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ABSTRACT
In software development, bug reports provide crucial information
to developers. However, these reports widely differ in their quality.
We conducted a survey among developers and users of APACHE,
ECLIPSE, and MOZILLA to find out what makes a good bug report.

The analysis of the 466 responses revealed an information mis-
match between what developers need and what users supply. Most
developers consider steps to reproduce, stack traces, and test cases
as helpful, which are at the same time most difficult to provide for
users. Such insight is helpful to design new bug tracking tools that
guide users at collecting and providing more helpful information.

Our CUEZILLA prototype is such a tool and measures the quality
of new bug reports; it also recommends which elements should be
added to improve the quality. We trained CUEZILLA on a sample
of 289 bug reports, rated by developers as part of the survey. In our
experiments, CUEZILLA was able to predict the quality of 31–48%
of bug reports accurately.

Categories and Subject Descriptors:
D.2.5 [Software Engineering]: Testing and Debugging; D.2.7 [Soft-
ware Engineering]: Distribution, Maintenance, and Enhancement

General Terms: Human Factors, Management, Measurement

1. INTRODUCTION
Bug reports are vital for any software development. They allow
users to inform developers of the problems encountered while using
a software. Bug reports typically contain a detailed description of a
failure and occasionally hint at the location of the fault in the code
(in form of patches or stack traces). However, bug reports vary in
their quality of content; they often provide inadequate or incorrect
information. Thus, developers sometimes have to face bugs with
descriptions such as “Sem Web” (APACHE bug COCOON-1254),
“wqqwqw” (ECLIPSE bug #145133), or just “GUI” with comment
“The page is too clumsy” (MOZILLA bug #109242). It is no sur-
prise that developers are slowed down by poorly written bug reports
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because identifying the problem from such reports takes more time.
In this paper, we investigate the quality of bug reports from

the perspective of developers. We expected several factors to im-
pact the quality of bug reports such as the length of descriptions,
formatting, and presence of stack traces and attachments (such as
screenshots). To find out which matter most, we asked 872 devel-
opers from the APACHE, ECLIPSE, and MOZILLA projects to:

1. Complete a survey on important information in bug reports
and the problems they faced with them. We received a total
of 156 responses to our survey (Section 2 and 3).

2. Rate the quality of bug reports from very poor to very good
on a five-point Likert scale [22]. We received a total of 1,186
votes for 289 randomly selected bug reports (Section 4).

In addition, we asked 1,354 reporters1 from the same projects to
complete a similar survey, out of which 310 responded. The results
of both surveys suggest that there is a mismatch between what
developers consider most helpful and what users provide. To
enable swift fixing of bugs, this mismatch should be bridged, for
example with tool support for reporters to furnish information that
developers want. We developed a prototype tool called CUEZILLA
(see Figure 1), which gauges the quality of bug reports and suggests
to reporters what should be added to make a bug report better.

1. CUEZILLA measures the quality of bug reports. We trained
and evaluated CUEZILLA on the 289 bug reports rated by the
developers (Section 5).

2. CUEZILLA provides incentives to reporters. We automati-
cally mined the bug databases for encouraging facts such as
“Bug reports with stack traces are fixed sooner” (Section 6).

1Throughout this paper reporter refers to the people who create bug
reports and are not assigned to any. Mostly reporters are end-users
but in many cases they are also experienced developers.

Figure 1: Mockup of CUEZILLA’s user interface. It recom-
mends improvements to the report (left image). To encourage
the user to follow the advice, CUEZILLA provides facts that are
mined from history (right image).



Table 1: Number of invitations sent to and responses by developers and reporters of the APACHE, ECLIPSE, and MOZILLA projects.
Developers Reporters

Project Contacted Bounces Reached Responses (Rate) Comments Contacted Bounces Reached Responses (Rate) Comments

APACHE 194 5 189 34 (18.0%) 12 165 17 148 37 (25.0%) 10
ECLIPSE 365 29 336 50 (14.9%) 15 378 8 370 50 (13.5%) 20
MOZILLA 313 29 284 72 (25.4%) 21 811 130 681 223 (32.7%) 97

Total 872 63 809 156 (19.3%) 48 1354 155 1199 310 (25.9%) 127

To summarize, this paper makes the following contributions:

1. a survey on how bug reports are used among 2,226 develop-
ers and reporters, out of which 466 responded;

2. empirical evidence for a mismatch between what developers
expect and what reporters provide;

3. the CUEZILLA tool that measures the quality of bug reports
and suggests how reporters could enhance their reports, so
that their problems get fixed sooner.

We conclude this paper with threats to validity (Section 7), related
work (Section 8), and future research directions (Section 9).

2. SURVEY DESIGN
To collect facts on how developers use the information in bug re-
ports and what problems they face, we conducted an online survey
among the developers of APACHE, ECLIPSE, and MOZILLA. In ad-
dition, we contacted bug reporters to find out what information they
provide and which is most difficult to provide.

For any survey, the response rate is crucial to draw generaliza-
tions from a population. Keeping a questionnaire short is one key
to a high response rate. In our case, we aimed for a total comple-
tion time of five minutes, which we also advertised in the invitation
email (“we would much appreciate five minutes of your time”).

2.1 Selection of Participants
Each examined projects’ bug database contains several hundred de-
velopers that are assigned to bug reports. Of these, we selected
only experienced developers for our survey since they have a better
knowledge of fixing bugs. We defined experienced developers as
those assigned to at least 50 bug reports in their respective projects.
Similarly, we contacted only experienced reporters, which we de-
fined as having submitted at least 25 bug reports (=a user) while
at the same time being assigned to zero bugs (=not a developer)
in the respective projects. Several responders in the reporter group
pointed out that they had some development experience, though
mostly in other software projects.

Table 1 presents for each project the number of developers and
reporters contacted via personalized email, the number of bounces,
and the number of responses and comments received. The response
rate was highest for MOZILLA reporters at 32.7%. Our overall re-
sponse rate of 23.2% is comparable to other Internet surveys in
software engineering, which range from 14% to 20% [28].

