
Fine-grained Processing of CVS Archives with APFEL

Thomas Zimmermann
Department of Computer Science

Saarland University, Saarbrücken, Germany

tz@acm.org

ABSTRACT

In this paper, we present the APFEL plug-in that collects fine-
grained changes from version archives in a database. APFEL is
built upon the Eclipse infrastructure for CVS and Java. In order to
describe changes, APFEL uses tokens such as method calls,
exceptions, and variable usages. We demonstrate the usefulness of

APFEL’s database with several case studies.

Categories and Subject Descriptors

D.2.6 [Software Engineering]: Programming Environments –
Integrated environments; D.2.7 [Software Engineering]:
Distribution, Maintenance, and Enhancement – Restructuring,

reverse engineering, and reengineering, Version control; D.2.9

[Software Engineering]: Management – Software configuration

management.

General Terms

Management, Measurement, Experimentation.

Keywords

Changes, Tokens, Abstract Syntax Trees, Eclipse, CVS

1. INTRODUCTION
Nowadays, software development produces a huge amount of
information: changes to source code are recorded in version
archives, bugs are reported to problem databases, and
development is discussed in mailing lists and newsgroups.
Recently, a new research area called mining software repositories
has emerged. It showed that historical data is a valuable asset
when it comes to understanding change tasks [6], guiding
programmers [23, 26], and identifying logical coupling [10] of

huge software systems.

The Eclipse project was involved in this research from its first
day. Mainly for two reasons: (1) The development process of
Eclipse is well documented and organized; Eclipse quickly
became one of the most popular evaluation subjects. (2) The
Eclipse platform offered functionality that is required for mining
software repositories, such as CVS access, a Java parser, and an
easy way to demonstrate results to the user.

Hipikat [6] is a good example of a tool that leverages software

repositories in Eclipse. Hipikat connects all kinds of software
artifacts (documentation, bug reports, changes) and allows
searching for related artifacts. Another tool is eROSE [26] that
mines CVS archives to create recommendations of the form
“Programmers who changed function f() also changed g().”

Hipikat and eROSE both stop at the artifact or element level.
However, more fine-grained changes—such the addition of
method calls—contain also valuable information. Livshits and

Zimmermann mined the addition of method calls for usage
patterns [17] and Breu and Zimmermann identified cross-cutting
concerns in history [4].

In this paper, we present the APFEL plug-in for Eclipse1. APFEL
processes CVS archives and stores fine-grained changes such as
the addition of method calls in a database. It greatly benefits from
the Eclipse platform by using the CVS plug-in to access CVS
archives and by parsing Java files with the JDT parser.

After giving an overview of related work (Section 2), we describe

in general how APFEL computes fine-grained changes using
tokens (Section 3). Next we shed more light on the concept of
tokens (Section 4), before we discuss how individual changes are
computed (Section 5). We then present several case studies to
demonstrate the usefulness of APFEL (Section 6). We conclude
the paper with ideas for future work (Section 7).

2. RELATED WORK
Most work on preprocessing version archives covers problems
specific to CVS such as mirroring CVS archives [7, 25],
reconstructing transactions [11, 25], reducing noise and finding
out the locations (methods) that changed [9, 25]. The Kenyon tool
combines these techniques in one framework; it is frequently used
for software evolution research [1].

Previous research in the area of mining software repositories
investigated the location of a change—such as files [2], classes [3,
7], or methods [24]—and properties of changes—such as number
of lines changed, developers, or whether a change is a fix [18].

Recently, the focus shifted from locations to changes themselves:
Kim et al. identified signature change patterns in version histories
[15], Williams and Hollingsworth [22] and Livshits and
Zimmermann [17] mined usage patterns from co-added method

calls, and Breu and Zimmermann identified cross-cutting concerns
[4]. Fluri and Gall classified fine-grained changes [8]. Finding out
what was changed is an instance of the program element matching
problem that has been surveyed by Kim and Notkin [13].

