
Assessing the Value of Branches with What-if Analysis

Christian Bird
Microsoft Research
Redmond, WA, USA

cbird@microsoft.com

Thomas Zimmermann
Microsoft Research
Redmond, WA, USA

tzimmer@microsoft.com

ABSTRACT
Branches within source code management systems (SCMs) allow
a software project to divide work among its teams for concurrent
development by isolating changes. However, this benefit comes
with several costs: increased time required for changes to move
through the system and pain and error potential when integrating
changes across branches. In this paper, we present the results of a
survey to characterize how developers use branches in a large
industrial project and common problems that they face. One of the
major problems mentioned was the long delay that it takes chang-
es to move from one team to another, which is often caused by
having too many branches (branchmania). To monitor branch
health, we introduce a novel what-if analysis to assess alternative
branch structures with respect to two properties, isolation and
liveness. We demonstrate with several scenarios how our what-if
analysis can support branch decisions. By removing high-cost-
low-benefit branches in Windows based on our what-if analysis,
changes would each have saved 8.9 days of delay and only intro-
duced 0.04 additional conflicts on average.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Version Control; D.2.9 [Software Engineering]:
Management—Software Configuration Management.

General Terms: Measurement, Management, Human Factors

Keywords: Concurrent Development, Branches, Teams, What-if
Analysis, Branch Refactoring, Coordination

1. INTRODUCTION
As software projects grow ever larger, both in terms of develop-
ment teams and code size, coordinating work and changes to the
system without causing undue harm or hindering others unneces-
sarily becomes a challenge. Thousands of developers making
substantial changes to the contents and interfaces of hundreds of
subsystems can quickly lead to disaster. One common solution to
this problem is to use branches within the source code manage-
ment system (SCM) [1]. Branches provide developers a facility
for working individually or in teams on the source code of a soft-
ware project independent of the changes being made by others.
The branch provides a workspace where changes can be made,

designs explored, and code tested in parallel with other teams
working in other branches. Once a work task has been completed
and the software is judged to be of sufficient quality (via testing or
some other method), these changes can be integrated (also known
as merged) into other branches (and their corresponding features)
as they move towards a common branch (sometimes called
“trunk”, “master”, or “root” in different SCMs) from which the
product is released.

The practice of using branches to divide teams and tasks is used
extensively at Microsoft for projects with large codebases, multi-
ple concurrent releases undergoing development, and large teams.
In recent years, with the advent of SCMs that facilitate easy
branching and merging such as Git, Mercurial, Darcs, and Bazaar,
many open source projects have begun using branching increas-
ingly in their development practices. Prominent examples include
the Linux kernel, Python, Perl, Ruby on Rails, X.org, and
GNOME. Of the projects reporting their SCM in Debian, 61%
indicated that they used next generation SCMs that facilitate
branching [2]. Branching is a practice that is only becoming more
prominent.

Branches do not come without a price, however. Since a change
is initially only visible to the team working within its branch, it
must be integrated into other branches before it can be seen by the
rest of the project. The process of integrating changes from mul-
tiple branches can be difficult and error-prone, especially if
changes on different branches conflict, either syntactically or
semantically. In addition, this process takes time, which can slow
teams on different branches that are dependent on each other or
features which are related. Thus, branches incur an overhead in
both developer effort and time, which, if not monitored and man-
aged, can have severe impact on the project in the form of missed
deadlines and increased failures.

In an effort to identify the extent of the cost of branching we sur-
veyed developers at Microsoft to determine the difficulty and time
associated with integrating changes from multiple branches as
well as tools and practices used to verify such work. We also
included questions to determine how often common problems
with branches (also called “anti-patterns”, initially identified by
Appleton et al [3]) are encountered and what their severity is.
Based on the survey and follow-up discussions with developers,
we found that branch awareness and decisions surrounding
branches are important pain points for many software projects,
especially for SCMs that contain many branches, leading to many
large integrations and long delays in moving changes across teams
(anti-patterns known as “Branchmania” and “Big Bang Merge”).

To address scenarios involving monitoring and making decisions
about branches, we present a what-if analysis which serves to
characterize individual branches in terms of isolation—how many
conflicts they prevent—and liveness—how quickly changes made
on the branches are conveyed to other teams. Our approach sepa-
rates branches which exhibit the expected benefits (which we term

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGSOFT’12/FSE-20, November 11–16, 2012, Cary, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1614-9/12/11…$15.00.

high-benefit-low-cost branches), from those that slow develop-
ment without providing high levels of isolation (low-benefit-high-
cost). This analysis can aid developers by alerting them to parts
of the branch structure that are “unhealthy” and hindering devel-
opment or indicating which branches should be considered for
removal.

Throughout this paper we demonstrate and evaluate the utility of
our technique by illustrating its use on Windows. For example, we
found that removing high-cost-low-benefit branches based on our
analysis, changes would each have saved 8.9 days of delay and
only introduced 0.04 additional conflicts on average. Over the
past year, we also applied this analysis to Windows Mobile and
Bing with similar results.

We make the following contributions in this paper

• Results of a survey of conducted with Microsoft developers on
branching practices and issues encountered with branch use
(Section 3).

• Technique for measuring the isolation and liveness of branch-
es via what-if analysis (Section 4 and 5).

• Decisions scenarios supported by this technique and demon-
stration of these scenarios in the context of Windows devel-
opment (Section 6).

2. BRANCHES AT MICROSOFT
Let us first illustrate how the Windows development process
works. As shown in Figure 1, the Windows software develop-
ment takes place in various branches of the version control system
with tightly integrated schedules for code integration and compre-
hensive builds. There are several parts of Windows, each of which
are developed in individual branches. (An example feature could
be “Sound” in the component “DirectX” in the area “Multime-
dia”.) Each of these individual branches can work as though the
rest of the code base to be frozen, except for their own evolving
features.

Engineers check-in their code to the feature branches. To ensure
that the newly developed code in the feature branch maintains
compatibility with the other changes committed to the main
branches, the feature branches continually synchronize with the
main branch (also called forward integration, or simply FI). After
passing quality gates (for example, code coverage or static analy-
sis) the code moves to the parent branch in the tree (reverse inte-
gration, RI). Once the code reaches the main branch (level 0) it is
automatically integrated (FI’ed) with the rest of the code base to
ensure that other code being developed is compatible with these
changes. This process ensures stability in the main Windows

branch, with a working version of Windows always available for
system test and other purposes—however, this isolation also
comes at a cost: transit time is increased as changes are only visi-
ble to other teams after several integrations. An example could be
Multimedia branches, where changes have first to be integrated to
the main branch before they are visible in the Networking branch-
es.

The branch structure in Windows (and other products at Mi-
crosoft) is typically chosen at the beginning of a release and re-
mains mostly unchanged during the development of the release.
Thus, there is not a strong notion of short-lived vs. long-lived
branches. With this paper, we introduce an approach to quantita-
tively assess cost and benefit of branches to inform branch deci-
sions.