2.2 The Questionnaire
Keeping the five minute rule in mind, we asked developers the fol-
lowing questions, which we grouped into three parts (see Figure 2):

Contents of bug reports. Which items have developers previously
used when fixing bugs? Which three items helped the most?

Such insight aids in guiding reporters to provide or even fo-
cus on information in bug reports that is most important to

developers. We provided sixteen items selected on the ba-
sis of Eli Goldberg’s bug writing guidelines [13]; or being
standard fields in the BUGZILLA database.
Developers were free to check as many items for the first
question (D1), but at most three for the second question (D2),
thus indicating the importance of items.

Problems with bug reports. Which problems have developers en-
countered when fixing bugs? Which three problems caused
most delay in fixing bugs?
Our motivation for this question was to find prominent obsta-
cles that can be tackled in the future by more cautious, and
perhaps even automated, reporting of bugs.
Typical problems are when reporters accidentally provide in-
correct information, for example, an incorrect operating sys-
tem.2 Other problems in bug reports include poor use of lan-
guage (ambiguity), bug duplicates, and incomplete informa-
tion. Spam recently has become a problem, especially for the
TRAC issue tracking system. We decided not to include the
problem of incorrect assignments to developers because bug
reporters have little influence on the triaging of bugs.
In total, we provided twenty-one problems that developers
could select. Again, they were free to check as many items
for the first question (D3), but at most three for the second
question (D4).

For the reporters of bugs, we asked the following questions (again
see Figure 2):

Contents of bug reports. Which items have reporters previously
provided? Which three items were most difficult to provide?
We listed the same sixteen items to reporters, which we have
listed to developers before. This allowed us to check whether
the information provided by reporters is in line with what de-
velopers frequently use or consider to be important (by com-
paring the results for R1 with D1 and D2). The second ques-
tion helped us to identify items, which are difficult to collect
and for which better tools might support reporters in this task.
Reporters were free to check as many items for the first ques-
tion (R1), but at most three for the second question (R2).

Contents considered to be relevant. Which three items do report-
ers consider to be most relevant for developers?
Again we listed the same items to see how much reporters
agree with developers (comparing R3 with D2).
For this question (R3), reporters were free to check at most
three items, but could choose any item, regardless whether
they selected it for question R1.

Additionally, we asked both developers and reporters about their
thoughts and experiences with respect to bug reports (D5/R4).
2Did you know? In ECLIPSE, 205 bug reports were submitted for
“Windows” but later re-assigned to “Linux”.



Contents of bug reports. D1: Which of the following items have you previously used when fixing bugs?
D2: Which three items helped you the most?

R1: Which of the following items have you previously provided when reporting bugs?
R2: Which three items were the most difficult to provide?

R3: In your opinion, which three items are most relevant for developers when fixing bugs?

q product q hardware q observed behavior q screenshots
q component q operating system q expected behavior q code examples
q version q summary q steps to reproduce q error reports
q severity q build information q stack traces q test cases

Problems with bug reports. D3: Which of the following problems have you encountered when fixing bugs?
D4: Which three problems caused you most delay in fixing bugs?

You were given wrong: There were errors in: The reporter used: Others:
q product name q code examples q bad grammar q duplicates
q component name q steps to reproduce q unstructured text q spam
q version number q test cases q prose text q incomplete information
q hardware q stack traces q too long text q viruses/worms
q operating system q non-technical language
q observed behavior q no spell check
q expected behavior

Comments. D5/R4: Please feel free to share any interesting thoughts or experiences.

Figure 2: The questionnaire presented to APACHE, ECLIPSE, and MOZILLA developers (Dx) and reporters (Rx).

2.3 Parallelism between Questions
In the first two parts of the developer survey and the first part of the
reporter survey, questions share the same items but have different
limitations (select as many as you wish vs. the three most impor-
tant). We will briefly explain the advantages of this parallelism
using D1 and D2 as examples.

1. Consistency check. When fixing bugs, all items that helped
a developer the most (selected in D2) must have been used
previously (selected in D1). If this is not the case, i.e., an
item is selected in D2 but not in D1, the entire response is
regarded inconsistent and discarded.

2. Importance of items. We can additionally infer the impor-
tance of individual items. For instance, for item i, letND1(i)
be the number of responses in which it was selected in ques-
tion D1. Similarly ND1,D2(i) is the number of responses in
which the item was selected in both questions D1 and D2.3

Then the importance of item i corresponds to the conditional
likelihood that item i is selected in D2, when selected in D1.

Importance(i) =
ND1,D2(i)
ND1(i)

Other parallel questions were D3 and D4 as well as R1 and R2.

3. SURVEY RESULTS
In this section, we discuss our findings from the survey responses.
For developers, we received a total of 156 responses, out of which
26 (or 16.7%) failed the consistency check and were removed from
our analysis. For reporters we received 310 and had to remove 95
inconsistent responses (30.6%). The results of our survey are sum-
marized in Table 2 (for developers) and Table 3 (for reporters). In
the tables, responses for each item are annotated as bars ( ),
which can be broken down into their constituents and interpreted
as below (again, explained with D1 and D2 as examples):
3When all responses are consistent, ND1,D2(i) = ND2(i) holds.

All consistent responses for the project
Number of times that item was selected in D1
Number of times that item was selected in D1 and D2
Number of times that item was selected in D1 but not D2

The colored part ( + ) denotes the count of responses for an
item in question D1; and the black part ( ) of the bar denotes the
count of responses for the item in both question D1 and D2. The
larger the black bar is in proportion to the grey bar, the higher is
the corresponding item’s importance in the developers’ perspective.
The importance of every item is listed in parentheses.

Tables 2 and 3 present the results for all three projects combined.
For project-specific tables, we refer to our technical report [5].

3.1 Contents of Bug Reports (Developers)
Table 2 shows that the most widely used items across projects are
steps to reproduce, observed and expected behavior, stack traces,
and test cases. Information rarely used by developers is hardware
and severity. ECLIPSE and MOZILLA developers favorably used
screenshots, while APACHE and ECLIPSE developers more often
used code examples and stack traces.

