
2 Data Mining Version Histories
Thomas Zimmermann
Andreas Zeller
Lehrstuhl für Softwaretechnik, Universität des Saarlandes, Saarbrücken, Germany
{tz,zeller}@acm.org

Abstract
Program analysis long has been understood as the analysis
of source code alone. A modern software product, though,
is more than just program code; it contains documentation,
interface descriptions, resource data—all of which must
be maintained and organized. In this paper, we propose a
novel approach to maintain such non-program entities: By
learning from the development history of the product, we
can determine coupling between entities: “Programmers
who changed ComparePreferencePage.java typically also
changed plugin.properties”. As a first proof of concept,
our ROSE plug-in for ECLIPSE automatically guides the
programmer along related changes.

2.1 Learning from History
Shopping for a book at Amazon.com, you may have come
across a section that reads “Customers who bought this
book also bought. . . ”, listing other books that were typ-
ically included in the same purchase. Such information
is gathered by data mining— the automated extraction of
hidden predictive information from large data sets. We
have applied such data mining to the version histories of
large open-source software systems. This results in rules
like the following:

Coupling between entities: “Programmers who
changed the fkeys[] field always also
changed the initDefaults() function”. The

initDefaults() function initializes new
elements of the fkeys[] field; whenever
fkeys[] was extended by a new element,
initDefaults() was extended by a statement
that initialized the element.

Coupling between programs and documentation: “In
8 out of 10 cases, Programmers who changed the
embedded SQL statement in line 47 of status.py
changed the JPEG image igordb.jpg”. The JPEG
image is part of the product documentation and is a
view of the database schema; whenever the schema
changed, the SQL statements were changed, too, and
the documentation was updated.

Such rules can reveal invariants of the development pro-
cess (such as updating documentation); they can reveal
factual coupling through common changes; and they can
be put to use for actual programmers. Figure 2.1 shows our
ROSE plug-in for the ECLIPSE programming environment,
actually working on the ECLIPSE source code: As soon as
the programmer makes a change to fkeys[], ROSE sug-
gests further related changes as listed above.

2.2 Mining Rules
Figure 2.2 shows the basic information flow through ROSE.
The ROSE Server first extracts the transactions from the
CVS archive—changes that were committed by the same



Figure 2.1: After the programmer has made some changes to the ECLIPSE source (above), ROSE suggests locations
(below) where, in similar transactions in the past, further changes were made.

programmer with the same rationale in a short time win-
dow. The ROSE server then stores the transactions in a
database. This representation is independent from the con-
crete version system used and can be used for arbitrary
analyses. A unique feature of ROSE is that it maps the
changes to syntactic entities such as methods, attributes,
or sections [1]. ROSE is thus able to detect coupling at a
much finer granularity than, say, files or directories.

Figure 2.2: The data flow through ROSE.

The ROSE client makes the database accessible to pro-
grammers: As soon as the programmer makes a change,
ROSE mines the database for possible related changes and
presents these to the programmer in a list at the bottom of

the screen (Figure 2.1). This is a very efficient process,
taking at most 0.5 seconds; the programmer can examine
these suggested locations simply by clicking on them.

Do ROSE’s recommendations make sense? Yes and no.
ROSE is not able to predict every single change. An evalu-
ation on eight large open source projects [2] shows a recall
of only about 15%, meaning that only a sixth of the actu-
ally changed entities could be predicted by ROSE. On the
other hand, the recommendations have a high likelihood to
be correct: the topmost three suggestions contain a correct
location with a likelihood of 64%. Thus, if ROSE suggests
something, it had better be taken seriously.

2.3 Some Perspectives

Our work with ROSE opens interesting new research per-
spectives in program analysis. Traditionally, program
analysis has been concerned with source code alone.
Leveraging the development history of the product obvi-
ously allows to reveal coupling that would otherwise be
inaccessible to source code analysis—because we can de-
tect coupling between programs and documentation, or be-
tween entities that are not even programs.



Yet, we have only begun to scratch the surface of what
may be hidden in version archives and other process ar-
tifacts. In the future, we plan to exploit log messages
and problem databases (which often are synchronized with
changes); mailing lists or developer forums may be other
sources of gathering knowledge. Of course, all of this
information is fuzzy and insecure, especially when com-
pared with the hard facts that source code analysis can ex-
tract. On the other hand, when it comes to understanding
a program, a good hint may be better than no hint at all—
and we’re afraid that most of our programs are of such
complexity that any hint may be precious.

More information about this and related work can be
found on our web site
http://www.st.cs.uni-sb.de/softevo/

Bibliography
[1] Thomas Zimmermann and Peter Weißgerber. Pre-

processing CVS data for fine-grained analysis. In
Proc. Intl. Workshop on Mining Software Repositories
(MSR), Edinburgh, Scotland, May 2004.

[2] Thomas Zimmermann, Peter Weißgerber, Stephan
Diehl, and Andreas Zeller. Mining version histories
to guide software changes. In Proc. 26th Interna-
tional Conference on Software Engineering (ICSE),
Edinburgh, Scotland, May 2004.