3. SURVEY ON BRANCH USAGE
Many best practices exist in software configuration management
such as the work by Berczuk [4] and Aiello [5], which also dis-
cuss how branches should be handled. As an example, a white
paper from Perforce Software presents five best practices related
to branches based on the authors’ experience in deploying SCM
systems [6]: branch only when necessary; don’t copy when you
mean to branch; branch on incompatible policy; branch late;
branch instead of freeze. Appleton et al. present 32 patterns (best
practices) for managing branching in parallel development pro-
jects [3]. They further present 12 common traps and pitfalls in
branching that they call anti-patterns (see Figure 3). Examples of
such anti-patterns are: creating too many branches (Branchma-
nia), deferring branch merging and then attempting to merge all
branches simultaneously (Big Bang Merge), or stopping all devel-
opment activities while branching and merging, permitting only
activities focused on shipping the impending release (Develop-
ment Freeze).

In order to characterize branch usage, we sent an online survey to
370 Microsoft engineers in January 2011. For the design of the

Q1: Approximately how many hours per month do you spend on
branching operations such as creating branches and integrating
changes from other branches?
Number (decimals okay)

Q2: How much time does an integration take on average,
including the time to verify that changes have been integrated
correctly? Please provide also the unit of time.
Comment

Q3: How do you validate correctness of an integration?
Comment

Q4: Based on your experience how many errors are caused by
incorrect integrations and in which areas do these errors occur?
Comment

Q5: Based on your experience how many times have you
encountered the following branch anti-patterns?
► List of anti-patterns by Appleton et al. with description (see Figure 3).

Never | Once or twice | Occasionally | Frequently | No opinion

Q6: Based on your experience how large is the impact of the
following branch anti-patterns on productivity?
► List of anti-patterns by Appleton et al. with description (see Figure 3).

No impact | Small impact | Moderate impact | Large impact | No opinion

Figure 2. The survey questions.

Figure 1. Branches in Windows development. FIs (forward

integrations) move changes from parent to child branches. RIs
(reverse integrations) move changes in the opposite direction.

survey, we followed Kitchenham and Pfleeger’s guidelines for
personal opinion surveys [7]. Our survey consisted of 12 ques-
tions (all optional) of which 5 were related to branching and are
shown in Figure 2. The survey was anonymous as this increases
response rates [8] and leads to more candid responses.

Since we wanted to solicit the opinions of people well-versed in
working with the SCM system and dealing with branches, we
chose our survey participants as the top 10% of people who had
either created most branches, integrated most changes, or submit-
ted most edits within the 12 months before the survey date. Par-
ticipants were invited with a personalized email and could enter
their names into a raffle of two US $50 gift certificates. We re-
ceived 124 responses (a 33.6% response rate) without sending any
reminders; other online surveys in software engineering have
reported response rates ranging from 14% to 20% [9]. For the
write-in questions the completion rate was between 93% and 98%.
Almost all respondents were developers and most were fairly
experienced, with a median of 11 years of work experience in the
software industry and 7.25 years at Microsoft.

3.1 Integrations
On average the survey respondents spent 5.45 hours per month
creating branches or integrating changes from other branches; the
median was 3 hours (Q1). These numbers may appear low, but
often teams select a single person to be in charge of integrations
and maintain a branch; this observation is supported by the 95th
percentile of 15.45 hours and several of the free form comments
in the survey. The time spent on branching operations depends
also largely on the work area: build engineers spend significantly
more time than developers.

For the time that integrations take on average (Q2), we solicited
responses in the form of comments rather than numbers because
we wanted to know more about the specific context of the integra-
tions. The time varied widely across responses, ranging from
minutes for simple integrations to days for more complicated
integrations. Most of the time is spent on resolving conflicts and
verifying correctness. The total time spent depends largely on the
presence of conflicts but also on “the size of the payload, how
well the branches are partitioned in terms of work going on inside
them, and how far back is the baseline”. Several people and
teams had developed custom tools and scripts to help them speed
up the integration and its validation.

To validate the correctness of integrations (Q3), respondents used
a wide spectrum of techniques: manual inspection using diff tools,
historic change information, custom tools and scripts, builds, pro-
gram executions, test runs, and also code review. Several people

stressed the importance of social communication, especially when
there are merge conflicts and the resolution is not clear. Survey
respondents pointed out that the validation often depends on the
type of branch (private, one-man branches vs. public, team based
and aggregation branches) and the complexity of the changes to
be integrated. In Windows and other systems, feature branches
typically have quality gates that must be met before a change can
move to a different branch [3,10].

We also asked about how many errors are caused by incorrect
integrations (Q4); again we solicited responses in the form of
comments rather than numbers. The consensus among respond-
ents was that errors “happen from time to time” but relatively
rarely because changes are validated extensively (e.g., through
quality gates). However, errors “tend to be subtle because [if they
happen] they often aren't noticed for a while when totally bizarre
behavior occurs and it takes a long time to track down what hap-
pened.” Frequent causes for integration errors are merge conflicts
that were not resolved correctly or partial integrations missing a
file. Errors often occurred in files that were not source code, such
as XML files or build manifests, and are difficult to compare.

3.2 Anti-patterns
Figure 3 contains the descriptions of the anti-patterns that were
presented to the surveyed developers. With respect to anti-
patterns we focused on two aspects:

• Frequency (Q5). In the survey, we asked how many times
each anti-pattern had been encountered by a person. For the
question, we used an ordinal scale with four levels Never,
Once or Twice, Occasionally, and Frequently. To avoid any
guesswork by participants we provided an explicit option for
No opinion.

For the analysis of the responses, we followed the advice by
Kitchenham and Pfleeger [7] and dichotomized the ordinal
scale to avoid any scale violations. More specifically, for each
anti-pattern k we computed the percentage PF(k) of the re-
sponse “Frequently” among all responses (excluding respons-
es that had no opinion).

• Severity (Q6). In addition, we asked which anti-patterns had
the highest impact on productivity. We used an ordinal scale
with four levels No Impact, Small Impact, Moderate Impact,
and Large Impact; again we offered an explicit option or No
opinion.

We computed for each anti-pattern k the percentage PS(k) of
the response “Large Impact” among all responses (excluding
responses that had no opinion).

 Merge Paranoia — avoiding merging at all cost, usually because of a fear of the consequences.
 Merge Mania — spending too much time merging code instead of developing it.
 Big Bang Merge — deferring branch merging and attempting to merge all branches simultaneously.
 Never-Ending Merge — continuous merging activity because there is always more to merge.
 Wrong-Way Merge — merging into the wrong branch.
 Branch Mania — creating too many branches.
 Cascading Branches — branching but never merging back to the main line.
 Mysterious Branches — branching for no apparent reason.
 Runaway Branches — branching for single purpose evolves to multi-purpose branch for unrelated tasks.
 Volatile Branches — branching with unstable files merged into other branches.
 Development Freeze — stopping all development activities while branching and merging.
 Integration Wall — using branches to divide the development team members, instead of dividing work.
 Spaghetti Branching — integrating changes between unrelated branches.

