
Extraction of Bug Localization Benchmarks from History

Valentin Dallmeier
Dept. of Computer Science

Saarland University
Saarbrücken, Germany

dallmeier@cs.uni-sb.de

Thomas Zimmermann
Dept. of Computer Science

Saarland University
Saarbrücken, Germany

tz@acm.org

ABSTRACT

Researchers have proposed a number of tools for automatic bug lo-
calization. Given a program and a description of the failure, such
tools pinpoint a set of statements that are most likely to contain the
bug. Evaluating bug localization tools is a difficult task because
existing benchmarks are limited in size of subjects and number
of bugs. In this paper we present iBUGS, an approach that semi-
automatically extracts benchmarks for bug localization from the
history of a project. For ASPECTJ, we extracted 369 bugs, 223 out
of these had associated test cases. We demonstrate the relevance of
our dataset with a case study on the bug localization tool AMPLE.

Categories and Subject Descriptors: D.2.5 [Software Engineer-

ing]: Testing and Debugging—debugging aids, diagnostics, testing

tools, tracing; D.2.7 [Software Engineering]: Distribution, Mainte-
nance, and Enhancement—corrections, version control

General Terms: Management, Measurement, Reliability

1. INTRODUCTION
An objective evaluation of a bug1 localization technique requires
a set of programs with known bugs. The Software-Artifact Infras-
tructure Repository (SIR) aims at providing such a set of subject
programs with known bugs that can be used as benchmarks for bug
detection tools [4]. Subjects from the SIR have already been used
in a number of evaluations [14, 5, 1, 6, 7, 15, 2].

Despite its success, using subjects from the SIR has several draw-
backs. Most of them are rather small and contain only few known
bugs. Also, the majority of bugs were artificially seeded and are not
representative for realistic bugs. Therefore, it is difficult to argue
that results obtained for SIR can be transferred to real projects. The
absence of realistic bugs for large programs in SIR is because the
collection is a tedious task—a task which we want automate with
this work.

In this paper, we propose an approach called iBUGS that semi-
automatically extracts benchmarks for bug detection with realis-
tic bugs from a project’s history. We applied our approach to the

1We use the term bug to denote a defect in the code that causes a
program to fail.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE’07, November 4–9, 2007, Atlanta, Georgia, USA.
Copyright 2007 ACM 978-1-59593-882-4/07/0011 ...$5.00.

version archive and bug database of ASPECTJ, a large open-source
project with more than 5 years of history. Using our technique we
were able to extract faulty versions for 369 bugs. For 223 of these
bugs, we also identified at least one associated test. We assembled
this data in a repository called iBUGS and made it publicly available
for other researchers.

The contributions of this paper are as follows:

1. A technique to semi-automatically extract bug localization

benchmarks from a project’s history (Section 2).

2. A publicly available repository containing a large open source
project with realistic 369 bugs, meta information about the
bugs, and a test suite to run the program (Section 3).

Using iBUGS, we re-evaluate the dynamic bug localization tool
AMPLE with only 142 lines of JAVA code (Section 4). We then dis-
cuss related work (Section 5) and conclude the paper (Section 6).

2. THE IBUGS APPROACH
Our iBUGS approach extracts bugs from a project’s history and as-
sembles these bugs into a benchmark for bug localization tools. All
we need is a version archive (such as CVS) to identify changes that
fixed bugs. iBUGS also identifies regression tests that developers
provided together with fixes. These tests are used by several bug
localization tools to reproduce the corresponding failure [2, 15].

A subject for the iBUGS repository is created as follows:

1. Recognize fixes and bugs. We automatically identify fixes by
searching log messages for references to bug reports such as “Fixed
42233” or “bug #23444” [11]. The underlying assumption is that
the location of a bugs and its correction are the same.

2. Extract pre-fix and post-fix versions. For a bug, the pre-fix ver-
sion of a program still contains the bug, while in the post-fix version
the bug has been fixed. We ignore all fixes that do not change the
program’s functionality (like correcting a misspelled dialog title).

3. Build versions and run tests. We build the pre- and post-fix
versions of all bugs and execute the test suites (if any) to collect test
outcomes. In theory this step could be fully automated; however,
in practice it sometimes requires manual interaction since software
evolves and the names of build targets and output files change.

