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Abstract

We apply data mining to version histories in order to guide programmers along related changes:
“Programmers who changed these functions also changed. . . ”. Given a set of existing changes,
suchrules

(a) suggest and predict likely further changes,

(b) show up coupling that is undetectable by program analysis, and

(c) prevent errors due to incomplete changes.

Our approach consists of two phases:

• Preprocessingmirrors a complete version history in a database, and searches for fine-
grained changes—that are changes on functions rather than on complete files.

• Mining creates the rules that are used for recommendations. We developed our own min-
ing technique that mines only for matching rules on the fly. Thus we can make up-to-date
recommendations very fast.

Our evaluationinvolving eight large open-source projects shows that after an initial change,
our ROSEprototype can correctly predict 26% of further files to be changed—and 15% of the
precise functions or variables. The topmost three suggestions contain a correct location with a
likelihood of 64%.
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Chapter 1

Introduction

Knowledge is a tool. Wisdom directs it.
– UniversalQuest.com

Shopping for the latest John Grisham novel “The Last Juror” at Amazon.com you may have
come across a section called “Customers who bought this book also bought. . . ”. In this section,
Amazon.com lists other books that are related by purchase with the current book. The aim is
to point customers to other interesting books, and thereby increase the sales of Amazon.com.
For our John Grisham book, the page recommends “Bleachers”, “The Big Bad Wolf”, “Split
Second”, “The Zero Game”, and “3rd Degree” (see Figure1.1 on the following page). Such
information is gathered bydata mining—the automated extraction of hidden predictive infor-
mation from large data sets, e.g., the purchase history of Amazon.com customers.

This feature is not restricted to books; it can be applied to any kind of product or data. Ama-
zon.com provides such information for CDs, DVDs, electronics, toys, and games. About
two years ago, Amazon.com even recommended shoppers of “Essential .NET, Volume 1” to
wear “Clean Underwear” which turned out to be a random recommendation; Amazon.com just
wanted to promote its new apparel shop [All02, Wag02].

Alexa.com Internet behavior of users of its toolbar. This allows Alexa.com to make statements
like “People who visit CNN.com Interactive also visit, among other pages, USA Today or The
Weather Channel”. It even connects Internet sites with books, e.g., it recommends visitors of
the Scholastic Publishing Corporation to buy Harry Potter books.1

The examples above show that data mining techniques have become a day-to-day part of e-
commerce and are now essential for increasing the performance of a business. However, data
mining is not restricted to e-commerce. It can be used everywhere—for example inprogram
analysis.

Generally, two forms of program analysis exist:static anddynamicanalysis. Static analysis
does not execute any programs and mainly uses deduction as a reasoning technique. In contrast,
dynamic analysis relies on observation, induction, and experimentation, and therefore executes
programs to gather dynamic data [Zel03].

1Actually Scholastic Publishing Corporation is the publisher of Harry Potter books.
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Figure 1.1: Customers who Bought this Book also Bought. . .

In practice, most program analysis techniques only consider a single version of the program,
thus neglecting one very large source of information: theversion archive. It contains a vast
amount of information: Who changed what, why, and when? Usually,software evolutionana-
lyzes such data, but it is also valuable input for program analysis, both static and dynamic.

To some extent a version archive is similar to Amazon.com: As customers buy books, program-
mers make changes, and both do it in transactions. So it is only a matter of time until users will
request a “Developers who changed this also changed. . . ”-feature in their favorite IDE. The
realization of such a feature is the topic of this diploma thesis.

The main part of the thesis is about theROSE tool. ROSE is an acronym forReengineering
Of Software Evolutionand isnot related to Rational Rose. It analyzes version histories and
guides programmers along related changes. To accomplish this, it uses two different types of
recommendations, both similar to those of Amazon.com:

• “Programmers who changed the selected function, also changed. . . ”
In order to provide this information,ROSEperforms mining only with respect to the cur-
rently selected or edited function. This approach corresponds directly to the “Customers
who bought this book also bought. . . ”-list of Amazon.com that is displayed on book
pages, like the one for “The Last Juror” in Figure1.1.
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A) The user inserts
a new preference
into the field fKeys[]

B) ROSE suggests locations
for further changes, e.g., the
function initDefaults().

Figure 1.2: Programmers who Changed this Function also Changed. . .

• “Programmers who changed functions you have changed, also changed . . . ”
In this case,ROSErecords all changes and performs data mining with respect to these
changes. This feature corresponds to the Amazon.com “Customers who bought items in
your Shopping Cart also bought. . . ”-list that is displayed before you place your order.
Obviously, the aim of such a list is to avoid that customers miss a relevant item; or,
specific toROSE, to avoid that programmers forget to change a relevant function.

At a first glance,ROSEseems to be nothing more than a nice-to-have feature that suggests likely
changes. HoweverROSEis much more: Besides its navigation abilities, it can prevent errors
due to incomplete changes and even reveals dependencies undetectable by program analysis.
These features are illustrated below.

Suggest and predict likely changes.Suppose you are a programmer and just made a change.
What else do you have to change? Figure1.2 shows theROSEtool as a plug-in for the
ECLIPSEprogramming environment. The programmer is extendingECLIPSEwith a new
preference, and has added an element to thefKeys[] array. In theWhat*s Relatedview,
ROSEnow suggests to consider further changes, as inferred from theECLIPSEversion
history. On top of the list are locations with highestconfidence—that is, the likelihood
that further changes should be applied to the presented location.
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Prevent errors due to incomplete changes.In Figure1.2, the top location,initDefaults(), has
a confidence of 1.0: In the past, each time some programmer extended thefKeys[] array,
she also extended the function that sets the preference default values. If a programmer
now wanted to commit changeswithoutaltering the suggested location,ROSEwould issue
a warning. (This warning is shown in Figure6.3on page65.)

Reveal coupling undetectable by program analysis.As ROSEoperates uniquely on the ver-
sion history, it is able to find coupling between items that cannot be detected by program
analysis—including coupling between items that are not even programs. In Figure1.2,
position 3 on the list is anECLIPSE HTMLdocumentation file with a confidence of 0.75,
and suggests that after adding the new preference, the documentation should be updated,
too.

Contributions

ROSEis not the first tool to leverage version histories. In earlier work researchers have used his-
tory data to understand programs and their evolution [BKPS97], to detect evolutionary coupling
between files [GHJ98] or classes [BAY03], or to support navigation in the source code [ČM03].
In contrast to this state of the art, the presented work

• gives a detailed overview aboutpreprocessingtechniques,

• uses fully-fledgeddata miningto obtain association rules from version histories,

• detects coupling between fine-grainedprogram entitiessuch as functions or variables
(rather than, say, classes), thus increases precision and integrates with program analysis,

• thoroughly evaluates theability to predict future or missing changes,thus evaluating the
actual usefulness of our techniques, and

• provides a prototype implementation of the presented techniques.