Figure 3. Branch anti-patterns identified by Appleton et al [3] in the order they appeared in the survey.

To identify anti-patterns with both a high frequency and a high
severity, we additionally computed for each anti-pattern the prod-
uct PFS(k) of the percentages PF(k) and PS(k).

𝑃𝐹𝑆(𝑘) = 𝑃𝐹(𝑘) × 𝑃𝑆(𝑘)
In Figure 4 we show a bubble chart of the frequency and severity
of the branch anti-patterns. Each anti-pattern k is represented as a
bubble; the position on the x-axis corresponds to the percentage
PF(k) of responses that selected “Frequently” in Q5 and the posi-
tion on the y-axis corresponds to the percentage PS(k) of responses
that select “High Impact” on productivity in Q6. The bubble size
corresponds to the combined percentage PFS(k). (Intuitively the
product PFS(k) is the area of the rectangle spanned by the zero
point and the point representing the anti-pattern.) To increase
readability, we show full names only for the four anti-patterns
with the highest PFS-values; the other patterns are identified with
numbers. The Mysterious Branches anti-pattern is not shown
because no developers indicated that it had high severity and
therefore the area is 0. The four highest ranked anti-patterns in
Figure 4 are Development Freeze, Big Bang Merge, Integration
Wall, and Branchmania.

• Development Freezes allow only activities that are focused on
shipping the next release; work on subsequent releases is
blocked until the software is released. Appleton et al. [3] dis-
cuss several solutions for this problem such as having parallel
release and development lines.

• The anti-pattern Integration Wall means that branches are
used to divide the development team members rather than the
work itself. In a prior work related to this anti-pattern, we
presented a preliminary study of how branches are used to or-
ganize goals and teams [11].

• For this paper, however, we focus on the anti-patterns Big
Bang Merge and Branchmania, which are related: too many
branches often lead to large integrations. Branchmania may
also lead to longs delays

To recover from and prevent Branchmania, project members need
awareness of how different branches are affecting their work. If
developers can identify what branches are posing problems or are
not actually needed, they can make decisions, such as where to
integrate changes more frequently or which branches to remove,
proactively. In this paper we provide a methodology to empirical-
ly assess branches and show how our approach can be used in a
number of branch decision scenarios by illustrating them on Win-
dows.

4. LIVENESS AND ISOLATION
It is important to understand how developers and other project
members view branches within a project and what qualities are
important to them.

At Microsoft project members care deeply about making fast and
continuous progress. One aspect of this progress is how quickly
changes made on branches are being seen by the rest of the pro-
ject. We term this general property of how fast changes are being
integrated into the rest of the project as liveness. One specific
measure of liveness is the amount of time that it takes for a
change on a branch to reach the root. This is important because
even if a developer has completed a feature or a bug-fix, the task
is not considered complete until the change has reached the root
without error. Furthermore, some defects do not manifest until
changes from different branches reach each other and their inter-
action leads to problems; a high liveness helps to reveal these
problems faster.

The interval between the checkin of a change and the time that it
reaches the root branch is the transit time of the change.

Low transit times result in high liveness.

Many teams at Microsoft are interested in tracking the transit time
of edits in their project. While transit time for individual edits is
fairly straightforward to compute from SCM metadata, accounting
which branches contribute the most to long transit times on the
path to the root branch is more complex. Branches that increase
transit times may represent a bottleneck and pose a severe barrier
to project agility.

Developers are aided by branches because of the isolation that
they afford. By making changes on a branch, developers are unaf-
fected by others and need not worry about unduly impeding teams
on other branches. Developers working in different branches can
change the same file without immediate negative impact. Such
activity means that the changes will eventually need to reach each
other and their interactions will need to be resolved, but develop-
ers can wait until their changes are complete and stable before-
hand. If a file is changed on two branches, A and B, then when
the change from one is integrated into the other, or the two chang-
es meet on another branch (perhaps the parent of A and B) there is
a file-level conflict, which needs to be resolved.1 We can meas-
ure how many conflicts occur when branches integrate with other
branches, but many edits to the same file in two different branches
may only result in one conflict if there is only one integration;
consequently this measure does not accurately reflect isolation.

1 Note that there are different levels of conflicts. Line-level conflicts are

when two changes if they change the same lines in a file and require
manual merging by developers. For this paper, we focus on file-level
conflicts, which is when the same file has been changed on different
branches. While some of these can be merged automatically, even these
merges have caused enough problems that the integration still has to be
validated by developers (for example via compilation and testing as in-
dicated in our survey) to avoid errors based on bad merges [25].

Figure 4. The frequency and impact of branch anti-patterns.
To increase readability we used numbers to label some of the

anti-patterns. 5: Merge Paranoia, 6: Never-Ending Merge,
7: Volatile Branches, 8: Merge Mania, 9: Spaghetti Branch-

ing, 10: Runaway Branches, 11: Cascading Branches,
12: Wrong-Way Merge, 13: Mysterious Branches

Accurately quantifying liveness and isolation via what-if analysis
and using such data to aid project members’ decision making is
one of the main contributions of this paper.

5. METHODOLOGY
Isolation and the liveness of a branch can provide valuable infor-
mation to project members that can be used in a number of scenar-
ios, from monitoring “branch health” to identifying branches that
should be removed from the system. However, measuring isola-
tion and liveness is not straightforward: How can we determine
how many conflicts were avoided? How much code movement
was slowed due to the use of a branch? To address such questions
we introduce a what-if analysis as illustrated in Figure 6. We take
an original development history H0 and apply several branch
removal operations (Sections 5.2 and 5.3) to obtain an alternative
history H1. We then compare how liveness and isolation change
between H0 and H1 (Section 5.4). We demonstrate based on
Windows 7 branches how such data can support several decision
scenarios (Section 6).

5.1 Terminology
We first introduce basic definitions needed to describe our what-if
analysis. Where possible, we adhere to accepted terms from SCM
parlance and only describe key terms and concepts that would
otherwise be confusing or ambiguous. For a more detailed and
formal description of our methodology, we refer the reader to the
online appendix [12].

To model file histories we use branches, edits, and integrations as
shown in the diagram below. Time flows left to right. Edits and
integrations are referred to as checkins. In this paper, we use cir-
cles on a horizontal line to denote checkins on a branch.

Parent

Child
Integration

IntegrationEdit

Anchor

Branches

Checkins

Edit

Edit

Anchor
We represent a branch by the list of subsequent checkins that
have been made to the file on the branch. Branches form a hierar-
chy in which the main branch is called the root branch. Likewise
there are parent and child branches. Checkins are integrated be-
tween branches and propagated towards the root branch. The
depth of a branch in the hierarchy is also referred to as the level,
with level 0 being the root branch.