For the importance of items, steps to reproduce stand out clear-
ly. Next in line are stack traces and test cases, both of which help
narrowing down the search space for defects. Observed behavior,
albeit weakly, mimics steps to reproduce the bug, which is why it
may be rated important. Screenshots were rated as high, but often
are helpful only for a subset of bugs, e.g., GUI errors.

Smaller surprises in the results are the relative low importance
of items such as expected behavior, code examples, summary and
mandatory fields such as version, operating system, product, and
hardware. As pointed out by a MOZILLA developer, not all projects
need the information that is provided by mandatory fields:

“That’s why product and usually even component informa-
tion is irrelevant to me and that hardware and to some degree
[OS] fields are rarely needed as most our bugs are usually
found in all platforms.”



Table 2: Results from the survey among developers. (130 consistent responses by APACHE, ECLIPSE, and MOZILLA developers.)
Contents of bug reports (D1/D2). In parentheses: importance of item.

product (5%) hardware (0%) observed behavior (33%) screenshots (26%)
component (3%) operating system (4%) expected behavior (22%) code examples (14%)
version (12%) summary (13%) steps to reproduce (83%) error reports (12%)
severity (0%) build information (8%) stack traces (57%) test cases (51%)

Problems with bug reports (D3/D4). In parentheses: severeness of problem.

You were given wrong: There were errors in: The reporter used: Others:

product name (7%) code examples (15%) bad grammar (16%) duplicates (10%)
component name (15%) steps to reproduce (79%) unstructured text (34%) spam (0%)
version number (22%) test cases (38%) prose text (18%) incomplete information (74%)
hardware (8%) stack traces (25%) too long text (26%) viruses/worms (0%)
operating system (20%) non-technical language (19%)
observed behavior (48%) no spell check (0%)
expected behavior (27%)

Table 3: Results from the survey among reporters. (215 consistent responses by APACHE, ECLIPSE, and MOZILLA reporters.)
Contents of bug reports (R1/R2). In parentheses: difficulty of item.

product (0%) hardware (1%) observed behavior (2%) screenshots (8%)
component (22%) operating system (1%) expected behavior (3%) code examples (43%)
version (1%) summary (4%) steps to reproduce (51%) error reports (2%)
severity (5%) build information (3%) stack traces (24%) test cases (75%)

Contents considered to be relevant for developers (R3). In parentheses: frequency of item in R3.

product (7%) hardware (0%) observed behavior (33%) screenshots (5%)
component (4%) operating system (4%) expected behavior (22%) code examples (9%)
version (12%) summary (6%) steps to reproduce (78%) error reports (9%)
severity (2%) build information (8%) stack traces (33%) test cases (43%)

In any case, we advise caution when interpreting these results:
items with low importance in our survey are not totally irrelevant
because they still might be needed to understand, reproduce, or
triage bugs.

3.2 Contents of Bug Reports (Reporters)
The items provided by most reporters are listed in the first part
of Table 3. As expected observed and expected behavior and steps
to reproduce rank highest. Only few users added stack traces, code
examples, and test cases to their bug reports. An explanation might
be the difficulty to provide these items, which is reported in paren-
theses. All three items rank among the more difficult items, with
test cases being the most difficult item. Surprisingly, steps to re-
produce and component are considered being difficult as well. For
the latter, reporters revealed in their comments that often it is im-
possible for them to locate the component in which a bug occurs.

Among the items considered to be most helpful to developers,
reporters ranked steps to reproduce and test cases highest. Com-
paring the results for test cases among all three questions reveals
that most reporters consider them to be helpful, but only few pro-
vide them because they are most difficult to provide. This suggests
that capture/replay tools which record test cases [16,25,38] should
be integrated into bug tracking systems. A similar but weaker ob-
servation can be made for stack traces, which are often hidden in
log files and difficult to find. On the other hand, both developers
and reporters consider components only as marginally important,
however, as discussed above they are rather difficult to provide.

3.3 Evidence for Information Mismatch
We compared the results from the developer and reporter surveys
to find out whether they agree on what is important in bug reports.

First we compared which information developers use to resolve
bugs (question D1) and which information reporters provide (R1).
In Figure 3(a), items in the left column are sorted decreasingly by
the percentage of developers who have used them, while items in
the right column are sorted decreasingly by the percentage of re-
porters who have provided them. Lines connect same items across
columns and indicate the agreement (or disagreement) between de-
velopers and reporters on that particular item. Figure 3(a) shows
that the results match only for the top three items and the last one.
In between there are many disagreements, the most notable ones for
stack traces, test cases, code examples, product, and operating sys-
tem. Overall, the Spearman correlation between what developers
use and what reporters provide was 0.321, far from being ideal.4

Next we checked whether reporters provide the information that
is most important for developers. In Figure 3(b), the left column
corresponds to the importance of an item for developers (measured
by questions D2 and D1), and the right column to the percentage
of reporters who provided an item (R1). Developers and reporters
still agree on the first and last item, however, overall the disagree-
ment increased. The Spearman correlation of -0.035 between what
developers consider as important and what reporters provide shows
a huge gap. In particular, it indicates that reporters do not focus on
the information important for developers.

Interestingly, Figure 3(c) shows that most reporters know which
information developers need. In other words, ignorance of reporters
is not a reason for the aforementioned information mismatch. As
before the left column corresponds to the importance of items for

4Spearman correlation computes agreement between two rankings:
two rankings can be opposite (value -1), unrelated (value 0), or
perfectly matched (value 1). We refer to textbooks for details [35].



(a) Information used by developers vs.
provided by reporters.

(b) Most helpful for developers vs.
provided by reporters.

(c) Most helpful for developers vs.
reporters expected to be helpful.

Figure 3: Mismatch between developers and reporters.

developers; the right column now shows what reporters expect to
be most relevant (question R3). Overall there is a strong agreement;
the only notable disagreement is for screenshots. This is confirmed
by the Spearman correlation of 0.839, indicating a very strong rela-
tion between what developers and reporters consider as important.

As a consequence, to improve bug reporting systems, one could
tell users while they are reporting a bug what information is impor-
tant (e.g., screenshots). At the same time one should provide better
tools to collect important information, because often this informa-
tion is difficult to obtain for users (see Section 3.2).