For a full discussion of related work see Chapter7. Parts of this thesis have been published and
presented at

• theInternational Conference on Software Engineering(ICSE 2004) [ZWDZ04],

• theInternational Workshop on Mining Software Repositories(MSR 2004) [ZW04], and

• theInternational Workshop on Principles of Software Evolution(IWPSE 2003) [ZDZ03].

ROSEhas been awarded with anIBM Eclipse Innovation Grant[IBM04]. It will be available
for download in Fall 2004.
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Structure

The remainder of this thesis is organized as follows. Chapter2 gives a briefoverviewon ROSE
and the applied techniques. Chapter3 discusses the two preprocessing steps ofROSE: data
collection, which is the transformation of a version archive into a database, anddata cleaning,
which is the identification of outliers. Chapter4 presents details about the mining process. It
introduces rules, simple measures for rule assessment, anddata miningalgorithms. Chapter5
gives more examples for rules. Chapter6 covers theevaluationof ROSE. It describes the eval-
uation setup and measures, and discusses the results for the navigation and error prevention
abilities ofROSE. Chapter7 gives an overview ofrelated workand Chapter8 concludes with
the presentation offuture work.
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Chapter 2

Overview

2.1 CVS in a Nutshell

Large software projects are constantly evolving under the influence of many programmers.
Therefore, it is very important to track changes and to coordinate developers. In practice,
version control systemsfacilitate these tasks. An example for such a tool is theConcurrent
Versions System (CVS), used by most open source projects [CVS04].

CVS uses two concepts called therepositoryand theworking directory. The repository (or
version archive) contains all information required to restore historical versions of any file in the
project. A developer fetches the latest code from the repository to his working directory, makes
his changes, and then commits those changes back to the repository.

Each changed file is stored as a version in the repository.CVSuses revision numbers (e.g., 1.42)
to distinguish between different versions of a file. The most recent revision is called thehead
revision. It is also possible to create symbolic names for revisions. Thesetagsare often used to
mark releases or important milestones.

We refer to a commited file as acheckin, and to a whole commit operation as acommit. There-
fore, a commit is simply composed of at least one checkin.CVS commits all files individually
which means, that it does not track commits and we have to recover them for our analysis. For
that purpose, we can use additional information thatCVS stores for a checkin:

• Theauthor, i.e., the user name of the programmer who committed the change;

• Theextent, i.e., the file and location affected by the change;

• Thecontent, i.e., the actual text or data inserted, deleted, or modified;

• Therationale, i.e., the reason why the change was made;

• Thedateof the checkin.

We refer to a recovered commit as atransaction. Do not expectCVScommits or transactions to
fulfill the ACID paradigm [HR83]: atomicity, consistency, and isolation are not guaranteed be-
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Figure 2.1: ROSEOverview

cause commits are carried out consist of single checkins, and only single directories are locked.
Durability holds if all checkins are written directly to disk.

Often a linear development process is not sufficient for larger software projects. Therefore,
CVS allows to create separate development lines calledbranches. A branch originates from
another branch or the main development line. Branches are frequently used for experimental
implementations or for bug-fixes. Most branches integrate their changes back to the original
development line at some future point. This event is calledmergingand carried out as one large
transaction. This transaction simply reproduces changes made on the branch. Unfortunately,
they are not marked in theCVS archives.

2.2 A Guided Tour of ROSE

Figure2.1 illustrates the workflow ofROSE. It splits into two parts:

Preprocessing takes a complete version archive as input. The archive is mirrored in a database
(data collection), changes are mapped to entities and transactions (data preparation), and
finally noise, caused by large transactions, is removed (data cleaning). Preprocessing
allows a fast access to all necessary information.

Mining creates rules from the preprocessed data. Rules describe implications between soft-
ware entities, e.g., “IffKeys[] is changed, theninitDefaults() is changed, too”. It is possible
to mine for all rules, but typicallyROSEmines only for rules with a particular left-hand
side. Thus, mining is speeded up and rules are always up-to-date.

In order to become familiar withROSE, we present the individual steps using a small example.
More details about preprocessing and mining are described in Chapters3 and4.
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2.2.1 Data Collection

Suppose, there are three developers (Harry, Hermione, and Ron), who work on a small project1

consisting of three files (AB.java, C.java, andD.java). Harry, Hermione, and Ron useCVS to
archive their versions.CVS stores the necessary data in a very cryptic way, and access to the
data is rather slow and complicated. So, the obvious solution is to collect all information in a
database. Figure2.2(a)on the following page shows the result of this step.

2.2.2 Data Preparation

The collected data is not suitable for data mining, yet. First,CVS has no transaction concept,
and second,CVS provides changes on file level only.

Step 1: Group Checkins to Transactions

Thus, the first task is to group checkins to transactions. A transaction consists of several check-
ins that all have the same author, log message, and timestamp. In Figure2.2(b), the checkins
AB.java, revision 1.47, andD.java, revision 1.42, have both been made by Ron on 2004-01-05
with the log message “Changed this and that”. Thus, they belong to the same transaction #1.

Step 2: Map Changes to Entities

Basically, the data is now ready for data mining. However, since we have only changes and
transactions on file level, we only can make statements about files. Thus, the next step is to
increase the granularity and to find the changes inside a file. We introduce the concept ofentities
to formalize that. An entity is a syntactic component of a file. Possible entities for source code
are for example classes, functions, and declarations. A checkin can affect multiple entities: For
instance, in Figure2.2(c) the checkin ofAB.java, revision 1.48, changed two entities:accio()
andbanish().

2.2.3 Data Cleaning

Usually, all checkins of a transaction are related to each other. In some cases there are ex-
ceptions. For instance, inCVS, a mergeof two branches simply applies changes made on one
branch to the other. This is noise for two reasons: Changes (and relations) on branches are
overrated, and additional (wrong) relations are introduced because all transactions made on the
branch are summarized intoonemerge transaction. Data cleaning identifies such transactions
and removes them. In Figure2.2(c), transaction #3 has been identified as noise and will not be
considered for data mining.