 An edit includes a direct modification of a file by a developer
such as editting its content as well as adding or removing a file
from the SCM. Edits are a type of checkin and we denote edits
with a solid circle.

An integration merges the contents of a file at a specific point in
time on one branch (source) into another branch (target). In most
cases, but not always, integrations occur between parent and child
branches. Integrations are a type of checkin and we denote inte-
grations with a large hollow circle. To model the state of the file
at the “specific point in time” on the source branch, we introduce
anchors, which are temporal placeholders on the source branch
and contain no actual change to the file. Anchors are denoted
with a small hollow circle. Note that the anchor and the corre-
sponding integration have the same time:

5.2 Simulated Removal of a Single Branch
The core part of our what-if analysis is removing a single branch.
This allows us to explore a variety of alternative branch structures
because scenarios where more than one branch is removed can be
reduced to a series of single-branch-removal steps.

To simulate what would have happened if a branch was removed,
we use the past development history and examine and modify the
checkins and branch operations that involve the removed branch,
the parent, and the children. Throughout this paper we refer to the
branch being removed as the victim branch.

We first describe our simulation. Figure 5 shows the changes to
the history that are involved when simulating the removal of the
victim. Figure 5.a shows the original history for a subset of de-
velopment history as it actually happened in the SCM. In this
figure, A and B are horizontal lines representing branches. B is
the victim and A is the victim’s parent. As before, solid circles
represent edits and hollow circles represent integrations from one
branch to another. In this diagram, the color of the circle indicates
which branch the checkin occurred on in the original history (Fig-
ure 5.a). We use the following steps to simulate an alternative
history with the victim removed.

First we identify all edits that occur on the victim. Since we are
simulating what would have happened if the victim had not exist-
ed, the edits would have been made on the parent branch. Thus we
move these edits to the parent branch, while preserving chrono-

(a) Initial history, H0, with
branches A (parent) and B

(victim).

(b) Move checkins from victim
branch B to parent branch A.

(c) Remove the integrations
between parent and victim.

(d) Final alternative history,
H1.

Figure 5. The steps required to simulate the removal of a branch. In this figure, A is the parent branch, B is the child branch, solid
circles represent checkins, hollow circles represent integration checkins between branches. Checkins are colored according to the
branch that they were made on in the original history.

Figure 6. What-if analysis applies one or more branch remov-

al operations to create an alternative history and then com-
pare liveness and isolation.

logical order. Figure 5.b illustrates this step by moving the
checkins from B to A.

Second, we remove integrations between the parent and the vic-
tim. Since all edits now reside on the parent branch, the integra-
tions to and from the victim branch are no longer needed. This is
illustrated in Figure 5.c where the integrations and anchors be-
tween parent and victim are removed.

Third, all integrations from the victim to its children or any other
branches are modified so that they now have the parent branch
rather than the victim as the source. Likewise, all integrations that
have the victim as the target branch are modified so that they have
the parent branch as the target. This step is not shown in Figure 5
as these integrations do not occur in the simple history shown.

The final alternative history is shown in Figure 5.d. Note that
although all checkins occur on the parent branch, A, we can still
determine which branch each checkin was made on in the original
history. This is required for our branch metrics.

A more complex example is shown in Figure 7 (original history in
7.a; alternative history with victim removed in 7.b). The edits on
the victim are moved to the parent branch in the alternative histo-
ry. Integration and corresponding anchor checkins have either
been removed (x and y) or rerouted (e.g., c→d). While more
complex, this illustrates the effect of simulated branch removal:

• The path (shown as a dashed line in both histories) from the two
edit checkins e and f is different in the original and alternative
histories. In the alternative history, the edits reach the parent
branch and leave towards the root earlier. The difference in
transit time to the root branch is the delay caused by the victim.

• On the other hand, some edits that originally occurred on differ-
ent branches are now subsequent, conflicting edits on the parent
branch, as indicated by the arcs between edit checkins in Figure
7.b (for example, a in conflict with b). These conflicts charac-
terize the isolation provided by the victim branch in the original
history (where a and b were isolated on different branches).

5.3 Alternative Branch Structure Scenarios
Based on the single-branch-removal step described above, we
perform what-if analysis for a wide spectrum of alternative branch
structures to address different scenarios. Examples include:

What if a single branch is removed? – Is there a particular
branch that is causing problems and should receive attention?
This scenario simply applies the step described in the previous
section. In Figure 7.b we illustrate the history produced when this
step is applied to the history shown in Figure 7.a.

What if an entire branch subtree is removed? – Are there sec-
tions of the branch structure that aren’t actually needed? This
scenario selects a victim branch and removes the entire subtree
rooted at the victim. For each branch removed from the subtree,
we follow the process described in Section 5.2.

What if we only had branches up to level N? – Several teams
asked how liveness and isolation would change if the depth of the
branch hierarchy is restricted. This would limit the maximum
number of hops for changes to reach the root branch and thus may
maintain progress within a project. To assess this scenario, we
remove all branches on levels greater than N with the process
described in Section 5.2.

If a scenario requires removing multiple branches, the actual order
of the branch removals does not affect the results. We record two
branches for each checkin: the branch that the checkin occurred
on in the original history (which is never changed throughout the
entire analysis) and the branch that it was made on in the alterna-
tive history (which is initialized to the original branch but subse-
quently changed via branch-removal operations). This allows us
to apply multiple branch removals in an arbitrary order because
our analysis only needs the original branch and the final target
branch for each checkin. Regardless of the order of branch re-
movals, the final target branch for a checkin on a victim branch is
always well-defined; checkins are moved to the first non-victim
parent branch of their original branch. Thus, branch removal is
associative and commutative.

Figure 7. Simulating branch removal.

5.4 Measuring Liveness and Isolation
We now describe the two measures that we use to quantify the
benefit and cost of branches: delay and provided isolation. We
present an intuitive description here. A more formal definition is
available for the interested reader in the online appendix [12].

Delay. Recall that transit time is the time that it takes for an edit
to reach the root from the branch that it was checked into. Once
an alternative history has been created through branch removal
operations from the original history, the transit time for some edits
may have changed (for example, see checkins e and f in Figure 7).
The delay that branches within a scenario incur is the difference in
total transit time (the sum of transit times for all edits) for all edits
between the original history H0 and an alternative history H1.

Delay = TotalTransitTime(H0) − TotalTransitTime(H1)

Isolation. We quantify the isolation that a branch provides by
determining the number of conflicts that are avoided because of
the existence of the branch. If there was concurrent activity to the
same file in a branch and its parent or in a branch and its children,
then the branch provided a level of development isolation and was
beneficial. However, if development in a file on a branch had no
potential conflicting changes in its children or parent, then this
isolation was likely not needed. We calculate this by examining
the checkins on the parent in the alternative history H1 and count-
ing the number of conflicts. A conflict is a pair of subsequent edit
checkins on a branch in the alternative history H1 that occurred on
different branches in the original history H0 (for example, edits a
in conflict with b in Figure 7.b). These are indicative of checkins
that may be incompatible; even if the algorithm used by the SCM
to merge textual changes runs without error, a developer must still
validate (e.g., through builds and test runs) that the merged file
does not contain any problems. Thus each conflict introduced by
the removal of a branch represents a non-trivial amount of addi-
tional work for a developer. We compare the number of conflicts
in H1 against the number of conflicts in H0 during integrations.