4. Recognize tests associated with bugs. Many developers com-
mit test cases with fixes to prevent that previously fixed bugs re-
emerge. When run on the pre-fix version, these tests are helpful
for bug localization tools that need to reproduce the failure [2, 15].
Note that sometimes more than one test are committed for a bug
and not all of them fail on the pre-fix version. Also, bugs without
associated tests are still useful for static bug localization tools.

TypeX onType = rp.onType;

if (onType == null) {

- Member member = EclipseFactory.makeResolvedMember(declaration.binding);

- onType = member.getDeclaringType();

+ if (declaration.binding != null) {

+ Member member = EclipseFactory.makeResolvedMember(declaration.binding);

+ onType = member.getDeclaringType();

+ } else {

+ return null;

+ }

}

ResolvedMember[] members = onType.getDeclaredPointcuts(world);

Tokens changes computed by APFEL [16]:

K-else (+1) K-if (+1) K-null (+1) K-return (+1)
O-!= (+1)
T-MethodDeclaration (+1) V-declaration (+1)
Z-if-”declaration.binding != null” (+1)

Concise fingerprint:

KZ

Full fingerprint:

K-else K-if K-null K-return O-!= T V Z-if

Figure 1: Fingerprints for Bug 87376 “NPE when unresolved type of a bound var in a pointcut expression (EclipseFactory.java:224)”.

Token type Description

Z–expression Expressions that are used in casts, con-
ditional statements, exception handling,
loops, and variable declarations.

K–keyword Keyword such as for, if, else, new, etc.
M–method-name Method calls.
H–exception-name Catch blocks for exceptions.
V–variable-name Names of variables.
T–variable-type Types of variables.
Y–literal Literals such as numbers or strings)
O–operator-name Operators such as +, −, &&, etc.

Table 1: Token types used for iBUGS.

5. Annotate bugs with meta information. Some bugs may not
meet the assumptions and prerequisites of a specific bug localiza-
tion tool. In order to provide an efficient selection mechanism,
we automatically annotate bugs with size properties of their corre-
sponding fix, such as the number of changed methods and classes,
as well as the number of churned lines. In addition, we provide syn-

tactic properties that describe what syntactic tokens the fix changed
(see Table 1). The concise fingerprint summarizes the most essen-
tial syntactic changes such as method calls, expressions, keywords,
and exception handling. In addition, the full fingerprint records
changes in variable names and contains more detailed information
about the affected tokens. Figure 1 shows a sample fingerprint.

6. Assemble iBUGS repository. We collect all versions of a subject
in a Subversion repository (to reduce space). The meta information
is stored in an XML file (see Figure 3). Also, we provide for each
bug the files that were fixed and, if available, associated test cases.

3. THE ASPECTJ DATASET
In this section we present several characteristics of the dataset that
we created from the ASPECTJ project. ASPECTJ is an aspect-oriented
extension to the Java programming language and includes among
other tools a compiler. Its history is well-maintained, developers
regularly link fixes to the bug database and include test cases when
they fix bugs.

3.1 Size of ASPECTJ
The ASPECTJ compiler consists of 75 kLOC and its test suite con-
tains 1,184 test cases. We analyzed all 7,947 commits by the 13
developers between July 2002 and October 2006 (each commit can
be understood as a version of ASPECTJ). From the bug database,
we identified 369 bug reports that changed program code, for 223
we found associated test cases (see Table 2). The total size of the
ASPECTJ dataset in the iBUGS repository is 260 MB.

ASPECTJ Number

Candidate bug reports
– retrieved from CVS and BUGZILLA 489
– after removing false positives 485
– that change source code 418
– for which pre-fix and post-fix versions compile 406
– for which test suites compile 369

Final dataset
– bugs 369
– bugs with associated test cases 223

Table 2: Breakdown of the analyzed bug candidates.

3.2 Size of fixes in ASPECTJ
The majority of bugs in ASPECTJ (201 out of 369) was corrected in
exactly one method. This suggests that most bugs are local, span-
ning across only few methods. Also, many fixes in ASPECTJ are
small: 44.4% of all fixes churned ten lines or less; almost 10% of
all fixes are one-line fixes, i.e., churned exactly one line. Only few
fixes deleted code (about one third), most fixes modifies existing
code (e.g., wrong expressions) or added new code (e.g., null pointer
checks). The percentages of small fixes that we observed are con-
sistent with the ones observed by Purushothaman and Perry [9].