1 APFEL is German for apple and short for “A Preprocessing
Framework for Eclipse (and CVS)”

Technical Report, Saarland University, Saarbrücken, Germany
August 2006. http://www.st.cs.uni-sb.de/softevo/

Comparing abstract syntax trees is one approach to compute fine-

grained changes, however it is complicated and time-consuming

[19, 20]. In contrast, APFEL represents the syntactic content of

elements (e.g., methods) with tokensets, thus neglecting the order

within an element. This token-based approach is motivated by the

research of Li and Zhou [16] who inferred implicit programming

rules based on method call and variable type tokens, however not

on changes, but on a single snapshot of a program. They identified

several violations of these rules that turned out to be defects.

As mentioned in the introduction, two plug-ins for Eclipse that

leverage software repositories are Hipikat [6] and eROSE [26].

Both could benefit from fine-grained changes as computed by

APFEL: Hipikat could link artifacts to syntactic elements such as

method calls and eROSE could make additional recommendations

how to change a code location rather than just providing the

location itself.

3. FINE-GRAINED CHANGES
The APFEL plug-in investigates fine-grained changes at the level

of tokens. A token represents some syntactic content of an

element. Table 1 shows that APFEL distinguishes between

different kinds of tokens: For methods, it captures method calls,

variable usages, and exception handling; for classes, it captures

inheritance relations; for compilation units, it captures imported

classes.

Using tokens, it is straightforward to compute fine-grained

changes between two revisions r1 and r2 (see Figure 1). First, we

represent each element of revision r1 as a multiset of tokens; we

do the same for the elements of revision r2. Finally, we compare

the multisets of matching elements. As a result we get differences

such as in method b() one call to method foo() was deleted and

one call to method bar() was inserted. Other possible changes

that we can detect are “two usages of String variables were

deleted” and “one throw statement for EmptyStackException was

added”.

4. Tokenizing Source Code
In this section, we will describe tokens more in detail. In APFEL,

every token consists of a type, name, context, and instance.

Type. The type of a token describes, what kind of syntactic

content it captures. Examples are method calls, variable usages,

and keywords.

Name. The name of a token contains the syntactic content, e.g.,

for a method call token, the name of the method that is called.

Context. Some tokens are connected to syntactic elements. For

instance, in obj.foo() the method foo() is called on the object

obj. Another example are JavaDoc comments: they are

typically linked to the succeeding Java element.

Instance. For method calls, APFEL captures the number of

arguments as the token instance.

In order to collect tokens, APFEL traverses abstract syntax trees

and creates for every compilation unit, class, and method a

separate tokenset. These sets are organized hierarchically: for

instance, the tokenset of a class is the union of its methods’

tokensets plus additional class-specific tokens.

Section 9 in the appendix contains a full list of tokens supported

by APFEL. We use the following syntax for tokens:

context.type–name instance

As an example take the token “Plugin.+.M–findMember(1)”: the

context is “Plugin.+”, the type is method call “M”, the name is

“findMember” and the instance is “(1)”.

Since APFEL works only on syntactic information, it cannot

resolve the signatures for the methods that are called. As an

approximation, APFEL uses the number of arguments, e.g.,

findMember(1) for findMember(fullPath).

For the context plug.getWorkspace().getRoot() of the method

call findMember(fullPath), APFEL resolves the type of plug (if

possible), and summarizes the two method calls getWorkspace()

and getRoot() by a plus character, resulting in the APFEL context

Plugin.+. This helps to identify the class on which the method is

called; in the presence of the plus character the class is unknown.

APFEL distinguishes between intermediate calls and the final call

of a sequence. In the above example, getWorkspace() and

getRoot() are intermediate calls (F-tokens), and findMember(1)
is the final call (M-token).

5. Comparing Tokensets
When comparing tokensets for an element, we distinguish

between different types of changes:

Modification of an element (CHG). The element exists in both

revisions with the tokensets Told and Tnew. We compute the added

tokens with Tnew–Told (stored with positive counts in the database)

and the deleted tokens Told–Tnew (stored with negative counts).

Addition of an element (ADD). The element exists only in the

newer revision. All tokens Tnew are inserted into the database

(with positive counts).

Table 1. Different kinds of tokens.

Token type For what? What is captured?