1Actually, the project is for their Muggle Studies class and covers ancient version control systems.
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Changed File Rev. Date Autor Log Message

AB.java 1.47 2004-01-05 Ron Changed this and that
AB.java 1.48 2004-01-06 Hermione More changes
AB.java 1.49 2004-01-06 Harry And a merge
AB.java 1.50 2004-01-08 Ron Some changes
AB.java 1.51 2004-01-10 Hermione Fixed a bug
C.java 1.23 2004-01-06 Hermione More changes
C.java 1.24 2004-01-06 Harry And a merge
C.java 1.25 2004-01-10 Hermione Fixed a bug
D.java 1.42 2004-01-05 Ron Changed this and that
D.java 1.43 2004-01-06 Harry And a merge

(a) Data Collection: Extract CVS Information

Transaction Changed File Rev. Date Autor Log Message

#1 AB.java 1.47 2004-01-05 Ron Changed this and that
D.java 1.42 2004-01-05 Ron Changed this and that

#2 AB.java 1.48 2004-01-06 Hermione More changes
C.java 1.23 2004-01-06 Hermione More changes

#3 AB.java 1.49 2004-01-06 Harry And a merge
C.java 1.24 2004-01-06 Harry And a merge
D.java 1.43 2004-01-06 Harry And a merge

#4 AB.java 1.50 2004-01-08 Ron Some changes
#5 AB.java 1.51 2004-01-10 Hermione Fixed a bug

C.java 1.25 2004-01-10 Hermione Fixed a bug

(b) Data Preparation: Group Changes to Transactions

Transaction Changed File Rev. Changed Symbol Log Message

#1 AB.java 1.47 banish() Changed this and that
D.java 1.42 deletrius() Changed this and that

#2 AB.java 1.48 accio() More changes
AB.java 1.48 banish() More changes
C.java 1.23 confundus() More changes

#3 AB.java 1.49 accio() And a merge
AB.java 1.49 banish() And a merge
C.java 1.24 confundus() And a merge
D.java 1.43 deletrius() And a merge

#4 AB.java 1.50 accio() Some changes
AB.java 1.50 banish() Some changes

#5 AB.java 1.51 accio() Fixed a bug
AB.java 1.51 banish() Fixed a bug
C.java 1.25 confundus() Fixed a bug

(c) Data Preparation: Map Changes to Entities

Figure 2.2: Data Preprocessing: Build the Database
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2.2.4 Data Mining

Once preprocessing is completed, the data can be used for data mining, for example foras-
sociation rulemining. An association rule simply expresses the relation between at least two
entities, e.g., “If you have changedfKeys[], then changeinitDefaults(), too.”, or more formally
“changed(fKeys[]) ⇒ change(initDefaults())”.

Such rules are generated using the transactions of the preprocessed version data. In practice, a
rule is not valid for all transactions. Three measures express the importance of a single rule:

• Frequencyis the number of transactions for which the rule was valid.

• Supportis the frequency related to the total number of transactions.

• Confidenceis the likelihood that the rule holds if the left side is satisfied.

ROSEworks on very fine-granular entities to detect such rules. This means that, if possible, it
concentrates on functions and variables rather than on files or modules. This high granularity
results in very precise rules, and thus in a high locality for the recommendations ofROSE.
Often coarse-grained rules are misleading because they summarize many fine-grained rules in
one coarse-grained rule.

Mine for all Rules

ROSEcan search for all rules that have a minimum frequency (or support) and a minimum
confidence. Such a search may reveal hidden dependencies and is of special interest to managers
or project leaders. For our example, Figure2.3on the next page shows all rules with a minimum
frequency of 2 and a minimum confidence of 50%.

Mining for all rules reveals general patterns and hot-spots, and has been the topic of another
diploma thesis in this research project [Wei04].

Mine for Rules with Constraints

As Figure2.3 indicates, there are many possible rules. In practice, very high frequency and
confidence thresholds are required to get a manageable number of rules. However, if we increase
the minimum frequency in our example from 2 to 3, we will get only the first two rules instead
of all twelve rules of Figure2.3. However, fewer rules also mean fewercoverageof entities.
In our case, the first two rules only coveraccio() andbanish(), but notconfundus(). In other
words,ROSEcannot make any recommendations aboutconfundus().

In order to get a high coverage,ROSEmines for association ruleson demand. This has the
advantage, that it can use information about user changes as an input for the mining algorithm—
or, more precisely, as a constraint for the left-hand side of a rule.

Suppose, Hagrid is new to our project and changesconfundus(). ROSEnow only considers
transactions that containconfundus()—in our case transactions #2 and #5 of Figure2.2(c).
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Rule Confidence Support

change(accio()) ⇒ change(banish()) 1.00 3
change(banish()) ⇒ change(accio()) 0.75 3
change(accio()) ⇒ change(confundus()) 0.67 2
change(confundus() ) ⇒ change(accio() ) 1.00 2
change(banish()) ⇒ change(confundus()) 0.50 2
change(confundus() ) ⇒ change(banish() ) 1.00 2
change(accio()) ⇒ change(banish()) ∧ change(confundus()) 0.67 2
change(banish()) ⇒ change(accio()) ∧ change(confundus()) 0.50 2
change(confundus() ) ⇒ change(accio() ) ∧ change(banish() ) 1.00 2
change(accio()) ∧ change(banish()) ⇒ change(confundus()) 0.67 2
change(accio()) ∧ change(confundus()) ⇒ change(banish()) 1.00 2
change(banish()) ∧ change(confundus()) ⇒ change(accio()) 1.00 2

Figure 2.3: Data Mining: Create Association Rules

Because the number of transactions and entities is reduced, creating association rules becomes
a very cheap operation. The resulting rules are boldfaced in Figure2.3.

This approach and the techniques to speed up the mining procedure are part of this thesis. They
are described in detail in Chapter4.
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Chapter 3

Preprocessing

If your version control system could talk. . .
– Tom Ball et al. [BKPS97]

The main purpose of version control systems likeCVS is to store and provide different versions
of files, or software products. Besides versions and log information,CVS repositories contain
a huge amount of additional information, e.g., what are the most frequently changed files, or
what is the maximal gap between two subsequent checkins by the same author and the same
log message. Unfortunately, it requires some effort, namelydata preprocessing, to access such
information—in other words to make a version control system “talkative”.

So, why isCVS so silent? In this chapter we address four limitations ofCVS and present
preprocessing techniques dealing with those issues:

1. CVShas limited query functionality and is slow.
As mentioned above accessing information other than log information for single files is
difficult in CVS. Furthermore, access is very slow becauseCVS uses theRCS file for-
mat. The obvious solution is to copy the wholeCVS repository into a database. Thus, a
multitude of queries are enabled and can be evaluated very fast.

2. CVSsplits up changes on multiple files into single checkins.
If a developer commits several files simultaneously,CVS checks them in individually
discarding the relations between them. AsROSErelies on such relations, we have to infer
transactions. Usually, a transaction corresponds to exactly one commit operation.

3. CVSknows only files—but what about changes on functions?
The usefulness ofROSEdepends on the granularity of its recommendations. This gran-
ularity is restricted byCVS to the file level. We need to analyze changes and detect the
affected fine-grained entities in order to suggest functions or declarations.

4. CVScontains unreliable data.
Some specialties ofCVS call for data cleaning. For instance, merges or imports falsify
the results ofROSE.
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Many of these problems are specific to the analysis ofCVSarchives; more sophisticated version
control systems, likeSUBVERSION[Sub04], require less data preprocessing.