3.3 Fingerprints in ASPECTJ
While the majority of fixes changed different kinds of token (for in-
stance 205 fixes with fingerprint “KMZ”), several fixes changed ex-

clusively one token type: 30 fixes changed only method calls (“M”),
15 fixes only keywords (“K”), and 12 fixes only expressions (“Z”).
Only literals and variable names were changed by 39 fixes changed
(empty fingerprint). For examples of fingerprints and characteristic
fixes, we refer to our technical report [3].

4. THE AMPLE CASE STUDY
With iBUGS we re-evaluated AMPLE, our dynamic bug localiza-
tion tool for JAVA. AMPLE was previously evaluated on NANOXML

(about eight kLOC) from the Software-Artifact Infrastructure Repos-
itory, and four bugs from the ASPECTJ compiler [2]. Back then
finding those four bugs required manually searching the bug database
and version archive of ASPECTJ. By using our iBUGS repository,
we were able to repeat our evaluation with a much larger number
of bugs and less manual effort.

AMPLE works on a hypothesis first stated by Reps et al. [10]:
bugs correlate with differences in traces between a passing and a

failing run. AMPLE captures the control-flow of a program as se-
quences of method calls issued by the program’s classes. A class

Figure 2: Using the rankings of AMPLE, 40% of all bugs are

located by searching at most 10% of the executed code.

that produces substantially different call sequences in failing and
passing runs is more likely to contain the bug than a class that be-
haves the same in all runs. The output of AMPLE is a ranking of
classes that puts the class with the strongest deviations on top.

Experimental setup.
In order to be able to use our previous evaluation method [2], we
restricted our experiments to bugs that were fixed in a single class
(74 bugs). Additionally, we ignored bugs for which associated tests
did not fail on the corresponding pre-fix version (44 bugs remain-
ing). Failing tests were used as failing runs and we randomly chose
three passing tests from the regression test suite as passing runs.
For AMPLE’s parameter length of call sequences, we used a value
of 5 which produced the best results in the previous evaluation. The
entire evaluation is controlled by a short JAVA program (142 LOC)
that reuses the ANT scripts provided by the iBUGS repository to
build versions and run the passing and failing tests.

Results.
For each bug, AMPLE returns a ranking of classes that were exe-
cuted during the failing run. This ranking is a recommendation to
a programmer in which order she should search the classes when
locating the bug. The usefulness is measured by the search length,
i.e., the number of classes that are ranked higher than the class with
the bug. A low search length means that a programmer has to check
only a small portion of the code before she locates the bug.

Figure 2 shows a cumulative plot of the search length relative
to the number of executed classes: a developer who investigates the
top 10% of AMPLE’s rankings, would locate the bug in 40%. While
AMPLE is pretty effective in most cases, the plot also indicates that
for only few rankings more than half of the executed code has to
be searched. We encourage other researchers to evaluate their bug
localization tools by using the iBUGS repository (see the step-by-
step guide in Figure 4).

5. RELATED WORK
The publicly available Subject-Artifact Infrastructure Repository

(SIR) provides six JAVA and thirteen C-programs [4]. Each program
comes in several different versions together with a set of known
bugs and a test suite. There are two drawbacks of SIR: First, most
projects are rather small, the average project size is only 11 kLOC.
Second, almost all bugs are artificially seeded; however, realistic
bugs are likely to be different. With iBUGS, we will provide SIR

with subjects that come with a large number of realistic bugs.

<bug id="69459">
<property name="files−churned" value="1"/>
<property name="classes−churned" value="1"/>
...
<concisefingerprint>KMZ</concisefingerprint>
<fullfingerprint>K−else K−if K−null M O−! O−&&
O−+ T V Y Z−if</fullfingerprint>

<pre−fix−testcases failing="105" passing="1203"/>
<post−fix−testcases failing="105" passing="1204"/>
<testsforfix type="new">
<file location="ajcTests.xml">

<test name="Hiding of Instance Methods"/>
</file>

</testsforfix>
<fixedFiles>
<file name="ResolvedTypex.java" revision="1.27">

...
1194c1194,1202
<
−−−

> if (parent.isStatic()
> && !child.isStatic()) {
...</file>
</fixedFiles>

</bug>

Figure 3: XML content descriptor for bug 69459.