Modifier Modifier public, private, final, …

Call method call method name and signature

Name variable usage variable name

Type variable usage variable type

Throws method declaration thrown exception

Throw throw statement thrown exception

Catch catch expression caught exception

Keyword Keywords if, for, while, …

Extends type declaration extended type

Implements type declaration implemented interface

Import import statement imported class/package

a()

b()

c()

d()

a()

b()

d()

e()

f()
Rev. r1 Rev. r2
void a(){
...}
void b(){
...}
void c(){
...}
void d(){
...}
void e(){
...}

void a(){
...}
void f(){
...}
void b(){
...}
void d(){
...}
void e(){
...}

e()

compare

compare

compare

compare

gone

new

(1) Tokenize
elements of r1

(2) Tokenize
elements of r2

(3) Compare token sets of matching elements

M-foo()

M-bar()

Figure 1. Comparing two revisions r1 and r2 of a file.

Deletion of an element (DEL). The element exists only in the old

revision. All tokens Told are inserted into the database (with

positive counts).

5.1 Database Schema
APFEL stores all token changes into a database. For every level

one table is created. Figure 2 shows a simplified database schema

for compilation units (_Cunit). For every token change in

Tokens_Cunit, we store the change_type (CHG, ADD, DEL) of

the surrounding element. The Element is referenced with

element_id and the old and new Revision with prev_revision_id

and revision_id respectively. The token itself is described as in

Section 4 with token_type, token_name, token_context and

token_instance. The field named count shows how often the token
was added (count>0) or deleted (count<0).

5.2 Limitations
In this section we discuss limitations of APFEL, in particular of

the lightweight parsing approach:

No renaming. When an element is renamed, this is recognized as

two changes: a deletion of the old element and an addition of the

new element. Origin analysis can recognize such renaming [12,

14, 21]; we plan to build our own origin analysis based on the

similarity of tokensets Told and Tnew.

Canceling changes. Since APFEL neglects the order within

methods, APFEL may miss changes because they are canceling

themselves. An example is swapping two lines within a method.

However, moving code from one method to another is canceling

on class level, but not on method level.

Method signatures. In order to keep the processing of version

archives lightweight, APFEL parses only one source file at a time.

Considering snapshots—a version of the whole program that

compiles—is too expensive. As a result, APFEL cannot resolve

the signature of called methods and approximates it instead with

the number of arguments. In every second case, the approximated

signature directly identifies the original method; however, for

some methods such as dispose or visit there are over 2,000

possible candidates. The overall precision is 68.4% for Eclipse,

the number of arguments accounts for 4.4% points. We obtained

similar precision values for other open source projects.

6. CASE STUDIES
In this section we present three small case studies. All of them can

be realized with one SQL query on the APFEL database. For

Eclipse, the database contains in total 25,848,371 token changes

on method level, 11,670,183 on class level, and 12,038,328 on

compilation unit (file) level. The total size of the database is

approximately 3.6GB for 5 years development history, enclosing

97,996 transactions and 423,991 checkins. Parsing of pre-fetched
Java files takes about 12 hours and pre-fetching several days.

6.1 Crosscutting Concerns
A crosscutting concern is functionality that does not align with the

given modularization of a program, thus, ending up scattered

across the program. If such functionality exists, it must have been

added in the history. We can use the APFEL database to identify
crosscutting/scattered changes with a simple SQL query.

SELECT token_name, COUNT(DISTINCT element_id)

FROM cvs_tokens_method NATURAL JOIN cvs_revisions

WHERE token_type='M' AND change_type='CHG'

GROUP BY transaction_id, token_name

ORDER BY COUNT(DISTINCT element_id) DESC;

We create groups for every added/deleted method call (M-token)

within a transaction. Then we count the number of distinct

elements that contain this token. The more elements the more

crosscutting a change is. Here are the first five rows returned by
the query.

 token_name | count

---------------+-------

 getString | 1462

 lock | 1284

 unlock | 1284

 error | 996

 isValidWidget | 988

And indeed we found crosscutting concerns. The methods lock

and unlock handle locking for 1284 code locations. All calls were

inserted within one transaction “76595 (new lock)”. The calls to

isValidWidget and error check whether a widget is disposed.

Breu et al. used the observation that cross-cutting emerges over
time to identify aspect candidates with concept analysis [4, 5].

6.2 Pairs of Variable Names
Version archives have been used to identify usage patterns of

methods that describe which methods should be called together

[17, 22]. With the APFEL database, we check whether such

patterns also exist for variable names: we identify pairs of names

that are frequently inserted (used) together. If such pairs exist,
they could improve the recommendation of variable names.