Note that all preprocessing steps can also be doneincrementally—it is only necessary to pre-
process data for new revisions instead of working on the whole repository again. To determine
new revisions several approaches exist: Many open-source projects send an email to a mailing
list for each commit. This approach is based on thecommitinfoand loginfo files that can also
be used to track commits on the server-side. A possibility to get recently changed files on the
client-side is theCVS rdiff operation (with option-s for summary), or theCVS statusoperation.

3.1 Definitions

In this section we introduce formal definitions for changes, checkins1, commits, transactions,
and entities, generalizing the concepts found in existing version archives.

Adopting the notation from [ZH02], a changeor checkinis a mappingδ : P → P, which, when
applied, transforms a productp ∈ P into achanged productp′ = δ(p) ∈ P. Here,P is the set
of all products; the set of changes is denoted asC = P → P.

Changes can becomposedusing the composition operator◦ : C × C → C. This is useful
for denotingcommitsor transactionsthat consist of multiple changes to multiple locations.
For instance, the transaction∆1,2 between two versionsp1, p2 ∈ P, composed ofn individual
changesδ1, . . . , δn, is expressed as∆1,2 = δ1◦δ2◦· · ·◦δn with ∆1,2(p1) = (δ1◦δ2◦· · ·◦δn)(p1) =
δ1

(
δ2

(
· · · δn(p1)

))
= p2.

The difference betweencommitsand transactionsis that a commit refers to the user activity
(performing aCVS commit operation), whileROSEuses transactions to abstract from commits.
Ideally, a transaction corresponds to exactly one commit, but we will see later that this is not
always possible.

To express all syntactic components affected by a change, we define the concept ofentities. An
entity is a triple(c, i, p), wherei is the identifier of the affected component,c is the syntactic
category such asmethod, class, or file, andp is the parent component, or⊥ if there is none. A
simple example for an entity is(method, f(), (class, Foo, (file, Foo.java,⊥))).

As a short notation for an entity we simply usei if the categoryc and the parent entityp are
known in the context, or ifi is unique on its own. This notation is frequently used for the parent
entity, for instance(method, f(), Foo).

The parentp is needed to distinguish between entities that have the same identifieri. For
instance, we have two classesFoo and Bar that both contain a method calledf(). Then we
create two different entities:(method, f(), Foo) and(method, f(), Bar).

The mappingentitiesretrieves all entities affected by a change, checkin, or transaction. For
instance, transaction #4 of our example from Figure2.2(b)changesaccio() andbanish() in class

1In the style ofCVS, we spell check-in as checkin.
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AB of file AB.java. Thus,entitiesretrieves:

entities(∆) = entities(δ1) ∪ · · · ∪ entities(δn) =


(method, accio(), AB),
(method, banish[], AB),
(class, AB, AB.java),
(file, AB.java, ⊥)


Entities are the base for mining: “I changed one entity; which other entities should I typically
change?” We will not use all syntactic categories for mining. In the remainder we concentrate
on the fine-granular entities, like methods or fields. Only if it is impossible to detect fine-grained
changes, we will use coarse-grained entities, e.g., forplugin.properties.

For simplicity we introduce a second notation for transactions. A transactionT consists of
several items. Anitem is an entitye combined with anaction, e.g.,changethe entitye. As
this notation will be used in our mining approach, we only include relevant entities, i.e., for no
entity e its parent entity is included inT :

T = {change(accio()), change(banish[])}

The functionauthor returns the programmer who committed the changes,log_messageher
rationale, andtime the timestamp when she committed her changes. For transaction #4 from
Figure2.2(b)on page10 the results are:

author(∆) = “Ron”

log_message(∆) = “Some changes”

time(∆) = “2004-01-08 11:42:12 a.m.”

The functiontime(∆) is ambiguous as transactions are not atomic inCVS. Thus, we define
begin_timeand end_timethat give us the timestamps of the begin and end of a transaction,
respectively.

3.2 Extract Information from CVS

First of all, we extract all information contained in aCVS archive into a database. This enables
fast access to all data required in the following steps. Figure3.1on page17shows the database
schema, which consists of several tables:

Directories are identified withDirectoryNameand have an additional attributeDepth, that
gives the level in the directory tree. For instance, a directory namedfoo/ has depth 1.

Files are identified with the attributeFileID. The tableFilesstores the fully qualified file name
in QualifiedFileName. Additionally, this name is split into aDirectoryNameand aFile-
Name. This redundancy improves access to files because it is now possible to create
indexes on parts of the fully qualified file name.
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Furthermore,DirectoryNameis a foreign key to tableDirectories. Using this relation,
the depth of a file can be determined very fast by addition of one to the depth of the
surrounding directory.

Both attributesFileExtensionandKeywordExpansionare optional.FileExtensionenables
fast access to the file extension without parsing complete file names, andKeywordExpan-
sion indicates whether a file is binary or not.

Checkins represent all revisions contained in aCVS archive. A checkin affects exactly one file
expressed byFileID, which is a foreign key to tableFiles. The primary key of this table
is FileID together withRevisionIDbecause one file can only have one revision number
once. The attributeCheckinTimecontains the timestamp when the checkin was made.

As checkins are part of transactions, there is another foreign key calledTransactionIDto
tableTransactions. The description of a checkin is stored in tableTransactionsbecause
it is shared with the other checkins of the transaction.

The optional attributesPlus andMinus give the number of modified lines;Statemarks
whether the file was changed (“Exp”) or removed (“dead”); andBranchPrefixcontains a
reference to the branch on which the checkin was made.BranchPrefixis empty if it is the
main branch.

Transactions are identified byTransactionID. A transaction is committed by anAuthor who
describes her rationale in aMessage. Unfortunately, transactions are not atomic inCVS.
Therefore, we have two timestamps:BeginTimeandEndTime. The flagIsNoiseindicates
whether a transactions is relevant for mining or not.

One characteristic of tableTransactionsis the attributeMessageMD5. Many database
systems provide only limited functionality for fields of unrestricted size likeMessage.
For instance, MicrosoftSQL Server can only group fields with a maximum size of 8,060
bytes [Mic04]. But the remaining analysis needs to group an unrestrictedMessagefield.
As a workaround, we createdMessageMD5which contains the MD5 [Riv92] encrypted
content ofMessage, and can be grouped by any database system.

Tags are used to mark particular revisions with symbolic names. The revision is identified by a
foreign key:FileID andRevisionID. The symbolic name is saved inTagName. A revision
can have more than one tag, but each tag can only be used once for a file. Thus, the
primary key ofTagsis the tuple (FileID, TagName).

Branches are created on file level inCVS. Each branch has a branch prefix that all revisions on
the branch have in common. ThisBranchPrefixdetermines the revision where the branch
originated. Therefore,FileID and BranchPrefixare the primary key. The revision of
which the branch originated is implemented as a foreign key (FileID, OriginRevision) to
tableFiles. In CVS, each branch gets an internal revision,InternalRevision, and a public
symbolic name,BranchName.