Isolation = Conflicts(H1) − Conflicts(H0)

While we cannot know what exactly would have actually hap-
pened had a branch not existed, our alternative history effectively
quantifies the isolation provided and delay introduced by a given
branch. Even if developers coordinated their changes to avoid
conflicts, this would be additional effort.

5.5 Normalization
Some branches have an order of magnitude more changes than
others. Thus total delay and total isolation may be misleading,
especially when comparing different branches. As an example,
branches with many edits will have more influence on total delay
just because of the high number of edits. Therefore, depending on
the question that we are interested in answering, delay and isola-
tion may need to be normalized: For scenarios related to compar-
isons and decisions on individual branches (or subtrees), we nor-
malize the delay and isolation measures. For scenarios related
branch structure as a whole, we do not normalize. More specifi-
cally, for the scenarios presented in this paper, we normalize in
the following ways.

Normalized delay. The removal of branches can only affect the
transit time of edits on the victim branches and on their children
(recursively). We call the edits on these branches the affected
edits (regardless of if their transit time is changed). Therefore,
when normalizing delay, we divide the sum of the differences in
transit time by the number of affected edits:

NormalizedDelay =
Delay

NumberAffectedEdits(H0,H1)

Put simply, the normalized delay for a branch is the average
change in transit times for edits that occur on or below the
branches that have been removed. We say that the branches incur
this delay per edit for edits on and below them.

Normalized isolation. Here we normalize by the maximum num-
ber of possible conflicts that can be introduced. All edit checkins
on the removed branches end up in the victims’ parent branches
(there may be multiple victims if multiple branch removal steps
are taken from H0 to create H1). Thus, the maximum number of
conflicts occurs when there is perfect interleaving of edits that
were created on different branches in H0:

PossibleConflicts = NumberOfEditsOnVictims
+ NumberOfEditsOnParents− 1

We normalize isolation by dividing the number of conflicts that
the branch avoids by the maximum number of possible conflicts.

NormalizedIsolation =
Isolation

PossibleConflicts

Intuitively, the normalized isolation indicates how many conflicts
per edit checkin a branch prevents.

6. DECISION SUPPORT SCENARIOS
Having described our methodology, we now illustrate these sce-
narios by using our analysis on Windows 7 development history.

6.1 Branch Health
Our branch assessment metrics can provide awareness of branch
health to project stakeholders such as developers, managers, and
build engineers. In the same way that test results or code cover-
age metrics can alert project members to potentially problematic
parts of the software, the measures of isolation and liveness can be
used to alert project members to parts of the branch structure that
are unnecessarily impeding progress. Over the past year, we have
provided branch health reports to Windows, Windows Mobile,
and Bing. For each branch the reports contain standard measures
such as number of edits, integrations, edit/conflict ratio as well as
delay and isolation based on the scenarios listed in Section 5.3.
Our analysis helped the product groups identify what specific
parts of the branch structure were responsible for low liveness.
Note that high-delay-low-isolation branches do not necessarily
have to be removed from the branch hierarchy. As with most, if
not with all metrics, the actions to be taken depend highly on the
context [13]. For example, branches might exhibit a high delay
because of a temporary code freeze or because they are integral
parts of the quality assurance and serve as quality gates; these
branches should likely not be removed. Other than removing a
branch, a team can also decide to integrate more frequently to the
parent branch to decrease delay.

6.2 Separating the Sheep from the Goats2
Figure 8 contains a scatterplot showing the normalized delay and
isolation of all branches during the complete development cycle
of Windows 7. The graph shows the results for recursive branch
removal (removing a branch and all of its descendants). Isolation

2 Separating the sheep from the goats is an English idiom and an allusion

to a biblical metaphor (Matthew 25:32-34) in which sheep provide value
and are blessed while goats do not and are cursed.

is shown along the x-axis (farther right is better as it means more
conflicts are prevented by a branch) and delay is shown on the y-
axis (lower is better). We consider isolation to be the benefit that
a branch provides at the cost of delay.

High-benefit-low-cost branches (sheep) are colored green and on
the bottom and right. Low-benefit-high-cost branches (goats) are
colored red and are on the top and left. Medium-benefit-medium-
cost branches (hybrids) provide isolation but also incur delays and
are near the x-y line. Our categorization is based on ranking each
branch in terms of the isolation that it provides and the delay that
it incurs. We give each branch two ranks, one for delay (from
least delay to most) and one for isolation (from most isolation to
least). Then branches are sorted by the sum of their two ranks.
The first 25% of branches are labeled sheep in graph in Figure 8;
the last 25% have highest delay and lowest isolation and are la-
beled goats; the middle 50% are hybrid branches. This method of
ranking is simply one way to combine isolation and delay and is
not intended to be definitive; for example other rankings could
weight one measure more than the other. We include our two
dimensional thresholds in the graph for ease of reading.

The graph shows a number of extreme branches. Approximately
7% of the branches don’t avoid any conflicts at all (points on the y
axis). These branches do not provide any benefit. In contrast,
27% of the branches provide isolation while incurring only little
or no delay (branches that lie near the x axis). These branches are
the ideal as they provide benefit at almost no cost.

Such identification of sheep and goat branches is most useful if it
can inform decisions about future branch structures and if it can
be used at any point in the development cycle. To assess whether
what-if analysis can inform decisions during development, we
evaluated the effect of making decisions based on what-if analysis
prior to the end of a product development cycle. Like many in-
dustrial projects, Windows development occurs in iterations
around milestones. We performed our what-if analysis to evaluate
branches based on development of Windows 7 that occurred prior
to the end of the first milestone (M1). That is, we labeled each
branch as a sheep, a goat, or a hybrid based on the delay and isola-
tion for that branch in the first milestone. We then evaluated the
effect of removing goat branches (those that provided the least
isolation while causing the most delay) for the remaining mile-
stones after M1 to determine if taking action based these metrics
would be effective.

Table 1 shows the results. By removing branches labeled goats in
M1, each edit saved, on average, 8.9 days of delay from M1 to the
end of development and experienced 0.04 additional conflicts
each. In contrast, removing sheep branches at M1 would only save
2.3 days of delay per edit while incurring 0.22 additional conflicts
(more conflicts and less saved time than goats). To put these val-
ues in perspective, we compared this to the optimal choice of
branches to remove if we had perfect foresight and removed the
branches that actually performed worst post-M1. In that case, 9.7
days of delay per edit would be saved at the cost of 0.035 conflicts
each. Thus, making decisions on which branches are the most
costly in M1 achieves 92% of the maximum possible cost savings
while incurring only 17% more conflicts than the least possible.