Here are the variables that are most frequently inserted together in
Eclipse (we ignored variable names with a single character):

 variable_a | variable_b | count

-------------+-----------------+-------

 height | width | 720

 bCodeStream | classFileOffset | 457

 end | start | 431

 DEBUG | position | 254

 length | offset | 194

 buffer | length | 168

The first row means that height and width have been inserted

together into 720 methods. In the second row, names bCodeStream

and classFileOffset are not related by name; however, they are
frequently used together in source code:

classFileOffset + 2 >= bCodeStream.length

In total we identified 3,367 pairs with a minimum count of 10.

6.3 Renaming of Variables
With the refactoring support of state-of-the-art IDEs, developers

frequently rename entities, especially variables. With the APFEL

database we can find evidence for this hypothesis. We search for

changes where one variable name was deleted and another one

inserted with the same number of occurrences. Additionally, we
consider only changes that exclusively touched variable names.

1

*

2

*1
*

1
 *

Tokens_Cunit
change_type
element_id
prev_revision_id
revision_id
token_type
token_name
token_context
token_instance
count

Elements

Files

Revisions

Figure 2. Database schema on compilation unit level.

On method level we get the following results (sorted descending
by number of references refs to the variable):

 old_name | new_name | refs

----------------------+------------------------------+-------

 trueTb | valueIfTrueType | 41

 falseTb | valueIfFalseType | 36

 key | accelerator | 28

 keyBindingDefinition | keySequenceBindingDefinition | 24

 tab | item | 20

 endAngle | arcAngle | 19

 bundledata | bundleData | 18

 contentAssistant | fContentAssistant | 18

In total, we identified 543 changes that renamed variables with at
least five references.

7. CONCLUSIONS
In this paper we presented the APFEL plug-in. We showed how to

compute fine-grained changed with tokensets. Additionally, we
presented case studies to demonstrate the usefulness of APFEL.

We will continue to improve APFEL. Currently, we are working
on the following topics.

More tokens. Since extending APFEL with new tokens is not

difficult, we are planning to support control-flow changes, such as

changes in switch cases or the conditions of if statements. Right
now they are collected, but not marked explicitly.

Incremental processing. Every time APFEL processes a CVS

repository it recreates the database. In order to save computation
time and network traffic, we a working on an incremental version.

Headless operation. The current APFEL version requires the

Eclipse IDE to be running. We are working on a headless version;

this way APFEL can be integrated into the CVS commit process.

For more information on APFEL logon to

http://www.st.cs.uni-sb.de/softevo/

Acknowledgements. Thomas Zimmermann is funded by the DFG

Graduiertenkolleg “Leistungsgarantien für Rechnersysteme”.

Thanks to Valentin Dallmeier, Melih Demir, Thomas LaToza,

Daniel Schreck, and Markus Thiele for dogfooding APFEL.

8. REFERENCES
[1] Bevan, J., E. James Whitehead, J., Kim, S. and Godfrey, M.,

Facilitating software evolution research with Kenyon. In European

Software Engineering Conference/International Symposium on

Foundations of Software Engineering (ESEC/FSE), Lisbon,

Portugal, 2005.

[2] Bevan, J. and Whitehead, J., Identification of Software Instabilities.

In Proc. 10th Working Conference on Reverse Engineering (WCRE

2003), Victoria, British Columbia, Canada, 2003, 134-143.

[3] Bieman, J.M., Andrews, A.A. and Yang, H.J., Understanding

Change-proneness in OO Software through Visualization. In Proc.

11th International Workshop on Program Comprehension, Portland,

Oregon, 2003, 44-53.

[4] Breu, S. and Zimmermann, T., Mining Aspects from Version

History. In 21st IEEE/ACM International Conference on Automated

Software Engineering (ASE 2006), Tokyo, Japan, 2006.

[5] Breu, S., Zimmermann, T. and Lindig, C., Mining eclipse for cross-

cutting concerns. In Proceedings of the 2006 international workshop

on Mining software repositories, Shanghai, China, 2006.