The extraction process is straightforward (see Algorithm3.1). Let F be the set of files that
will be extracted. We insert each filef into tableFiles. Then we call theCVS log command
and parse its output. Figure3.2 on page19 illustrates this parsing step. Next, we insert all
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Figure 3.1: ROSEDatabase Schema: Tables forCVS

revisions into tablesCheckinsandTransactions, all symbolic names into tableTags, and all
branch information into tableBranches.

There exists one characteristic of the extraction: Each checkin is considered as a single trans-
action. After the extraction is completed, checkins will be grouped to larger transactions (see
Section3.3). Basically, it is possible to integrate grouping into extraction. But separation of
both tasks is easier and faster because the number of total scans ofCheckinsandTransactions
is reduced.

Branches require a special treatment during extraction because all necessary data is spread
across several locations in theCVS log output. The “symbolic names”-part contains allInter-
nalRevisions andBranchNames. An internal revision is identified with the included zero. For
instance, 1.15.0.2 is internal and belongs to tableBranches, 1.15 is a regular symbolic name
and is stored in tableTags. The “revision”-blocks contain all remaining data for branches, like
BranchPrefixandOriginRevision. The link between anInternalRevisionand aBranchPrefix
is established by removing “0.” from theInternalRevision. For example, an internal revision
1.15.0.2 is connected to a branch prefix 1.15.2.

Another important aspect is the selection of filesF—extract all files, or only files on the main
development line? And what about deleted files? These decisions have a direct impact on the
quality of the results. Thus, they depend heavily on the application:

Software evolution analysis.As the keyword “evolution” suggests, thewhole history is of
interest. This includesall files, no matter which development line. Even deleted files are
important because they also represent evolution. TheCVS operationlog called with no
parameter returns all files that ever existed.
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Algorithm 3.1 CVS Extraction Algorithm
Input: FilesF , DatabaseD
Output: DatabaseD

1: procedure EXTRACT(F )
2: fileid = 0
3: tid = 0
4: for all filesf in F do
5: if directoryd of f is not in tableDirectoriesthen
6: insertd into tableDirectories
7: end if
8: fileid = fileid + 1
9: insertfileid, f into tableFiles

10: call CVS log for f
11: parse output for revisionsR, tagsT , and branchesB
12: for all revisionsr in R do
13: tid = tid + 1
14: insertr, fileid, timestampandtid into tableCheckins
15: inserttid, author, andmessageinto tableTransactions
16: end for
17: for all tagst in T do
18: insert data oft into tableTags
19: end for
20: for all branchesb in B do
21: insert data ofb into tableBranches
22: end for
23: end for
24: end procedure

Providing user recommendations.Users only have a limited interest in evolution. They do
not care about files on other development lines because they are out of their reach. There-
fore, only files on the current branch are important to make recommendations to program-
mers. Deleted files should not be considered because they cannot be changed anymore.
A very simple approach to get all existing files on a branch is to checkout the branch.

Of course, it is possible and even practical to extract everything, and then restrict the relevant
files according to the later application.

3.3 Group Checkins to Transactions

Most modern version control systems have a concept ofproduct versioning—that is, one is able
to access commits that alter the entire product. However,CVS provides onlyfile versioning
discarding the relations between files of a commit. But this information is essential forROSE
as the mining approach is based on it. Thus, we mustgroup the individual per-file changes
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Figure 3.2: Extract Information fromCVS log output

(also called checkins) into individual transactions. We distinguish betweencommitsperformed
by developers (by callingCVS commit) and inferredtransactionsused byROSE for mining.
Ideally, one commit matches exactly one transaction, and vice versa.

There are two approaches to infer transactions from checkins:time windowsandcommit mails.

3.3.1 Time Windows

An obvious solution for grouping checkins is to consider all changes by the same developer,
with the same log message, made at the same time as onetransaction. But the term “same
time” is inaccurate in this context because usually, commit operations take several seconds or
minutes—especially if many files are involved. In practice, many approaches consider not only
checkins at the same time as candidates, but also checkins during a time interval:

Fixed time windows restrict the maximal duration of a transaction. The time interval always
begins at thefirst checkin. This approach has been used with a time window of three
minutes by [MFH02, GJK03] for the analysis ofCVS archives.

Sliding time windows restrict the maximal gap between two subsequent checkins of a trans-
action. The begin of the time interval is shifted to themost recent checkin. Thus, this
approach can recognize transactions that take longer to complete than the duration of the
time window. This approach originates fromChangeLogprograms likecvs2cl, and is
called the “Right Way” by its developers including Karl Fogel [FO02].
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Figures3.3and3.4illustrate the difference between fixed and sliding time windows. Figure3.3
uses a fixed time window: After the checkin ofA:1.3, both checkinsB:1.2 andC:1.4 are part of
the same transaction because they are visible within the time window (drawn in white).D:1.3
andE:1.5 are outside the time window and therefore considered as a new transaction.

Figure3.4shows that a sliding time window additionally considersD:1.3 andE:1.5 because the
time window “slides” from checkinsA:1.3 to finally E:1.5 (see Figures3.4(a)) to 3.4(e)). The
transaction (light gray) is closed afterE:1.5 as no further checkins are visible within the time
window (drawn in white).

Same Author, Message, and Time

Formally, using a sliding time window of 200 seconds, for all checkinsδ1, . . . , δk that are part
of a transaction∆, the following conditions hold (without loss of generalityδis are sorted by
time(δi)):

∀δi ∈ ∆ : author(δi) = author(δ1) (3.1)

∀δi ∈ ∆ : log_message(δi) = log_message(δ1) (3.2)

∀i ∈ {2, . . . , k} : |time(δi)− time(δi−1)| ≤ 〈200 sec〉 (3.3)

For transactions∆ of size two or more we can rewrite Condition3.3:

∀δa ∈ ∆ : ∃δb ∈ ∆, δa 6= δb : |time(δa)− time(δb)| ≤ 〈200 sec〉 (3.4)

Condition3.3 for a fixed time window is similar to3.4—except for the∃ quantifier which is
now a∀ quantifier:

∀δa ∈ ∆ : ∀δb ∈ ∆, δa 6= δb : |time(δa)− time(δb)| ≤ 〈200 sec〉 (3.5)

This difference is quite straightforward: For sliding time windows only two subsequent changes
have to be within 200 seconds—corresponds to∃)—while for fixed time windows all changes
have to be less than 200 seconds apart—corresponds to∀.

There are two additional conditions for transactions (valid for both fixed and sliding time win-
dows):mutually exclusive filesandno interleaving of transactions.