Spacco et al. collected bugs made by students during program-
ming projects in their Marmoset project [13]. The Marmoset data
contains several hundred projects including test cases. Most student
projects are small, however, and not always representative for in-
dustrial software development. In contrast, iBUGS focuses on large
open-source projects with industrial alike development processes.

In their BugBench benchmark suite, Lu et al. manually collected
19 bugs from 17 C-programs, most bugs being memory related [8].
The size of the subjects ranged from two kLOC to one mLOC. In
contrast to iBUGS, BugBench is not publicly available.

6. CONCLUSION
The version history of a project collects all past successes and fail-
ures. In this paper, we presented iBUGS, an approach that lever-
ages the history of a project to automatically extract benchmarks for
bug localization tools. These benchmarks are useful for both static
and dynamic bug localization tools: for ASPECTJ, we extracted 369
bugs and their fixes, 223 out of these had associated test cases. To
summarize, our contributions are as follows:

1. iBUGS automatically extracts bug localization benchmarks

from version archives and bug databases; only when the build
process changes, manual interaction is necessary.

2. iBUGS collects a large number of realistic bugs as they actu-
ally occurred in the development history. Therefore, results
obtained on iBUGS are more likely to transfer to real projects.

3. iBUGS is publicly available and comes with a fully-fledged
infrastructure for reconstructing, building, and testing the ver-
sions with and without bugs (step-by-step guide in Figure 4).

Our ASPECTJ dataset is a first step towards the “huge collection of
software defects” that by Spacco et al. [12] at the Bugs workshop at
PLDI 2005. The history of open source projects offer a huge num-
ber of collector’s bugs which wait to be discovered by researchers.
Therefore, our future work for iBUGS will concentrate on adding
more subjects. For ongoing information on the project and an ex-
tended technical report [3], log on to

http://www.st.cs.uni-sb.de/ibugs/

http://www.st.cs.uni-sb.de/ibugs/

Acknowledgments. Thomas Zimmermann is funded by the DFG-
Graduiertenkolleg “Leistungsgarantien für Rechnersysteme”. LOC
numbers were generated using David A. Wheeler’s “SLOCCount”.
Christian Lindig, Rahul Premraj, and David Schuler provided valu-
able comments on earlier revisions of this paper.

7. REFERENCES
[1] H. Cleve and A. Zeller. Locating causes of program failures.

In Proceedings of 27th International Conference on Software
Engineering (ICSE), pages 342–351, 2005.

[2] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight defect
localization for java. In Proc. of 19th Europ. Conf. on
Object-Oriented Prog. (ECOOP), pages 528–550, 2005.

[3] V. Dallmeier and T. Zimmermann. Automatic extraction of
bug localization benchmarks from history. Technical report,
Saarland University, Saarbrücken, Germany, June 2007.

[4] H. Do, S. G. Elbaum, and G. Rothermel. Supporting
controlled experimentation with testing techniques: An
infrastructure and its potential impact. Empirical Software
Engineering, 10(4):405–435, 2005.

[5] Z. Li and Y. Zhou. Pr-miner: automatically extracting
implicit programming rules and detecting violations in large
software code. In Proc. of European Software Engineering
Conference/International Symposium on Foundations of
Software Engineering (ESEC/FSE), pages 306–315, 2005.

[6] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan.
Scalable statistical bug isolation. In Proc. of Conf. on Prog.
Lang. Design and Impl. (PLDI), pages 15–26, 2005.

[7] C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkiff. Sober:
statistical model-based bug localization. In Proc. of
European Software Engineering Conference/International
Symposium on Foundations of Software Engineering
(ESEC/FSE), pages 286–295, 2005.

[8] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou. Bugbench:
Benchmarks for evaluating bug detection tools. In PLDI
Workshop on the Evaluation of Software Defect Detection
Tools, June 2005.

[9] R. Purushothaman and D. E. Perry. Toward understanding
the rhetoric of small source code changes. IEEE Transactions
on Software Engineering, 31(6):511–526, 2005.

[10] T. Reps, T. Ball, M. Das, and J. Larus. The use of program
profiling for software maintenance with applications to the
year 2000 problem. In Proc. European Software Engineering
Conference (ESEC/FSE), pages 432–449, Sept. 1997.