[6] Cubranic, D., Murphy, G.C., Singer, J. and Booth, K.S. Hipikat: A

Project Memory for Software Development. IEEE Transactions on

Software Engineering, 31(6). 446-465.

[7] Fischer, M., Pinzger, M. and Gall, H., Populating a Release History

Database from Version Control and Bug Tracking Systems. In Proc.

International Conference on Software Maintenance (ICSM 2003),

Amsterdam, Netherlands, 2003.

[8] Fluri, B. and Gall, H.C., Classifying Change Types for Qualifying

Change Couplings. In Proceedings of the 14th International

Conference on Program Comprehension (ICPC), Athens, Greece,

2006, 35-45.

[9] Fluri, B., Gall, H.C. and Pinzger, M., Fine-Grained Analysis of

Change Couplings. In IEEE 5th International Workshop on Source

Code Analysis and Manipulation (SCAM), Budapest, Hungary, 2005,

66-74.

[10] Gall, H., Jazayeri, M. and Krajewski, J., CVS Release History Data

for Detecting Logical Couplings. In Proc. International Workshop

on Principles of Software Evolution (IWPSE 2003), Helsinki,

Finland, 2003, 13-23.

[11] German, D., Mining CVS repositories, the softChange experience. In

Proc. International Workshop on Mining Software Repositories

(MSR 2004), Edinburgh, Scotland, UK, 2004, 17-21.

[12] Godfrey, M.W. and Zou, L. Using Origin Analysis to Detect

Merging and Splitting of Source Code Entities. IEEE Trans.

Software Engineering, 31(2). 166-181.

[13] Kim, M. and Notkin, D., Program element matching for multi-

version program analyses. In Proceedings of the 2006 international

workshop on Mining software repositories, Shanghai, China, 2006.

[14] Kim, S., Pan, K. and Jr., E.J.W., When Functions Change Their

Names: Automatic Detection of Origin Relationships. In 12th

Working Conference on Reverse Engineering (WCRE 2005),

Pittsburgh, PA, USA, 2005, 143-152.

[15] Kim, S., Whitehead, E.J. and Bevan, J., Analysis of signature change

patterns. In Proceedings of the 2005 international workshop on

Mining software repositories, St. Louis, Missouri, 2005.

[16] Li, Z. and Zhou, Y., PR-Miner: automatically extracting implicit

programming rules and detecting violations in large software code.

In European Software Engineering Conference/International

Symposium on Foundations of Software Engineering (ESEC/FSE),

Lisbon, Portugal, 2005.

[17] Livshits, V.B. and Zimmermann, T., DynaMine: Finding Common

Error Patterns by Mining Software Revision Histories. In European

Software Engineering Conference/International Symposium on

Foundations of Software Engineering (ESEC/FSE), Lisbon,

Portugal, 2005.

[18] Mockus, A. and Weiss, D.M. Predicting risk of software changes.

Bell Labs Technical Journal, 5(2). 169-180.

[19] Neamtiu, I., Foster, J.S. and Hicks, M., Understanding source code

evolution using abstract syntax tree matching. In Proceedings of the

2005 international workshop on Mining software repositories, St.

Louis, Missouri, 2005.

[20] Sager, T., Bernstein, A., Pinzger, M. and Kiefer, C., Detecting

similar Java classes using tree algorithms. In Proceedings of the

2006 international workshop on Mining software repositories,

Shanghai, China, 2006.

[21] Weißgerber, P. and Diehl, S., Identifying Refactorings from Source-

Code Changes. In International Conference on Automated Software

Engineering (ASE 2006), Tokyo, Japan, 2006.

[22] Williams, C.C. and Hollingsworth, J.K., Recovering system specific

rules from software repositories. In Proceedings of the 2005

international workshop on Mining software repositories, St. Louis,

Missouri, 2005.

[23] Ying, A.T.T., Murphy, G.C., Ng, R. and Chu-Carroll, M.C.

Predicting Source Code Changes by Mining Change History. IEEE

Transactions on Software Engineering, 30(9). 574-586.

[24] Zimmermann, T., Diehl, S. and Zeller, A., How History Justifies

System Architecture (or not). In Proc. International Workshop on

Principles of Software Evolution (IWPSE 2003), Helsinki, Finland,

2003, 73-83.