3.4 Problems with Bug Reports
Among the problems experienced by developers, incomplete in-
formation was, by far, most commonly encountered. Other com-
mon problems include errors in steps to reproduce and test cases;
bug duplicates; and incorrect version numbers, observed and ex-
pected behavior. Another issue that developers often seemed chal-
lenged by is the fluency in language of the reporter. Most of these
problems are likely to lead developers astray when fixing bugs.

The most severe problems were errors in steps to reproduce
and incomplete information. In fact, in question D5 many develop-
ers commented on being plagued by bug reports with incomplete
information:

“The biggest causes of delay are not wrong information, but
absent information."

Other major problems included errors in test cases and observed
behavior. A very interesting observation is that developers do not
suffer too much from bug duplicates, although earlier research con-
sidered this to be a serious problem [11, 30, 34]). Possibly, devel-
opers can easily recognize duplicates, and sometimes even benefit
by a different bug description. As commented by one developer:

“Duplicates are not really problems. They often add useful
information. That this information were filed under a new
report is not ideal thought.”

The low occurrence of spam is not surprising: in BUGZILLA and
JIRA, reporters have to register before they can submit bug reports;
this registration successfully prevents spam. Lastly, errors in stack
traces are highly unlikely because they are copy-pasted into bug
reports, but when an error happens, it can be a severe problem.

3.5 Developer Comments
We received 48 developer comments in the survey responses. Most
comments stressed the importance of clear, complete, and correct
bug descriptions. However, some revealed additional problems:

Different knowledge levels. “In OSS, there is a big gap with the
knowledge level of bug reporters. Some will include exact
locations in the code to fix, while others just report a weird
behavior that is difficult to reproduce.”

Violating netiquette. “Another aspect is politeness and respect.
If people open rude or sarcastic bugs, it doesn’t help their
chances of getting their issues addressed.”

Complicated steps to reproduce. This problem was pointed out
by several developers: “If the repro steps are so complex that
they’ll require more than an hour or so (max) just to set up
would have to be quite serious before they’ll get attention.”
Another one: “This is one of the greatest reasons that I post-
pone investigating a bug. . . if I have to install software that I
don’t normally run in order to see the bug.”

Misuse of bug tracking system. “Bugs are often used to debate
the relative importance of various issues. This debate tends
to spam the bugs with various use cases and discussions [. . . ]
making it harder to locate the technical arguments often nec-
essary for fixing the bugs. Some long-lived high-visibility
bugs are especially prone to this.”

Also, some developers pointed out situations where bug reports get
preferred treatment:

Human component. “Well known reporters usually get more con-
sideration than unknown reporters, assuming the reporter
has a pretty good history in bug reporting. So even if a “well-
known" reporter reports a bug which is pretty vague, he will
get more attention than another reporter, and the time spent
trying to reproduce the problem will also be larger.”

Keen bug reporters. A developer wrote about reporters who iden-
tify offending code: “I feel that I should at least put in the
amount of effort that they did; it encourages this behavior.”



Figure 4: Screenshot of interface for rating bug reports

Bug severity. “For me it amounts to a consideration of ‘how seri-
ous is this?’ vs ‘how long will it take me to find/fix it?’. Se-
rious defects get prompt attention but less important or more
obscure defects get attention based on the defect clarity.”

4. RATING BUG REPORTS
After completing the questionnaire, participants were asked to con-
tinue with a voluntary part of our survey. We presented randomly
selected bug reports from their projects and asked them to rate the
quality of these reports. Being voluntary, we did not mention this
part in the invitation email. While we asked both developers and
reporters to rate bug reports, we will use only the ratings by devel-
opers in this paper, as they are more qualified to judge what is a
good bug report.

4.1 Rating Infrastructure
The rating system was inspired by Internet sites such as RateMy-
Face [29] and HotOrNot [15]. We drew a random sample of 100
bugs from the projects’ bug database, which were presented one by
one to the participants in a random order. They were required to
read through the bug report and rate it on a five-point Likert scale
ranging from very poor (1) to very good (5) (see Figure 4 for a
screenshot). Once they rated a bug report, the screen showed the
next random report and the average quality rating of the previously
rated report on the left. On the right, we provided a skip button,
which as the name suggests, skips the current report and navigates
to the next one. This feature seemed preferable to guesswork on
part of the participants, in cases where they lacked the knowledge
to rate a report. Participants could stop the session at any time or
choose to continue until all 100 bugs had been rated.

These quality ratings by developers served two purposes:

1. They allowed us to verify the results of the questionnaire on
concrete examples, i.e., whether reports with highly desired
elements are rated higher for their quality and vice versa.

2. These scores were later used to evaluate our CUEZILLA tool
that measures bug report quality (Section 5).

4.2 Rating Results
The following number of developer votes for bug reports were re-
ceived for the samples of 100 bugs from each project: 229 for
APACHE, 397 for ECLIPSE, and 560 for MOZILLA. Figure 5 plots
the distribution of the ratings, which is similar across all projects,
with the most frequent ratings being 3 (average) and 4 (good).

Table 4 lists the bug reports that were rated highest and lowest
by ECLIPSE developers. Some bug reports were found to be of
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Table 4: Developers rated the quality of ECLIPSE bug reports.
Bug Report Votes Rating

Tree - Selection listener stops default expansion (#31021) 3 5.00
JControlModel "eats up" exceptions (#38087) 5 4.8
Search - Type names are lost [search] (#42481) 4 4.50
150M1 withincode type pattern exception (#83875) 5 4.40
ToolItem leaks Images (#28361) 6 4.33
. . . . . . . . .
Selection count not updated (#95279) 4 2.25
Outline view should [...] show all project symbols (#108759) 2 2.00
Pref Page [...] Restore Defaults button does nothing (#51558) 6 1.83
[...]<Incorrect /missing screen capture> (#99885) 4 1.75
Create a new plugin using CDT. (#175222) 7 1.57

exceptional quality, such as bug report #31021 for which all three
responders awarded a score of very good (5). This report presents
a code example and adequately guides the developer on its usage,
and observed behavior.