[11] J. Śliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? On Fridays. In Proc. International
Workshop on Mining Software Repositories (MSR), St.
Louis, Missouri, U.S., May 2005.

[12] J. Spacco, D. Hovemeyer, and W. Pugh. Bugbench:
Benchmarks for evaluating bug detection tools. In PLDI
Workshop on the Evaluation of Software Defect Detection
Tools, June 2005.

[13] J. Spacco, J. Strecker, D. Hovemeyer, and W. Pugh. Software
repository mining with marmoset: an automated
programming project snapshot and testing system. In Proc.
International Workshop on Mining Software Repositories
(MSR), 2005. See also: http://marmoset.cs.umd.edu/.

[14] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das.
Perracotta: mining temporal api rules from imperfect traces.
In ICSE ’06: Proceeding of the 28th international
conference on Software engineering, pages 282–291, 2006.

[15] X. Zhang, N. Gupta, and R. Gupta. Locating faults through
automated predicate switching. In ICSE ’06: Proceeding of
the 28th Int. Conf. on Software Eng., pages 272–281, 2006.

[16] T. Zimmermann. Fine-grained processing of CVS archives
with APFEL. In Proceedings of the 2006 OOPSLA Workshop
on Eclipse Technology eXchange, October 2006.

1. Select bugs. Use the meta information provided in the file
repository.xml (see Figure 3) to select relevant bugs.

Example: In order to select all bugs that raised a NullPoint-
erException, use the XPath expression

/repository/bug[tag=”null pointer exception”]

2. Extract versions. Use the ant task checkoutversion.

Example: In order to checkout the pre-fix and post-fix ver-
sions for Bug 4711, type

ant -DfixId=4711 checkoutversion

The results are placed in the directory “versions/4711/”.

3. Build the program. Use the ant task buildversion.

Example: Build the pre-fix version of Bug 4711 with

ant -DfixId=4711 -Dtag=pre-fix buildversion

If the build succeeds, you find the Jar files in the directory
“. . . /pre-fix/org.aspectj/modules/aj-build/dist/tools/lib/”

Note: Static tools can analyze the Jars in this directory,
while dynamic tools that execute tests need to instrument
the Jars created in the next step.

4. Build tests (dynamic tools). Use the ant task buildtests.

Example: In order to build the tests for the pre-fix version
of Bug 4711, type

ant -DfixId=4711 -Dtag=pre-fix buildtests

This creates a Jar file that includes the ASPECTJ com-
piler and all resources needed for testing in the directory
“versions/4711/prefix/org.aspectj/modules/aj-build/jars/”.

5. Run test suites (dynamic tools). Use the ant tasks runhar-

nesstests for the integration test suite and runjunittests for
the unit test suite of ASPECTJ, respectively.

Example: Run unit tests for the pre-fix version of Bug 4711

ant -DfixId=4711 -Dtag=pre-fix runjunittests

6. Run specific tests (dynamic tools). Generate scripts by us-
ing the ant task gentestscript and execute them.

Example: In order to execute test “SUID: thisJoinPoint” de-
scribed in file “org.aspectj/modules/tests/ajcTests.xml” gen-
erate a script with

ant -DfixId=4711 -Dtag=pre-fix \

-DtestFileName="org.aspectj.modules/\

tests/ajcTests.xml"\

-DtestName="SUID: thisJoinPoint".

This creates a new ant script in the directory “4711/pre-

fix/org.aspectj/modules/tests/”. Execute this file to run test
“SUID: thisJoinPoint”.

Hint: All tests executed by the test suite are described in the
file “4711/pre-fix/testresults.xml”.

7. Assess your tool. Compare the predicted bug location
against the location changed in the fix (see repository.xml).

Note: Static bug localization tools typically integrate with
Step 3 and 4. Dynamic tools need to run programs and there-
fore integrate with Step 4, 5, and 6.

Figure 4: Step-by-step guide to your own evaluation.

	Introduction
	The iBUGS approach
	The ASPECTJ Dataset
	Size of ASPECTJ
	Size of fixes in ASPECTJ
	Fingerprints in ASPECTJ

	The AMPLE Case Study
	Related Work
	Conclusion
	References