Mutually Exclusive Files

Each file can only be part of a single transaction once becauseCVS does not allow to commit
two revisions of a file at the same time. For a transaction∆ = (δ1, . . . , δn) this means, that all
checkinsδa andδb have to affect mutually exclusive files:

∀δa, δb ∈ ∆ : δa 6= δb ⇒ file(δa) 6= file(δb) (3.6)
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(b) The time window shifts toB:1.2. ∆2 = ∆1 ∪ {B:1.2}

���������	
��

������������

���� ����� ����� ����� �����

(c) The time window shifts toC:1.4. ∆3 = ∆2 ∪ {C:1.4}
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(d) The time window shifts toD:1.3. ∆4 = ∆3 ∪ {D:1.3}
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(e) The time window shifts toE:1.5. ∆5 = ∆4 ∪ {E:1.5}. No other checkins are visible; so, the
transaction is closed.∆ = ∆5 = {A:1.3, B:1.2, C:1.4, D:1.3, E:1.5}.

Figure 3.4: Sliding Time Windows
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Algorithm 3.2 Infer Transactions Algorithm
Input: DatabaseD
Output: DatabaseD

1: procedure GROUP

2: tid =⊥
3: author=⊥
4: message=⊥
5: time= −1
6: Files = ∅

7: SortTransactions./ Checkinsby Author, CheckinTime, Message
8: for all rowsr of Transactions./ Checkinsprocessed in sort orderdo
9: if r.Author 6= author

∨ r.Message6= message
∨ |r.CheckinTime− time| > 〈200 seconds〉
∨ r.FileID ∈ Files then

10: tid = r.TransactionID /* Found a new transaction */
11: author= r.Author
12: message= r.Message
13: Files = ∅
14: else /* Assign checkin to correct transaction */
15: Update tableCheckinsset newtid for r.FileID, r.RevisionID
16: end if
17: time= r.CheckinTime /* We have asliding time window */
18: Files = Files∪ {r.FileID}
19: end for
20: Remove all unreferenced transactions in tableTransactions
21: end procedure

No Interleaving of Transactions

A developer cannot perform two different transactions at the same time. In other words, if she
begins a new transaction, all her previous transactions have to be completed. This means that
for a transaction∆ the following must hold:

∀δ ∈ ∆ : begin_time(∆) ≤ time(δ) ≤ end_time(∆) ∧ author(δ) = author(∆)

⇒ log_message(δ) = log_message(∆) (3.7)

This condition is difficult to realize because in some casesCVS inserts dummy checkins, e.g.,
if a file was initially added on a branch and merged into another branch later on. Such checkins
have to be treated separately to avoid incidentally breaking up a merge into several transactions.
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tid FileName RevisionID Author CheckinTime Message
#1 A 1.3 Frodo 2004-01-23 10:23:17 p.m. L1

B 1.2 Frodo 2004-01-23 10:24:11 p.m. L1
#2 C 1.4 Frodo 2004-01-24 07:41:27 a.m. L2 �1

D 1.7 Frodo 2004-01-24 07:43:33 a.m. L2
#3 C 1.3.1.4 Frodo 2004-01-24 07:45:07 a.m. L2 �2
#4 E 1.5 Frodo 2004-01-24 03:52:07 p.m. L3 �3
#5 F 1.3 Frodo 2004-01-24 03:54:17 p.m. L4 �4
#6 G 1.9 Frodo 2004-01-24 03:55:00 p.m. L3 �5
#7 H 1.8 Gandalf 2004-01-22 08:14:23 p.m. L5 �6

Reasons for new transactions:
�1 message is different; interval to previous checkin exceeds 200 seconds
�2 file C is already in transaction #2
�3 message is different; interval to previous checkin exceeds 200 seconds
�4 message is different
�5 message is different
�6 author and message are different; interval to previous checkin exceeds 200 seconds

Figure 3.5: Grouping Revisions to Transactions

The Algorithm for Inferring Transactions

The algorithm for grouping checkins to transactions is straightforward (see Algorithm3.2 on
the preceding page): Simply sort checkins by author, checkin time, and log message. Iterate
over checkins in this order: Each time the author or log message differs from the ones of the
previous checkin, or the time window is exceeded, start a new transaction. Sorting by author, log
message and checkin time is also possible, but ignores Condition3.7 (and allows interleaving
of transactions). An example application of the grouping algorithm is illustrated in Figure3.5.
Differing attributes that result in new transactions are in boldface.

Based on our experience, sliding time windows are superior to fixed time windows because
they deal with transactions of any duration. The selection of the length of a time window (fixed
or sliding) depends on the analyzed project and the analysis itself. The time window should
be chosen based on the assumption on how long it takes to check in the largest file with high
network latency. Up to now, most lengths of time windows are arbitrary: They range from two
to four minutes. The length of time windows is discussed in detail in Section3.3.3.

3.3.2 Commit Mails

Time windows are a good approximation for inferring transactions fromCVS. A more precise
solution is based oncommit mails—that are mails sent to developers after a commit. The
example in Figure3.6 on the next page shows, that such a mail contains the committer, the
timestamp, the modified files, and the log message. With this information, it is straightforward
to relate files to revisions, and then to commits.



24 Chapter 3. Preprocessing

CVSROOT: /cvs/gcc
Module name: gcc
Changes by: zack@gcc.gnu.org 2004-05-01 19:12:47

Modified files:
gcc/cp : ChangeLog decl.c

Log message:
* decl.c (reshape_init): Do not apply TYPE_DOMAIN to a VECTOR_TYPE.
Instead, dig into the representation type to find the array bound.

Patches:
http://.../cvsweb.cgi/gcc/gcc/cp/ChangeLog.diff?...&r2=1.4042
http://.../cvsweb.cgi/gcc/gcc/cp/decl.c.diff?...&r2=1.1204

Figure 3.6: Commit Mail

Unfortunately, the solution based on commit mails has two major drawbacks:

1. Suitable commit mails are only available for few projects.
Many projects (especially projects hosted at Sourceforge.net) send commit mails for each
directory separately, which makes it hard to restore transactions. In practice, one has to
use time windows to deal with such mails.

2. Commit mails andCVSdata are difficult to integrate.
All data stored inCVS is dynamic which means, that it can be changed at any time; even
log messages can be modified. In contrast, commit mails are static—once sent, they
remain unchanged. Thus,CVS archives and commit mails diverge during time, and it is
tricky to bring them back together.

Therefore, commit mails are of limited use for restoring commits. However they are useful to
adjust the length of time windows as we show in the next section.

3.3.3 Choosing the Time Window Length

We restored all commits ofGCCbetween 2000-06-01 and 2003-06-01. Using the commit mail
approach we inferred a total of 32,529 commits. We will use these actual commits to determine
lower and upper bounds for the length of time windows.

How long are commits?

The duration of a commit∆ is the difference between the timestamps of the first and the last
checkin:

duration(∆) = end_date(∆)− begin_date(∆)
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Table3.1on the following page shows that although the average duration is around six seconds,
there are commits that take more than 21 minutes. This confirms the proposition that fixed time
windows are not reasonable because the duration of commits is unbounded. (Recall that most
fixed time window approaches use a time window of three minutes.)