We also examined the correlation between branch categorization
based on M1 development and branch categorization after M1.
We found that the category remained the same for 85.3% of the
branches and a Kendall’s 𝜏 correlation of branch category before
and after M1 was 0.86 (𝑝 ≪ 0.01). Sheep branches tend to remain
sheep, goat branches remain goats, etc.

Both of these results indicate that what-if analysis based on devel-
opment data mid-cycle is reliable. Put more pragmatically, deci-
sions about branch practices such as which to remove or which to
focus resources on can be made during development with high
confidence based on measurement earlier in the development
cycle.

6.3 Quantifying the liveness–isolation tradeoff
Our choice of division of branches into sheep, goats, and hybrids
based on a 25%-50%-25% split may seem arbitrary, and indeed it
is to some degree. The divisions into the interquartile range and
the resulting visualization were inspired by standard boxplot anal-
ysis [14]. The divisions simply represent the tradeoff between
providing isolation and reducing delay. To quantify this tradeoff,
we computed regression lines (shown in Figure 8) for each group.
For confidentiality reasons, we are unable to disclose the actual
absolute measurements. However, since a regression line defines
proportions, we normalize to one conflict and use the generic term
delay “unit”. We found that the average tradeoff was 1 prevented
conflict per edit at the cost of 3 delay units for sheep, 11 delay
units for hybrid, and 46 delay units for goats.

Thus, if one is willing to deal with one conflict per edit in order to
save 46 units of delay per edit (these are actually ratios, so this is
the same as one conflict every two edits to save 23 delay units),
then goat branches should be eliminated. In contrast, removing a
sheep branch will only save 3 delay units per additional conflict.

Figure 8. Usefulness of Branches in terms of provided isolation

and delay based on recursive branch removal. Top and left
shows goat branches (low benefit, high cost) and bottom and

right show sheep branches (high benefit, low cost) while those
in the center are hybrid branches that exhibit a tradeoff be-

tween delay and isolation.

Removal Strategy Delay Saved Conflicts Added
Sheep 2.3 Days 0.218
Goats 8.9 Days 0.042
Optimal 9.7 Days 0.035

Table 1. The number of days saved and conflicts added per
edit if sheep or goats, classified from data in the first milestone,

are removed for later milestones.

In practice, development teams can define the tradeoffs that they
are willing to accept and make decisions accordingly. Thresholds
are, in fact, not required in order to use what-if analysis results.
For example, branches may be ranked according to some combi-
nation of isolation and delay and those with the lowest ranks
could be removed.

6.4 Depth Analysis
Managers have considered limiting the maximum depth of the
branch structure due to a belief that liveness would be improved if
there are fewer branch levels. Until now, this belief has not been
empirically confirmed or refuted.

We used what-if analysis to investigate branch depth by looking at
the total isolation and total delay when restricting the branch
structure to different maximum depth levels. A depth level of n
means that there are at most n levels of branches below the root
(which has level 0). Branches closer to the root are called shallow
branches, while branches further away from the root are called
deep branches. In this scenario we are not comparing branches to
each other, but rather taking a global view on the branch structure
as a whole. Therefore we use total delay and total isolation and
show the percentage decrease in transit time and the percent of
edits that cause conflicts.

Our findings are shown in Table 2 and are two-fold. First, the
branches at very deep levels don’t actually incur very much delay.
In fact, limiting the depth to four levels of branching saves less
than 0.1% of the total transit time. Most of the delay can be at-
tributed to the branches closer to the root. A policy of maximum
branch depth would have to make the branch structure quite shal-
low for a non-trivial effect on delay; however, this would come at
a rather high cost of severely reduced isolation.

• For an 8.9% speedup, Windows would have had to deal with
30.3% of the edits creating conflicts (maximum depth of 1).

• If the branch structure had only a single branch, that is the root
(maximum depth of 0), the transit time would reduce by 100%
to 0 for all edits, but then 40.4% of edits would incur conflicts.
Having only a single branch is not reasonable for other rea-
sons than just conflicts: build breaks would stall the entire pro-
ject, preventing thousands of people from being able to work.

These findings suggest that deep branches actually do not impede
liveness. They may not be needed, as they also do not provide
much isolation, but removing them would have only a trivial ef-
fect, as they integrate their changes to parent branches on a fre-
quent basis. In contrast to conventional wisdom that the holdup is
a deep branch structure, our results show that in the case of Win-
dows, the key to increasing liveness may actually lie in finding
ways to move changes through shallow branches more quickly.

7. DISCUSSION
In this section we discuss future areas of research in the area of
SCM branches. We also present assumptions in our methodology,
potential threats to result validity as well as our mitigation steps,
and common misconceptions.

7.1 Branch Refactoring and Optimization
In this paper, we have introduced a technique to empirically char-
acterize delay and isolation for individual branches. This supports
data-driven decision making on branches, for example to identify
candidates for deletion.

We believe that this is just the first step towards a new discipline,
branch refactoring, which is the process of improving and refin-

ing branch structures as a software project evolves. For this paper
we focused on the refactoring “Remove useless branch”. Howev-
er, as projects evolve there will be other opportunities for refactor-
ing such as “Create new branch”, “Split branch”, “Merge related
branches”, and “Bypass branch”. A related area is branch opti-
mization, which is concerned with distributing files and people
across branches based on empirical evidence.

Both branch refactoring and branch optimization offer opportuni-
ties for new research and tool development:

• Assemble a branch refactoring catalogue with empirically val-
idated guidelines of when to apply a refactoring.

• Develop techniques to distribute files, people, and teams
across branches.

• Build a recommender system to identify branch refactoring
opportunities.

• Train prediction models to predict which branches will turn
from sheep to goats.

• Empirical studies on relationship between branch structures
and code quality.

7.2 Assumptions & Threats to Validity
For our survey we identified the following threats to validity. Our
selection of survey participants was constrained to only experi-
enced engineers, in our context, engineers who were most active
in the SCM. While this skews our results to these engineers, they
are also the ones who will benefit most by better branch struc-
tures. A related threat is that to some extent our survey operated
on a self-selection principle: the participation in the survey was
voluntary. As a consequence, results might be skewed towards
people that are likely to answer the survey, such as engineers with
extra spare time—or who care about branch structures. Avoiding
the self-selection principle is almost impossible. As pointed out
by Singer and Vinson, the decision of responders to participate
“could be unduly influenced by the perception of possible benefits
or reprisals ensuing from the decision” [15]. Some of our analysis
is based on self-reported data (e.g., integration time, Q2). How-
ever, software developers are known to underestimate effort [16]
and we consider the estimates to be a lower bound. For any empir-
ical study, it is difficult to draw general conclusions because of a
large number of contextual variables [17]. For example, different
SCMs use different merging tools which may affect developers
perceptions of difficulty of integration. In addition, the process
used by a development project can have a strong relationship with
branch structure and frequency of integrations. However, we are
confident our techniques can be applied to other projects, espe-
cially given the increased popularity of branching through distrib-
uted version control systems [18]. To increase the generality of
our results, we hope to partner with academic researchers to repli-

Max Depth

Transit Time
Decrease

Isolation
(edits in conflict)

0 100% 41.0%
1 8.9% 30.3%
2 3.4% 10.5%
3 1.4% 2.3%
4 < 0.1% 0.2%

Table 2. The decrease in transit time and percent of edits in
conflict if the branch structure is limited to a maximum depth.
Depth of 1 represents 1 level of branching below the root, etc.

cate this analysis on open source projects such as the Linux ker-
nel.