I20030205

Run the following example. Double click on a tree item and
notice that it does not expand.

Comment out the Selection listener and now double click on
any tree item and notice that it expands.

public static void main(String[] args) {
Display display = new Display();
Shell shell = new Shell(display);
[. . . ] (21 lines of code removed)
display.dispose();

}
(ECLIPSE bug report #31021)

On the other hand, bug report #175222 with an average score of
1.57 is of fairly poor quality. Actually, this is simply not a bug
report and has been incorrectly filed in the bug database. Still mis-
filed bug reports take away valuable time from developers.

I wand to create a new plugin in Eclipse using CDT. Shall it
possible. I had made a R&D in eclipse documentation. I had
get an idea about create a plugin using Java. But i wand to
create a new plugin ( user defined plugin ) using CDT. After
that I wand to impliment it in my programe. If it possible?.
Any one can help me please...

(ECLIPSE bug report #175222)



4.3 Concordance between Developers
We also investigated the concordance between developers on their
evaluation of the quality of bug reports. It seems reasonable to
assume that developers with comparable experiences have compat-
ible views on the quality of bug reports. However, there may be
exceptions to our belief or it may simply be untrue. We statistically
verified this by examining the standard deviations of quality ratings
by developers (σrating) for the bug reports. Larger values of σrating

indicate higher differences between developers’ view of quality for
a bug report. Of the 289 bug reports rated across all three projects,
only 23 (which corresponds to 8%) had σrating > 1.5.

These results show that developers generally agree on the quality
of bug reports. Thus, it is feasible to use their ratings to build a
tool that learns from bug reports to measure the quality of new bug
reports. We present a prototype of such a tool in the next section.

5. MEASURING BUG REPORT QUALITY
In Section 3.3, we showed that the majority of reporters know what
is important in bug reports. However, we also found evidence for an
information mismatch: the importance of some items, e.g., screen-
shots, is not recognized by users. There are also black sheep among
users who do not know yet how to write good bug reports. In gen-
eral, humans can benefit from cues while undertaking tasks, which
was demonstrated in software engineering by Passing and Shep-
perd [27]. They examined how subjects revised their cost estimates
of projects upon being presented checklists relevant to estimation.

Our conjecture is that bug reporters can provide better reports
with similar assistance. As a first step towards assistance, we de-
veloped a prototype tool — CUEZILLA that measures the quality
of bug reports; and provides suggestions to reporters on how to en-
hance the quality. For example, “Have you thought about adding a
screenshot to your bug report?”

This section presents details on how CUEZILLA works and re-
ports results of its evaluation at measuring quality of bug reports.
To create recommendations, CUEZILLA first represents each bug
report as a feature vector (Section 5.1). Then it uses supervised
learning to train models (Section 5.2) that measure the quality of
bug reports (Section 5.3 and 5.4). Our models can also quantify the
increase in quality, when elements are added to bug reports (Sec-
tion 5.5). In contrast to other quality measures for bug reports such
as lifetime [14], we use the ratings that we received by developers.

5.1 Input Features
Our CUEZILLA tool measures quality of bug reports on the basis
of their contents. From the survey, we know the most desired fea-
tures in bug reports by developers. Endowed with this knowledge,
CUEZILLA first detects the features listed below. For each feature
a score is awarded to the bug report, which is either binary (e.g.,
attachment present or not) or continuous (e.g., readability).

Itemizations. In order to recognize itemizations in bug reports,
we checked whether several subsequent lines started with an
itemization character (such as -, *, or +). To recognize enu-
merations, we searched for lines starting with numbers or
single characters that were enclosed by parenthesis or brack-
ets or followed by a single punctuation character.

Keyword completeness. We reused the data set provided by Andy
Ko et al. [20] to define a quality-score of bug reports based on
their content. In a first step, we removed stop words, reduced
the words to their stem, and selected words occurring in at
least 1% of bug reports. Next we categorized the words into
the following groups:

– action items (e.g., open, select, click)
– expected and observed behavior (e.g., error, missing)
– steps to reproduce (e.g., steps, repro)
– build-related (e.g., build)
– user interface elements (e.g., toolbar, menu, dialog)

In order to assess the completeness of a bug report, we com-
puted for each group a score based on the keywords present
in the bug report. The maximum score of 1 for a group is
reached when a keyword is found.
In order to obtain the final score (which is between 0 and 1),
we averaged the scores of the individual groups.

In addition to the description of the bug report, we analyze the at-
tachments that were submitted by the reporter within 15 minutes
after the creation of the bug report. In the initial description and
attachments, we recognize the following features:

Code Samples. We identify C++ and JAVA code examples using
techniques from island parsing [24]. Currently, our tools can
recognize declarations (for classes, methods, functions, and
variables), comments, conditional statements (such as if and
switch), and loops (such as for and while).

Stack Traces. We currently can recognize JAVA stack traces, GDB
stack traces, and MOZILLA talkback data. Stack traces are
easy to recognize with regular expressions: they consist of a
start line (that sometimes also contains the top of the stack)
and trace lines.

Patches. In order to identify patches in bug reports and attach-
ments we again used regular expressions. They consist of
several start lines (which file to patch) and blocks (which are
the changes to make) [23].

Screenshots. We identify the type of an attachment using the file
tool in UNIX. If an attachment is an image, we recognize it as
a screenshot. If the file is recognized as text, we process the
file and search for code examples, stack traces, and patches
(see above).

For more details about extraction of structural elements from bug
reports we refer to our previous work [7], in which we showed that
we can identify the above features with a close to perfect precision.

After cleaning the description of a bug report from source code,
stack traces, and patches, we compute its readability.

Readability. To compute readability we use the style tool, which
“analyses the surface characteristics of the writing style of
a document” [10]. It is important to not confuse readability
with grammatical correctness. The readability of a text is
measured by the number of syllables per word and the length
of sentences. Readability measures are used by Amazon.com
to inform customers about the difficulty of books and by the
US Navy to ensure readability of technical documents [19].
In general, the higher a readability score the more complex
a text is to read. Several readability measures return val-
ues that correspond to school grades. These grades tell how
many years of education a reader should have before reading
the text without difficulties. For our experiments we used
the following seven readability measures: Kincaid, Auto-
mated Readability Index (ARI), Coleman-Liau, Flesh, Fog,
Lix, and SMOG Grade.5

5This paper has a SMOG-Grade of 13, which requires the reader to
have some college education. Publications with a similar SMOG-
grade are often found in the New York Times.



