res1UtiRatio(fi)
R1C: Res1Criticality(fi)   

RCU: RelConfUrgency(fi)

Legends:  
AC: AverageComp(fi)  

R3R: Res3UtiRatio(fi)   
R3C: Res3Criticality(fi)

RCC: RelConfComp(fi)



Regarding the similarities shared among all the 1085 data 
used for the analysis, all these data are the same in terms 
of their values on the input R3C (Res3Criticality(fi)), as 
illustrated through the most general pattern, i.e. pattern #1. 
More similarity is discovered from the data #1 to #715 
and #869 to #930 because these data points also share the 
same value on the input attribute R1C (Res1Criticality(fi)), 
besides on R3C. As a result, these data form a more 
specific pattern, i.e. pattern #2. 

These results can be interpreted as a type of explanations 
on ReleasePlanner® solutions. If, in a solution, the release 
assignment of a feature is supported by general pattern(s) 
that are supported by a large number of data points, the 
users are more likely to accept such result. Otherwise, 
they might want to further improve the solution.  

5.2 Importance Level of Inputs on Outputs  
By examining all the found patterns (“context” part), we 
can identify each input attribute’s importance level to the 
output attribute, in our case the release. The assumption is 
that the higher the number of the occurrence of an input in 
the patterns is, the more important this input is in 
determining the release value. However, an exception to 
this assumption is that this number cannot be as high as 
the total number of data used for analysis. The rational for 
this exception is given later.  

For this purpose, we investigate the second concept lattice 
which provides more coverage than the first one on the 
patterns inherent in the data. Figure 3 summarizes the 
number of occurrence of each input in this concept lattice. 
Res3Criticality(fi) appears to be the most important 
attribute. It is in all the patterns and has the same value. In 
other words, it has no influence at all on the distribution 
of release. Res1Criticality(fi) and Res1UtiRatio(fi) are 
important attributes which have different values. The least 
important ones are AverageComp(fi), AverageUrgency(fi), 
and RelConfComp(fi). Other input attributes have medium 
level of importance. 
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Figure 3: Importance level of each input on the output 

(concept lattice #2) 

This part of the results provides the ReleasePlanner® users 
with the explanations by identifying a subset of all the 
defined inputs that play the most significant impacts on 
the tool when it generates solutions.   

5.3 Sensitivity Level of Outputs to Inputs  
The generated concept lattices also check if adding a new 
input attribute (“var” part) to the existing patterns 
(“context” part) would change the distribution of release. 
If the change is significant, this input is likely responsible 
for such change, i.e. the output is sensitive to this input. 
To observe the sensitivity of the output on each input, the 
second concept lattice is used for analysis again. In 
particular, we examine six types of how the “var” part 
may impact on the distribution of releases: 

• R1/R2/R3 +0.30: increase by at least 30% in the 
distribution of assigning a feature fi to release 1, 2, 
and 3, respectively 

• R1/R2/R3 -0.30: decrease by at least 30% in the 
distribution of assigning a feature fi to release 1, 2, 
and 3, respectively 

For each input, we first count its number of occurrence in 
the “var” part of each record. For example, in the record 
in Table 3, the input attribute AverageComp(fi) is in the 
“var” part with 118 cases supporting the impact of R1 
+0.30. Therefore its number of occurrence in this record, 
for this type of impact, is 118. Then, by summing up such 
numbers for all the records of the same impact type, we 
obtain the total number of occurrence of this input. Figure 
4 shows this number for each input based on the above 
calculation. We assume that the higher this number is, the 
more sensitive the output is to this input.  
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Figure 4: Sensitivity level of the output to each input 

(concept lattice #2)  

From this figure, RelConfUrgency(fi), Res3UtiRatio(fi) 
and AverageComp(fi) have the most significant impacts 
on the distribution of release. Specifically, release 1 is 
most sensitive to RelConfUrgency(fi) and 
AverageComp(fi) for at least 30% of increased 
distribution, and to AverageComp(fi) for at least 30% of 



decreased distribution. Release 2 is most sensitive to 
Res3UtiRatio(fi) and AverageComp(fi) for at least 30% of 
increased distribution. But they usually have no impact as 
R2 -0.30 or R3 ±0.30. On the other hand, Res1UtiRatio(fi), 
Res1Criticality(fi), and Res3Criticality(fi) almost never 
contribute to any change by at least ±30% in any release. 
Although they occur the highest times in the patterns in 
Figure 3, their sensitivity levels are not as significant as at 
least ±30% and cannot be reflected in Figure 4. The other 
input attributes in general have medium level of 
sensitivity on the output attribute. 

The above results explain some sensitivity aspects of the 
solutions generated by ReleasePlanner®. This kind of 
knowledge reveals the degree of impact from changing 
different input parameters. In case of uncertain data, the 
rule of thumb is that the more robust a solution, the higher 
chance of acceptance by the user.  

6 Conclusions and Future Work 
In this paper, a formal data analysis method called 
concept analysis is combined with statistical hypothesis 
testing to explain complex solutions recommended by 
ReleasePlanner®, a decision support system for product 
release planning. The results of our analysis of the data of 
individual release planning projects contain additional 
knowledge that is currently unavailable to the tool users. 
Specifically, such knowledge explains the underlying 
relationships inherent in the investigated data, in terms of 
the underlying patterns between the input and output data, 
as well as the importance and sensitivity levels of inputs 
on outputs. These explanations intend to achieve better 
understanding on the solutions of ReleasePlanner®, and 
therefore higher acceptance level from the user side. To 
demonstrate the application of concept analysis and 
statistical hypothesis testing, a sample product release 
planning project was investigated. Although the findings 
presented in this paper are specific to the sample project, 
the methodology of applying such analysis is generic 
(since it treats the decision support system as a black box) 
and can be applied to any other product release planning 
projects, or other software systems in which explaining 
complex solutions to users is necessary. 

As a very important future work, empirical studies will be 
conducted with ReleasePlanner® users in order to justify 
the usefulness and effectiveness of the proposed method 
for explaining the tool’s solutions. In addition, the results 
obtained from the concept analysis, as presented in this 
paper, only provides one type of explanations on 
ReleasePlanner® solutions and it is by no means complete. 
The explanations generated from this method are better to 
be used with other types of explanations (e.g. the ones 
discussed in [7]) that address the solutions from different 
aspects. Therefore we will also investigate on how these 
different types of explanations obtained from different 
techniques are complimentary to each other so that they 
can together provide the tool users with a more complete 

view of explanations on the tool and its solutions.  
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