Some key assumptions underlie our results. First, our measures of
delay and isolation assume that a similar sequence of checkins and
integrations would occur in a different branch structure. We ar-
gue that the changes themselves are necessary to achieve the de-
sired software functionality and that dependencies between edits
introduce a partial order that imposes a similar sequence. Further,
to minimize the risk of this assumption, each scenario is evaluated
in its own alternative history with the rest of the branch structure
unchanged rather than evaluating the effect of making multiple
changes which would likely effect development behavior more
intrusively. Second, we assume that if a branch had not existed,
the changes and integrations made on that branch would have
instead been made on the parent. Lastly, some branches at shal-
low depths play a quality gating role, whereby checkins are ag-
gregated, tested, and in some cases corrected before moving to the
root. Branches with such roles should be considered carefully
when making decisions.

7.3 Common Misconceptions
A common misconception about industrial research at large com-
panies such as Microsoft is that software projects at Microsoft are
not representative of other software projects. While projects
might be larger in size, most development practices at Microsoft
are adapted from the general software engineering community and
also used outside Microsoft. For example, branches are frequent-
ly used at other companies [19] and in open-source [20].
Another frequent misconception is that empirical research within
one company or one project is not good enough, provides little
value for the academic community, and does not contribute to
scientific development. Historical evidence shows otherwise.
Flyvbjerg provides several examples of individual cases that con-
tributed to discovery in physics, economics, and social science
[21]. Beveridge observed for social sciences: “More discoveries
have arisen from intense observation than from statistics applied
to large groups” (as quoted in Kuper and Kuper [22], page 95).
Please note that this should not be interpreted as a criticism of
research that focuses on large samples or entire populations. For
the development of an empirical body of knowledge as champi-
oned by Basili [17], both types of research are essential. The
work presented in this paper has been successfully applied to three
Microsoft products (Windows, Bing, and Windows Phone).

8. RELATED WORK
To the best of our knowledge this is the first work that empirically
assesses the usefulness of software development branches at an
individual level. We were unable to find metrics similar to the
ideas of delay and isolation in previous research. We also provide
empirical insights into multi-branch software development and
qualitative observations from developers on efficiency of branch-
es. Standard simulation techniques [23] rely on distributions and
other methods to generate data and evaluate outcomes. In con-
trast, we use actual data recovered from Windows development
and replay these activities on differing branch structures to answer
what-if scenarios. This gives us increased confidence in our re-
sults as we are not trying to generalize development behavior, but
use it as it actually happened.

Two questions in our survey among developers were based on the
list of anti-patterns for parallel software development [3]. Several
books and articles discuss best practice for software configuration
management and branch structures [4,5,6]. However, these prac-
tices are mainly based on the authors’ experience and less on em-

pirical evidence. With this work we provide a way to empirically
assess branches.

Perry et al. observed a high degree and multiple levels of parallel
development in the 5ESS system [1]. They also observed a signif-
icant correlation between the degree of parallel work and the
number of quality problems in a given component. Zimmermann
studied workspace updates in GCC, JBoss, JEdit, and Python, and
observed that between 3.9% and 20.2% of commits had integra-
tions [24]. Between 22.8% and 46.6% of integrations could not be
automatically resolved by CVS and resulted in conflicts. Brun et
al. pointed out that besides textual conflicts, there are also compile
conflicts (program does not compile) and build conflicts (program
fails test suite) when integrating changes [25].

Independently from us in 2011, Phillips et al. conducted a survey
among 140 version control users and asked how branching and
merging are used in practice and what defines a successful
branching strategy in terms of user satisfaction [26]. Premraj et
al. surveyed 16 software personnel on their use of branching and
merging [19]. Our survey complements both studies as the ques-
tions asked are different. We also go beyond user satisfaction and
introduce quantitative measurements for cost and benefit of
branches.

In our earlier work, we explored how people and files span across
multiple branches to understand how socio-technical factors affect
parallel development [11]. The earlier work measured similarity
between branches—the focus of this paper is instead on a different
aspect of branching, namely to measure the cost and benefit of
branches. We also introduced an algorithm to identify the changes
and bug fixes that are included in a reverse integration [27].

Several tools have been proposed to increase the awareness of
changes across different branches or workspaces with the goal to
reduce conflicts: Sarma et al. developed Palantír, which shares
information about changes to the same files across different work-
spaces [28,29]. Sarma and colleagues also provided quantitative
evidence of the benefits of workspace awareness in software de-
velopment [30] and compared Palantír with two other awareness
tools FASTDash [31] and CollabVS [32]. In a workshop paper,
Guimarães and Rito-Silva proposed a system for real-time integra-
tion of changes [33]. Brun et al. proposed speculative conflict
detection, which searches for unrecognized conflicts across
branches and opportunities for straightforward merging [25].

9. CONCLUSION
We have presented a survey on how branches are used at Mi-
crosoft and an empirical what-if analysis to assess cost and benefit
of branches to aid in a number of branch-related scenarios. Our
approach helps to identify and separate, high-benefit-low-cost
branches from low-benefit-high-cost branches. Such findings
enable informed decisions about branch structures and processes
(such as frequency of integrations) regarding branches and allow
refining a branch structure as a project progresses. We have only
touched on branch removal as one possible branch refactoring
operation. There are many other possible operations such as add-
ing, splitting, merging, and restructuring branches. This presents
a potential new research area.

With the rise of distributed version control systems such as Git
and Mercurial, branching has become more common in open
source software development [18] and accessible to a wider re-
search audience. This provides an opportunity for academic re-
search to have immediate impact in industry, where branches are
often used to deal with the complexity of software.

10. REFERENCES
[1] Perry, D., Siy, H., and Votta, L. Parallel changes in large-scale

software development: an observational case study. ACM
Transactions on Software Engineering and Methodology (TOSEM),
10 (2001), 308--337.

[2] Zacchiroli, Z. VCS usage for Debian source packages.
http://upsilon.cc/~zack/stuff/vcs-usage/.

[3] Appleton, B., Berczuk, S., Cabrera, R., and Orenstein, R. Streamed
Lines: Branching Patterns for Parallel Software Development. In The
Pattern Languages of Programs Conference (1998).