Within one commit, what is the maximal distance between two subsequent checkins?

Two checkinsδa andδb aresubsequentwithin one commit∆ if no other checkin exists between
them (without loss of generalitytime(δa) ≤ time(δb)):

∀δx ∈ ∆, δx 6= δa, δx 6= δb : time(δx) ≤ time(δa) ∨ time(δb) ≤ time(δx)

Thedistancebetween two subsequent checkinsδa andδb is defined as:

distance(δa, δb) = |time(δa)− time(δb)|

Measuring the distance between two subsequent checkins of the same commit gives us a lower
bound for the length of a sliding time window. This distance varies for different files and is
influenced by:

• Number of Revisions & Size ofRCSFiles.
For anASCII file, CVS only stores the differences between two revisions in a correspond-
ing RCSfile. For a commit, the latest revision is needed and assembled on demand by
applying all existing differences. The speed of this assembly depends on the number of
revisions, and the size of the difference (which is the size of theRCSfile).

• Size of Files.
Additionally, the size of a file has impact on the distance between two checkins because
the content of a file is transferred over network before the commit operation takes place.

Table3.2 on the next page shows the highest measured distances per file. Two files stick out:
gcc/libstdc++-v3/configure with 10 minutes 28 seconds, andgcc/gcc/ChangeLog with 7 minutes
12 seconds. This suggests a sliding time window length of at least 10 minutes 28 seconds.

Additionally, Table3.2compares the maximal distances to the number of revisions, the size of
the correspondingRCSfile, and the size of the file itself. Values that belong to the ten highest
values in a category are in italics.

Note that it does not matter if entries of Table3.2are generated from other files. In most cases,
they are generated by developers and not byCVS. Even ifCVSwould create them automatically,
we have to consider them because otherwise one commit could be split incidentally into two
commits.
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Author Log Message # Files Duration

matz merged with ra-merge-initial 5,910 21 min 17 sec
dnovillo Merge with mainline as of 2002-03-04. 1,087 21 min 03 sec
dnovillo Mainline merge as of 2002-05-26. 596 18 min 03 sec
matz merge in head from ra-merge-20020521 791 17 min 56 sec
geoffk Merge to tag pch-merge-20020430.[. . . ] 2,672 15 min 15 sec

...
...

...
...

∅ 8.78 ∅ 6 sec

Table 3.1: Duration of Commits

File Name Max. Distance # Rev. Size ofRCS File Size

gcc/libstdc++-v3/configure 10 min 28 sec 550 33,570 KB 715 KB
5 min 17 sec
5 min 13 sec
4 min 44 sec
2 min 53 sec

gcc/gcc/ChangeLog 7 min 12 sec 22,097 32,515 KB 600 KB
3 min 41 sec
3 min 15 sec
2 min 39 sec
2 min 36 sec

gcc/gcc/po/gcc.pot 2 min 15 sec 53 8,662 KB 450 KB
gcc/libstdc++-v3/config.h.in 2 min 05 sec 150 211 KB 25 KB
gcc/libstdc++-v3/acconfig.h 1 min 23 sec 69 114 KB 10 KB
gcc/libstdc++-v3/acinclude.m4 1 min 23 sec 424 843 KB 80 KB
gcc/libstdc++-v3/aclocal.m4 1 min 23 sec 446 1,306 KB 87 KB
gcc/libstdc++-v3/ChangeLog 1 min 21 sec 2,522 4,683 KB 153 KB
gcc/libstdc++-v3/configure.in 1 min 21 sec 272 312 KB 18 KB
gcc/gcc/po/fr.po 1 min 17 sec 34 10,645 KB 818 KB
gcc/libstdc++-v3/Makefile.in 1 min 17 sec 243 315 KB 173 KB
gcc/gcc/po/es.po 1 min 12 sec 29 9,623 KB 820 KB
gcc/gcc/cp/ChangeLog 1 min 08 sec 4,392 8,057 KB 660 KB
gcc/libstdc++-v3/Makefile.am 58 sec 112 98 KB 5 KB

...
...

...
...

...

(further 21,831 files)
...

...
...

...
∅ 17.4 ∅ 41 KB ∅ 6 KB

Table 3.2: Maximal Distance between two Subsequent Checkins within one Commit
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What is the minimal distance between two similar commits?

Two commits∆1 and∆2 aresimilar if they have the same developer, the same log messages,
and all files are mutually disjoint.

author(∆1) = author(∆2)

log_message(∆1) = log_message(∆2)

∀δa, δb ∈ ∆1 ∪∆2 : δa 6= δb ⇒ file(δa) 6= file(δb)

In other words, without Condition3.4 (for same time) but all other conditions valid (same
author, same message, no interleaving, andespeciallymutually exclusive files), they would
be considered as one single transaction. Measuring the minimal distance between two similar
commits∆1 and∆2 (without loss of generalitybegin_time(∆1) ≤ begin_time(∆2)) allows us
to determine an upper bound for the length of sliding time windows:

distance(∆1, ∆2) = max(0, begin_time(∆2)− end_time(∆1))

Table3.3on the following page shows the results forGCC. Surprisingly, the minimal distance is
only onesecond. This means that, if we use time windows it is not possible to infer transactions
that match exactly one commit operation. In practice, a transaction consists of several commits.

Two log messages deserve some explanation: “Mark ChangeLog” appears more than 472 times,
by two authors and on 14 different dates. Each of these commits inserts the release of a new
GCC version into one of the numerousChangLog files. “Update version” does the same for
several version files (e.g.,version.c). Again, for each of these files one commit is performed.

Often developers consciously call a commit operation several times with the same log message.
In this case, for each call one commit mail is sent. One example is the log message “PR
java/10145. . . ” with a total of only two commits. As they are only 7 seconds apart, it is very
unlikely that they are unrelated. This is another disadvantage of the commit mail approach: One
logical change can be distributed over several commits. To deal with such situations, we would
have to introduce time windows again.

Note that some commits are performed daily, like “Bump dates.” or “Daily bump.” Both com-
mits insert the current date into the version files ofGCC. These commits do not match the
definition of similar commits because they all affect the same files (Condition3.6 for mutually
exclusive files is violated). Thus, they do not manifest in Table3.3.

What are the consequences for ROSE?

The above results indicate that sliding time windows are superior to fixed time windows.

The average distance between checkins for the two outliers of Table3.2 is 23 seconds for
gcc/libstdc++-v3/configure, and 7 seconds forgcc/gcc/ChangeLog. In addition, for only a few
checkins this distance exceeds three minutes. Based on these observations, we take three min-
utes as the lower bound for the length of time windows.
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Author Log Message Min. Distance

aoliva * configure.in: Propagate ORIGINAL_LD_FOR_MULTILIBS to
config.status.
* configure: Rebuilt.