Table 5: The results of the classification by CUEZILLA (using
stepwise linear regression) compared to the developer rating.

Observed
Measured very poor poor medium good very good

very poor [< 1.8] 0 0 1 0 0
poor [1.8, 2.6] 0 2 0 0 0
medium [2.6, 3.4] 4 11 29 17 4
good [3.4, 4.2] 0 1 6 12 5
very good [> 4.2] 0 1 2 4 1

Table 6: Leave-one-out cross-validation within projects.
APACHE ECLIPSE MOZILLA

Support vector machine 28% (82%) 48% (91%) 37% (82%)
Generalized linear regression 28% (82%) 40% (87%) 29% (80%)
Stepwise linear regression 31% (86%) 44% (87%) 34% (85%)

5.2 Evaluation Setup
Out of the 300 bug reports in the sample, developers rated 289 bug
reports at least once. These reports were used to train and evaluate
CUEZILLA by building supervised learning models. We used the
following three models: support vector machines (SVM), general-
ized linear regression (GLR), and stepwise linear regression [35].

Each model used the scores from the features described in Sec-
tion 5.1 as input variables and predicted the average developer rat-
ing as output variable. We evaluated CUEZILLA using two setups:

Within project. To test how well models predict within a project,
we used the leave-one-out cross-validation technique. This
means that for a given project, the quality of each bug report
is predicted using all other bug reports to train the model.
Since we have limited data, we chose this setup to maximize
the training data to build the prediction models.

Across projects. We also tested if models from one project can be
transferred to others. To exemplify, we built a model from
all rated bug reports of project A, and applied it to predict
the quality of all rated bugs in project B.

Table 5 shows the results for ECLIPSE bug reports and stepwise
linear regression using leave-one-out cross-validation. The column
names in the table indicate the average rating of the bug report by
developers (Observed); the row names denote the quality measured
by CUEZILLA (Measured). The ranges within the square brackets
next to the row names indicate the equidistant mapping of predicted
values to the Likert scale.

The counts in the diagonal cells, with a dark gray background,
indicate the number of bug reports for which there was complete
agreement between CUEZILLA and developers on their quality. In
Table 5, this is true for 44% of the bug reports. In addition, we
also look at predictions that are off by one from the developer rat-
ings. These are the cells in the tables that are one row, either to the
left or right of the diagonal. Using perfect and off-by-one agree-
ments, the accuracy increases to 87%, in other words only 1 in 10
recommendations off by more than one scale.

5.3 Evaluation within Projects
Results from predicting the quality of bug reports using other bug
reports from the same project (with leave-one-out cross-validation)
are presented in Table 6. The first number is the percentage of bug
reports with perfect agreement on the quality between CUEZILLA
and the developers, while the number in the parentheses indicates
the percentage for off-by-one accuracy.

Table 7: Validation across projects.
Testing on

APACHE ECLIPSE MOZILLA

Training APACHE
SVM
GLR
Stepwise

ECLIPSE
SVM
GLR
Stepwise

MOZILLA
SVM
GLR
Stepwise

Of the three models used, support vector machines appear to pro-
vide more number of perfect agreements than other techniques. In
case of off-by-one agreements, stepwise linear regression outper-
forms the two other models. But on the whole, all three models
seem to perform comparably across the projects. The figures also
show that a higher proportion of perfect agreements were made for
ECLIPSE bug reports than for APACHE and MOZILLA.

5.4 Evaluation across Projects
In Table 7, we present the results from the across projects evalu-
ation setup. The bars in the table can be interpreted in a similar
fashion as before in Tables 2 and 3. Here, the bars have the follow-
ing meanings.

Number of unique bugs rated by developers
Number of perfect agreements
Number of off-by-one agreements

The accuracy of CUEZILLA is represented by the black bar ( ) and
the off-by-one accuracy by the overall shaded part ( ). In order
to facilitate comparison, Table 7 also contains the results from the
within project evaluation (for which the bars have a thinner border).

The results in Table 7 show that models trained from one project
can be transferred to other projects without much loss in predic-
tive power. However, we can observe more variability in prediction
accuracy for stepwise and generalized linear regression. It is inter-
esting to note that models using data from APACHE and MOZILLA
are both good at predicting quality of ECLIPSE bug reports. One
can infer from these results that CUEZILLA’s models are largely
portable across projects to predict quality, but they are best applied
within projects.

5.5 Recommendations by CUEZILLA
The core motivation behind CUEZILLA is to help reporters file bet-
ter quality bug reports. For this, its ability to detect the presence
of information features can be exploited to tip reporters on what
information to add. This can be achieved simply by recommend-
ing additions from the set of absent information, starting with the
feature that contributes to the quality further by the largest margin.
These recommendations are intended to serve as cues or reminders
to reporters of the possibility to add certain types of information;
likely to improve bug report quality.

The left panel of Figure 1 illustrates the concept. The text in the
panel is determined by investigating the current contents of the re-
port, and then determining that would be best, for instance, adding
a code sample to the report. As and when new information is added
to the bug report, the quality meter revises its score.

Our evaluation of CUEZILLA shows much potential for incorpo-
rating such a tool in bug tracking systems. CUEZILLA is able to
measure quality of bug reports within reasonable accuracy. How-
ever, the presented version of CUEZILLA is an early prototype and
we plan to further enhance the tool and conduct experiments to
show its usefulness. We briefly discuss our plans in Section 9.



6. INCENTIVE FOR REPORTERS
If CUEZILLA tips reporters on how to enhance quality of their bug
reports, one question comes to mind – “What are the incentives
for reporters to do so?” Of course, well-described bug reports
help comprehending the problem better, consequently increasing
the likelihood of the bug getting fixed. But to explicitly show ev-
idence of the same to reporters, CUEZILLA randomly presents rel-
evant facts that are statistically mined from bug databases. In this
section, we elaborate upon how this is executed, and close with
some facts found in the bug databases of the three projects.