[4] Berczuk, S.P., Appleton, B., and Brown, K. Software Configuration
Management Patterns: Effective Teamwork, Practical Integration.
Addison-Wesley Professional, 2003.

[5] Aiello, R. and Sachs, L. Configuration Management Best Practices:
Practical Methods that Work in the Real World. Addison-Wesley
Professional, 2010.

[6] Wingerd, L. and Seiwald, C. High-level Best Practices in Software
Configuration Management. White Paper, Perforce Software, 1996.
http://www.perforce.com/perforce/papers/bestpractices.html.

[7] Kitchenham, B.A. and Pfleeger, S.L. Personal Opinion Surveys. In
Shull, F. et al., eds., Guide to Advanced Empirical Software
Engineering. Springer, 2007.

[8] Tyagi, P.K. The Effects of Appeals, Anonymity, and Feedback on
Mail Survey Response Patterns from Salespeople. Journal of The
Academy of Marketing Science (1989).

[9] Punter, T., Ciolkowski, M., Freimut, B.G., and John, I. Conducting
on-line surveys in software engineering. In Proc. of International
Symposium on Empirical Software Engineering (ISESE ’03) (2003),
80–88.

[10] Melanchthon, D. and Scheer, O. Grossbaustselle. Making of
Windows 7. c't Magazine, 23 (2009), 80-86.

[11] Bird, C., Zimmermann, T., and Teterev, A. A Theory of Branches as
Goals and Virtual Teams. In International Workshop on Cooperative
and Human Aspects of Software Engineering (2011).

[12] Bird, C. and Zimmermann, T. Appendix to Assessing the Value of
Branches with What-if Analysis. Technical Report MSR-TR-2012-33,
Microsoft Research, 2012..
http://research.microsoft.com/apps/pubs/?id=161385.

[13] Zeller, A., Zimmermann, T., and Bird, C. Failure is a Four-Letter
Word: A Parody in Empirical Research. In Proceedings of the 7th
International Conference on Predictive Models in Software
Engineering (PROMISE 2011) (2011).

[14] Dowdy, S., Wearden, S., and Chilko, D. Statistics for research. John
Wiley & Sons, 2004.

[15] Singer, J. and Vinson, N.G. Ethical issues in empirical studies of
software engineering. IEEE Trans. Software Eng., 28, 12 (2002),
1171-1180.

[16] Jørgensen, M. and Grimstad, S. Software Development Estimation
Biases: The Role of Interdependence. IEEE Transactions on Software
Engineering, Preprints (April 2011).

[17] Basili, V.R., Shull, F., and Lanubile, F. Building knowledge through
families of experiments. IEEE Trans. Software Eng., 25, 4 (1999),
456-173.

[18] Bird, C., Rigby, P.C., Barr, E.T., Hamilton, D.J., Germán, D.M., and
Devanbu, P.T. The promises and perils of mining git. In MSR '09:
Proceedings of the 6th International Working Conference on Mining
Software Repositories (2009), 1-10.

[19] Premraj, R., Tang, A., Linssen, N., Geraats, H., and Vliet, H.v. To
branch or not to branch. In ICSSP '11: Proceedings of the
International Conference on Software and Systems Process (2011),
81-90.

[20] Barr, E., Bird, C., Rigby, P., Hindle, A., German, D., and Devanbu,
P. Cohesive and Isolated Development with Branches. In
International Conference on Fundamental Approaches to Software
Engineering (2012).

[21] Flyvbjerg, B. Five misunderstandings about case-study research.
Qualitative inquiry, 12, 2 (2006), 219-245.

[22] Kuper, A. and Kuper, J. The Social Science Encyclopedia. Routledge,
1985.

[23] Müller, M. and Pfahl, D. Simulation Methods. In Shull, F. et al., eds.,
Guide to Advanced Empirical Software Engineering. Springer, 2007.

[24] Zimmermann, T. Mining Workspace Updates in CVS. In MSR '07:
Proceedings of the Fourth International Workshop on Mining
Software Repositories (2007), 11.

[25] Brun, Y., Holmes, R., Ernst, M.D., and Notkin, D. Proactive
detection of collaboration conflicts. In ESEC/FSE '11: Proceedings
of he European Software Engineering Conference and the
Symposium on the Foundations of Software Engineering (2011).

[26] Phillips, S., Sillito, J., and Walker, R. Branching and Merging: An
Investigation into Current Version Control Practices. In CHASE '11:
Proceedings of the Workshop on Cooperative and Human Aspects of
Software Engineering (2011).

[27] Tarvo, A., Zimmermann, T., and Czerwonka, J. An Integration
Resolution Algorithm for Mining Multiple Branches in Version
Control Systems. In ICSM '11: Proceedings of the 27th IEEE
International Conference on Software Maintenance (2011).

[28] Sarma, A. Palantir: enhancing configuration management systems
with workspace awareness to detect and resolve emerging conflicts.
Doctoral Dissertation, University of California, Irvine.

[29] Sarma, A., Noroozi, Z., and van der Hoek, A. Palantír: Raising
Awareness among Configuration Management Workspaces. In ICSE
'03: Proceedings of the 25th International Conference on Software
Engineering (2003), 444-454.

[30] Sarma, S., Redmiles, D., and van der Hoek, A. Empirical evidence of
the benefits of workspace awareness in software configuration
management. In SIGSOFT '08/FSE-16: Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of software
engineering (2008), 113-123.

[31] Biehl, J.T., Czerwinski, M., Smith, G., and Robertson, G.G.
FASTDash: a visual dashboard for fostering awareness in software
teams. In CHI '07: Proceedings of the 2007 Conference on Human
Factors in Computing Systems (2007), 1313-1322.

[32] Dewan, P. and Hegde, R. Semi-Synchronous Conflict Detection and
Resolution in Asynchronous Software Development. In ECSCW '07:
Proceedings of the Tenth European Conference on Computer
Supported Cooperative Work (2007), 159-178.

[33] Guimarães, M.L. and Rito-Silva, A. Towards real-time integration. In
CHASE '10: Proceedings of the 2010 ICSE Workshop on
Cooperative and Human Aspects of Software Engineering (2010), 56-
63.

	1. Introduction
	2. Branches at Microsoft
	3. Survey on Branch Usage
	3.1 Integrations
	3.2 Anti-patterns

	4. Liveness and Isolation
	5. Methodology
	5.1 Terminology
	5.2 Simulated Removal of a Single Branch
	5.3 Alternative Branch Structure Scenarios
	5.4 Measuring Liveness and Isolation
	5.5 Normalization

	6. Decision Support Scenarios
	6.1 Branch Health
	6.2 Separating the Sheep from the Goats1F
	6.3 Quantifying the liveness–isolation tradeoff
	6.4 Depth Analysis

	7. Discussion
	7.1 Branch Refactoring and Optimization
	7.2 Assumptions & Threats to Validity
	7.3 Common Misconceptions

	8. Related Work
	9. Conclusion
	10. References