[25] Zimmermann, T. and Weißgerber, P., Preprocessing CVS Data for

Fine-Grained Analysis. In Proc. Intl. Workshop on Mining Software

Repositories (MSR), Edinburgh, Scotland, 2004.

[26] Zimmermann, T., Weißgerber, P., Diehl, S. and Zeller, A. Mining

Version Histories to Guide Software Changes. IEEE Trans. Software

Engineering, 31(6). 429-445.

9. APPENDIX: OVERVIEW OF TOKENS WITH EXAMPES

 Example

 Syntax Source Code Tokens

Modularization

Package declaration

Import statement

Q–package-name

I–qualified-name
package org.eclipse.compare;

import java.util.ResourceBundle;

Q–org.eclipse.compare

I–java.utilResourceBundle

Inheritance

Extension
Implementation

E–class-name
C–interface-name

class ResourceNode

 extends BufferedContent

 implements ITypedElement

E–BufferedContent

C–ITypedElement

Method calls

Last method call in a sequence
Intermediate method calls

M–method-name
F–method-name

Plugin plug = ...

member = plug.getWorkspace()

 .getRoot().findMember(fullPath);

return getName().hashCode();

Plugin.F–getWorkspace(0)

Plugin.+.F–getRoot(0)
Plugin.+.M–findMember(1)

F–getName(0)

+. M–hashCode(0)

Variables

Variable name

Variable type

V–variable-name

T–variable-type
HistoryItem item = new ...;

System.out.println(line);

T–HistoryItem V–item

T–String V–line

Exceptions

Throws

Throw
Catch

X–exception-name

R–exception-name
H–exception-name

void init() throws InitException

throw new RuntimeException();

} catch (IOException e) {

X–InitException

R–RuntimeException

H–IOException

Comments

Line comment

Block comment
Doc comment

L–comment-text

B–comment-text
J–comment-text

// Need to refresh

/* Logs given exception */

/** outline page */

CompareOutlinePage fPage;

L–// Need to refresh

B–/* Logs given exception */

fPage.J–/** outline page */

Various tokens

Literal Y–literal String s = "modified";

int i = 42;
Y– “modified”

Y–42

Operator O–operator-name Examples of operator names: ^ ~ < << <= == > >= >> >>> | || - -- !
!= ?: / () * & && % + ++

AST A–node-type Examples of AST node types (for complete list, see class ASTNode in

Eclipse): ANONYMOUS_CLASS_DECLARATION, ARRAY_ACCESS,
ARRAY_CREATION, ARRAY_INITIALIZER, ARRAY_TYPE, …

Keyword K–keyword Examples of keywords: break, case, catch, class, continue, default, do, else,

false, finally, for, if, import, instanceof, interface, new, noop, null, package,

return, super, switch, synchronized, this, throw, true, try, while

Modifier P–modifier Examples of modifiers: abstract, final, native, private, protected, public,

static, synchronized, transient, volatile

10. APPENDIX: SAMPLE QUERIES

10.1 Precision
SELECT SUM(precision*freq)/sum(freq)
FROM (

SELECT c1, 1.0/c1 AS precision, COUNT(*) AS freq
FROM (

SELECT short_name, COUNT(*) AS c1
FROM

(SELECT element_name, regexp_replace(regexp_replace(element_name, '[§\\[]\\w+~', ''), '~.+', '')

|| regexp_replace(regexp_replace(element_name, '[§\\[]\\w+~', ''), '[^~]', '', 'g') AS short_name
FROM cvs_elements where level=3) X

GROUP BY short_name
ORDER BY COUNT(*) DESC

) Y

GROUP BY c1
ORDER BY c1

) W;

10.2 Crosscutting Concerns
See Section 6.1.

Output:

See Section 6.1.