To reduce the complexity of mining the several thousand bug re-
ports filed in bug databases, we sampled 50,000 bugs from each
project. These bugs had various resolutions, such as FIXED, DU-
PLICATE, MOVED, WONTFIX, and WORKSFORME. Then, we com-
puted the scores for all items listed in Section 5.1 for each of the
150,000 bugs. To recall, the scores for some of the items are con-
tinuous values, while others are binary.

6.1 Relation to Resolution of Bug Reports
A bug being fixed is a mark of success for both, developers and
reporters. But what items in bug reports increase the chances of
the bug getting fixed? We investigate this on the sample of bugs
described above for each project.

First, we grouped bug reports by their resolutions as: FIXED,
DUPLICATE, and OTHERS. The FIXED resolution is most desired
and the OTHERS resolution—that includes MOVED, WONTFIX and
the likes—are largely undesired. We chose to examine DUPLICATE
as a separate group because this may potentially reveal certain traits
of such bug reports. Additionally, as pointed above, duplicates may
provide more information about the bug to developers.

For binary valued features, we performed Chi-Square tests [31]
(p < 0.05) on the contingency tables of the three resolution groups
and the individual features for each project separately. The tests’
results indicate whether the presence of the features in bug reports
significantly determine the resolution category of the bug. For ex-
ample, the presence of stack traces significantly increases the like-
lihood of a FIXED desirable resolution.

In case of features with continuous valued scores, we performed
a Kruskal-Wallis test [31] (p < 0.05) on the distribution of scores
across the three resolution groups to check whether the distribution
significantly differ from one group to another. For example, bug
reports with FIXED resolutions have significantly lower SMOG-
grades than reports with OTHERS resolutions; indicating that re-
ports are best written using simple language constructs.

6.2 Relation to Lifetime of Bug Reports
Another motivation for reporters is to see what items in bug re-
ports help making the bugs’ lifetimes shorter. Such motivations are
likely to incline reporters to furnish more helpful information. We
mined for such patterns on a subset of the above 150,000 bugs with
resolution FIXED only.

For items with binary scores, we grouped bug reports by their bi-
nary scores, for example, bugs containing stack traces and bugs not
containing stack traces. We compared the distribution of the life-
times of the bugs and again, performed a Kruskal-Wallis test [31]
(p < 0.05) to check for statistically significant differences in dis-
tributions. This information would help encourage reporters to in-
clude items that can reduce lifetimes of the bugs.

In the case of items with continuous valued scores, we first di-
chotomized the lifetime into two categories: bugs resolved quickly
vs. bugs resolved slowly. We then compared the distribution of the
scores across the two categories using the Kruskal-Wallis test [31]
(p < 0.05) to reveal statistically significant patterns. Differences in

distributions could again be used to motivate users to aim at achiev-
ing scores for their reports that are likely to have lower lifetimes.
In our experiments we used one hour, one day, and one week as
boundaries for dichotomization.

6.3 Results
This section lists some of the key statistically significant patterns
found in the sample of 150,000 bug reports. These findings can be
presented in interfaces of bug tracking systems (see the right part
of Figure 1). A sample of our key findings are listed below:

• Bug reports containing stack traces get fixed sooner.
(APACHE/ECLIPSE/MOZILLA)

• Bug reports that are easier to read have lower lifetimes.
(APACHE/ECLIPSE/MOZILLA)

• Including code samples in your bug report increases the
chances of it getting fixed. (MOZILLA)

We are not the first to find factors that influence the lifetime of
bug reports. Independently from us, Hooimeijer and Weimer [14]
observed for FIREFOX that bug reports with attachments get fixed
later, while bug reports with many comments get fixed sooner. They
also confirmed our results that easy-to-read reports are fixed faster.
Panjer observed for ECLIPSE that comment count and activity as
well as severity affect the lifetime the most [26].

In contrast, our findings are for factors that can be determined
while a user is reporting a bug. Each finding suggests a way to
increase the likelihood of their bugs to either get fixed at all, or get
fixed faster. Keen users are likely to pick up on such cues since this
can lessen the amount of time they have to deal with the bug.

7. THREATS TO VALIDITY
For our survey we identified the following threats to validity.

Our selection of developers was constrained to only experienced
developers; in our context, developers who had at least 50 bugs
assigned to them. While this skews our results towards developers
who frequently fix bugs, they are also the ones who will benefit
most by an improved quality of bug reports. The same discussion
applies to the selection of reporters.

A related threat is that to some extent our survey operated on a
self-selection principle: the participation in the survey was volun-
tary. As a consequence, results might be skewed towards people
that are likely to answer the survey, such as developers and users
with extra spare time—or who care about the quality of bug reports.

Avoiding the self-selection principle is almost impossible in an
open-source context. While a sponsorship from the Foundations of
APACHE, ECLIPSE, and MOZILLA might have reduced the amount
of self-selection, it would not have eliminated skew. As pointed
out by Singer and Vinson the decision of responders to participate
“could be unduly influenced by the perception of possible benefits
or reprisals ensuing from the decision” [32].

In order to take as little time as possible of participants, we con-
strained the selection of items in our survey. While we tried to
achieve completeness, we were aware that our selection was not
exhaustive of all information used and problems faced by develop-
ers. Therefore, we encouraged participants to provide us with ad-
ditional comments, to which we received 175 responses. We could
not include the comments into the statistical analysis; however, we
studied and discussed the comments by developers in Section 3.

As with any empirical study, it is difficult to draw general con-



clusions because any process depends on a large number of context
variables [3]. In our case, we contacted developers and users of
three large open-source initiatives, namely APACHE, ECLIPSE, and
MOZILLA. We are confident that our findings also apply to smaller
open-source projects. However, we do not contend that they are
transferable to closed-software projects (which have no patches and
rarely stack traces). In future work, we will search for evidence for
this hypothesis and point out the differences in quality of bug re-
ports between open-source and closed-source development.