10.3 Pairs of Variable Names
SELECT * INTO cvs_tokens_method_v

FROM cvs_tokens_method
WHERE token_type='V';

SELECT ta AS variable_a, tb AS variable_b, COUNT(*)

FROM

(SELECT revisionid, element_id, token_name AS ta, MIN(checkintime) AS ct

FROM cvs_tokens_method_v NATURAL JOIN cvs_revisions

WHERE change>0 and change_type='CHG'

GROUP BY revisionid, element_id, token_name) A

NATURAL JOIN

(SELECT revisionid, element_id, token_name AS tb, MIN(checkintime) AS ct

FROM cvs_tokens_method_v NATURAL JOIN cvs_revisions

WHERE change>0 and change_type='CHG'

GROUP BY revisionid, element_id, token_name) B

WHERE ta<tb AND char_length(ta)>1 AND char_length(tb)>1

GROUP BY ta, tb

ORDER BY COUNT(*) DESC
LIMIT 20;

Output:

 variable_a | variable_b | count

-------------+-----------------+-------

 height | width | 720

 bCodeStream | classFileOffset | 457

 end | start | 431

 DEBUG | position | 254

 length | offset | 194

 buffer | length | 168

 rect | width | 161

 item | items | 153

 data | handle | 152

 height | rect | 147

 font | parent | 139

 index | parent | 127

 index | items | 127

 lParam | wParam | 126

 composite | parent | 123

 index | item | 121

 parent | width | 120

 index | length | 115

 classFile | index | 114

 buffer | string | 109

(20 rows)

10.4 Renaming of Variables
SELECT A.element_id, E.element_name, B.old_name, A.new_name, A.add
FROM

(SELECT element_id, revisionid

FROM cvs_tokens_method

GROUP BY element_id, revisionid
HAVING COUNT(DISTINCT token_type)=1) TMP

NATURAL JOIN

(SELECT element_id, revisionid, token_name AS new_name, change AS add

FROM cvs_tokens_method
WHERE change_type='CHG' AND change>0 AND token_type='V') A

NATURAL JOIN

(SELECT element_id, revisionid, token_name AS old_name, change AS del

FROM cvs_tokens_method
WHERE change_type='CHG' AND change<0 AND token_type='V') B

NATURAL JOIN cvs_elements E

WHERE A.add=-B.del

ORDER BY A.add DESC
LIMIT 20;

Output:
 element_id | element_name | old_name | new_name | add

------------+---+----------------------+------------------------------+-----

 113030 | [ConditionalExpression~resolveType~BlockScope | trueTb | valueIfTrueType | 41

 113030 | [ConditionalExpression~resolveType~BlockScope | trueTb | valueIfTrueType | 41

 113030 | [ConditionalExpression~resolveType~BlockScope | falseTb | valueIfFalseType | 36

 113030 | [ConditionalExpression~resolveType~BlockScope | falseTb | valueIfFalseType | 36

 417733 | [KeySupport~convertKeyStrokeToAccelerator~KeyStroke | key | accelerator | 28

 406564 | [KeysPreferencePage~setVisible~boolean | keyBindingDefinition | keySequenceBindingDefinition | 24

 286333 | [CTabFolder2~setItemLocation | tab | item | 20

 320556 | [GC~drawArc~int~int~int~int~int~int | endAngle | arcAngle | 19

 320578 | [GC~fillArc~int~int~int~int~int~int | endAngle | arcAngle | 19

 45239 | [AntEditorSourceViewerConfiguration~getContentAssistant~ISourceViewer | contentAssistant | fContentAssistant | 18

 261640 | [BaseStorageHook~save~DataOutputStream | bundledata | bundleData | 18

 113771 | [OperatorExpression~classInitialize | ResolveTypeTables | OperatorSignatures | 18

 47339 | [AntEditorCompletionProcessor~determineProposalMode~String~int~String | tempStringToPrefix | stringToPrefix | 17

 129740 | [SourceTypeConverter~convert~SourceMethodElementInfo~CompilationResult | sourceMethod | methodInfo | 17

 317909 | [GC~drawArc~int~int~int~int~int~int | endAngle | arcAngle | 16

 47347 | [AntEditorCompletionProcessor~getAttributeStringFromDocumentStringToPrefix~String | tempSubString | subString | 16

 317930 | [GC~fillArc~int~int~int~int~int~int | endAngle | arcAngle | 16

 113614 | [LocalDeclaration~resolve~BlockScope | tb | typeBinding | 16

 401492 | [WorkbenchImages~declareImages | PATH_DND | PATH_POINTER | 16

 221370 | [JavaEditorPreferencePage~createAppearancePage~Composite | behaviorComposite | appearanceComposite | 15

(20 rows)