A common misinterpretation of empirical studies is that noth-
ing new is learned (“I already knew this result”). Unfortunately,
some readers miss the fact that this wisdom has rarely been shown
to be true and is often quoted without scientific evidence. This
paper provides such evidence: most common wisdom is confirmed
(e.g., “steps to reproduce are important”) while others is challenged
(“bug duplicates considered harmful”).

8. RELATED WORK
So far, mostly anecdotical evidence has been reported on what
makes a good bug report. For instance, Joel Spolsky described
how to achieve painless bug tracking [33] and numerous articles
and guidelines on effective bug reporting float around the Internet
(e.g., [13]). Still, the results from our survey suggest that bug re-
porting is far from being painless.

The work closest to ours is by Hooimeijer and Weimer who built
a descriptive model for the lifetime of a bug report [14]. They as-
sumed that the “time until resolved” is a good indicator for the qual-
ity of a bug report. In contrast, our notion of quality is based on
feedback from developers (1,186 votes). When we compared the
ratings of the bug reports with lifetime, the Spearman correlation
values were between 0.002 and 0.068, indicating that lifetime as
measured by Hooimeijer and Weimer [14] and quality are indepen-
dent measures. Often a bug report that gets addressed quicker can
be of poor quality, but describes an urgent problem. Also, a well-
written bug report can be complicated to deal with and take more
time to resolve. Still, knowing what contributes to the lifetime of
bug reports [14,26], can encourage users to submit better reports as
discussed in Section 6.

In a workshop paper, we presented preliminary results from the
developer survey on the ECLIPSE project using a handcrafted pre-
diction model [4]. In other work, we quantified the amount of addi-
tional information in bug duplicates [6] and gave recommendations
on how to improve existing bug tracking systems [17].

Several studies used bug reports to automatically assign devel-
opers to bug reports [2,9], assign locations to bug reports [8], track
features over time [12], recognize bug duplicates [11, 30], and pre-
dict effort for bug reports [37]. All these approaches should bene-
fit by our quality measure for bug reports since training only with
high-quality bug reports will likely improve their predictions.

In 2004, Antoniol et al. [1] pointed out the lack of integration
between version archives and bug databases, which make it hard to
locate the most faulty methods in a system. In the meantime things
have changed: the Mylyn tool by Kersten and Murphy [18] allows
to attach a task context to bug reports so that changes can be tracked
on a very fine-grained level.

In order to inform the design of new bug reporting tools, Ko et
al. [20] conducted a linguistic analysis of the titles of bug reports.
They observed a large degree of regularity and a substantial num-
ber of references to visible software entities, physical devices, or
user actions. Their results suggest that future bug tracking systems
should collect data in a more structured way.

According to the results of our survey, errors in steps to repro-
duce are one of the biggest problems faced by developers. This

demonstrates the need for tools that can capture the execution of a
program on user-side and replay it on developer-side. While there
exist several capture/replay techniques (such as [16, 25, 38]), their
user-orientation and scalability can still be improved.

Not all bug reports are generated by humans. Some bug-finding
tools can report violations of safety-policies and annotate them with
back-traces or counterexamples. Weimer presented an algorithm to
construct such patches automatically. He also found that automat-
ically generated “reports also accompanied by patches were three
times as likely to be addressed as standard bug reports” [36].

Furthermore, users can help developers to fix bugs without fil-
ing bug reports. For example, many products ship with automated
crash reporting tools that collect and sent back crash information,
e.g., Apple CrashReporter, Windows Error Reporting, Gnome Bug-
Buddy, Mozilla Talkback. Liblit et al. introduced statistical debug-
ging [21]. They distribute specially modified versions of software,
which monitor their own behavior while they run and report back
how they work. This information is then used to isolate bugs using
statistical techniques. Still, since it is unclear how to extract suffi-
cient information for rarely occurring and non-crashing bugs, there
will always be the need for manual bug reporting.

9. CONCLUSION AND CONSEQUENCES
Well-written bug reports are likely to get more attention among de-
velopers than poorly written ones. We conducted a survey among
developers and users of APACHE, ECLIPSE, and MOZILLA to find
out what makes a good bug report. The results suggest that, across
all three projects, steps to reproduce and stack traces are most use-
ful in bug reports. The most severe problems encountered by de-
velopers are errors in steps to reproduce, incomplete information,
and wrong observed behavior. Surprisingly, bug duplicates are en-
countered often but not considered as harmful by developers. In
addition, we found evidence for a mismatch between what infor-
mation developers consider as important and what users provide.
To a large extent, lacking tool support causes this mismatch.

We also asked developers to rate the quality of bug reports on
a scale from one (poor quality) to five (excellent quality). Based
on these ratings, we developed a tool, CUEZILLA that measures the
quality of bug reports. This tool can rate up to 41% bug reports in
complete agreement with developers. Additionally, it recommends
what additions can be made to bug reports to make their quality
better. To provide incentive for doing so, CUEZILLA automatically
mines patterns that are relevant to fixing bugs and presents them to
users. In the long term, an automatic measure of bug report quality
in bug tracking systems can ensure that new bug reports meet a
certain quality level. Our future work is as follows:

Problematic contents in reports. Currently, we award scores for
the presence of desired contents, such as itemizations and
stack traces. We plan to extend CUEZILLA to identify prob-
lematic contents such as errors in steps to reproduce and code
samples in order to warn the reporter in these situations.

Usability studies for new bug reporting tools. We listed several
comments by developers about problems with existing bug
reporting tools in Section 3. To address these problems, we
plan to develop prototypes for new, improved reporting tools,
which we will test with usability studies.

Impact on other research. In Section 8, we discussed several ap-
proaches that rely on bug reports as input to support devel-
opers in various tasks such as bug triaging, bug localization,
and effort estimation. Do these approaches improve when
trained only with high-quality bug reports?



Additionally, aiding reporters in providing better bug reports can
go a long way in structuring bug reports. Such structured text may
also be beneficial to researchers who use them for experiments. In
effect, in the short- to medium-term, data quality in bug databases
would generally increase, in turn providing more reliable and con-
sistent data to work with and feedback to practitioners.
To learn more about our work in mining software archives, visit

http://www.softevo.org/
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