1 sec

gdr Mark ChangeLog 2 sec
mmitchel * decl.c (grokfndecl): Require that ‘main’ return an ‘int’.

* mangle.c (write_encoding): Don’t mangle return types for conver-
sion functions.

2 sec

mmitchel Mark ChangeLog 2 sec
mmitchel Update version 2 sec
gdr Update version 3 sec
mmitchel * expr.c (expand_expr, case ARRAY_REF): Correct check for side-

effects in the value of an array element.
5 sec

jason PR java/10145
* stor-layout.c (update_alignment_for_field): Respect
DECL_USER_ALIGN for zero-length bitfields, too.
* c-decl.c (finish_struct): Don’t set DECL_ALIGN for normal fields.
* cp/class.c (check_field_decl): Don’t set DECL_ALIGN.

7 sec

...
...

...
... (further 705 log message) <5 min 00 sec
...

...
...

bkoz Benjamin Kosnik <bkoz@fillmore.redhat.com>

* acinclude.m4: Change up to reflect new directory organiza-
tion.
Add in bits for NetBSD.
* aclocal.m4: Regenerate.
* configure: Regenerate.
* config/os/bsd: New directory.

5 min 03 sec

...
...

...
... (further 70 log message)

...
...

...
...

cgf Merge from 3.2.1. 36 min 35 sec
jason PR c++/7279

* tree.c (cp_copy_res_decl_for_inlining): Also copy
TREE_ADDRESSABLE.

42 min 41 sec

bkoz 2001-04-02 Stephen M. Webb <stephen@bregmasoft.com>

* include/c_std/bits/std_cstring.h: Fix for const-correctness.
* include/c_std/bits/std_cwchar.h: Same.
* testsuite/21_strings/c_strings.cc: Add.

49 min 32 sec

Table 3.3: Minimal Distance for Similar Commits
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1
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25

30

56

58

60

80

99

Cat.COLORS
lines 3-23

Cat.Cat()
lines 25-30

Class Cat
lines 1-56

Dog.COLORS
lines 60-80

Class Dog
lines 58-99

public String[] COLORS = {

public String[] COLORS = {

class Cat {

public Cat() {

  ...

}

  ...

}
  ...

}

class Dog {

  ...

}
  ...

}

Change in Line 8
affects 
file animals.java
class Cat, and
field Cat.COLORS

Figure 3.7: Changes on Lines Affect Entities

Using 49 minutes as an upper bound is not reasonable because most developers are fast com-
miters. About 90% of all log messages in Table3.3 have a distance of less than five minutes.
Thus, we consider five minutes as an upper bound.

To summarize: The time window should be between three and five minutes. Using such a time
window, it is not possible to exactly approximate commits with transactions. However, only
related commits are composed to one transaction.

ROSE uses a sliding time window of 200 seconds, which is three minutes plus abuffer of
20 seconds. Without this buffer, the end of the time window can clash with the release of aCVS
lock. In this case, the continuation of an interrupted transaction would be considered as a new
transaction.

3.4 Map Changes to Entities

CVS provides only information on changed files but not on changed functions. Thus, another
preprocessing step is required: Each revision is compared with its predecessor, and the changes
are mapped to syntactic components of files. Revisions with no predecessors are compared
against an empty file. Figure3.7sketches the idea that a changed line affects at least one entity,
e.g., line 8 affects the fieldCat.COLORS, in classCat, in file Animals.java.

Without this preprocessing step,ROSEcould only make recommendations on file-level, and
would miss many interesting relations, thus being only of limited use.

3.4.1 The Framework

Fine-grained changes can be computed using adiff -tool and a light-weight analysis that creates
the building blocks of files. This approach is open to everything: source code, documentation,
XML files, and even diagrams or images. For a change from revisionr1 to r2 we compute the
entities as follows:
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Figure 3.8: Map Changes to Entities

1. Determine all entitiesE1 of revisionr1 and all entitiesE2 of revisionr2.

2. Theaddedentities areE2 − E1, and theremovedentities areE1 − E2.

3. All entities in E1 ∩ E2 mayhave been changed. Whether an entitye has actually been
changed is decided by performing adiff between the source-code ofe in r1 and its source-
code inr2. The set of all changed entities isC.

Figure3.8outlines the above algorithm. First the sets of entities are determined:E1 = {a(), b(),
c(), d(), e()} for revisionr1 andE2 = {a(), f(), b(), d(), e()} for r2. Until now, we know that
in revisionr2 function c() has been removed (E1 − E2) and f() has been inserted (E2 − E1).
Next we compare for each entity the respective source code parts (indicated by thick lines) and
recognize thatb() has actually been changed. All other entities have been unchanged because
thediff between them is empty.

If an entitye is renamed tof , the approach above will recognizee as deleted andf as inserted.
But detecting renaming is important because otherwise all information prior to renaming is
lost for mining. Using text similarity measures we can recognize such renaming: Measure the
similarity of the content of each entitye ∈ E1 −E2 to the contents of each entityf ∈ E2 −E1.
If a given threshold is reached thene has been renamed tof . As changes between two revisions
are usually small there is no need for a sophisticated clone detecting algorithm.

ROSEprovides an own extendible framework for mapping changes to syntactic entities based
on the above algorithm. Extensions are provided by classes that decompose files into entities.
Currently,ROSEcan deal with the following file types:

JAVA , C, C++. Classes, methods, and initializations of arrays are recognized for these lan-
guages. Although the used technique sounds simple (counting brackets), dealing with
preprocessor commands is tricky and involves many special cases (e.g., for conditionals).
Running the preprocessor instead is not reasonable because macro expansion may hide
changes.
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PYTHON . Based on indentation, we recognizeclassesandfunctions. The approach is straight-
forward, except that tab characters have to be handled correctly. (The length of a tabulator
depends on its position in a line.)

TEX, TEXINFO . Chapters, sections, andsubsectionsare recognized for TEX files.

ROSEalso deals with hierarchical structures. For instance, a change in a subsection also counts
as a change in the enclosing chapter; or, as in Figure3.7the change ofCat.COLORS also affects
classCat and of course fileAnimals.java. Future versions ofROSEwill integrate theCTAGStool
that maps tags (or entities) to source code, and vice versa.

3.4.2 Detecting Fine-Grained Changes in ECLIPSE

TheECLIPSEintegration ofROSEmakes use of theECLIPSEplatform [Obj03] which provides
a powerful and extensible framework for comparing files:

• Range Differencer—TheRangeDifferencer class compares two versions based ontokens.
This approach is based on the traditionaldiff algorithm [MM85]. The tokens are created
using classes that implement the interfaceITokenComparator, e.g., for lines the class
DocLineComparator. The calculated differences are returned in a list.

• Structure Merge Viewer—TheDifferencer class compares two versions of any givenhier-
archical structureand returns a delta tree describing each change in detail. The structure
is created with an implementation of the interfaceIStructureCreator. The fearless like
ROSEuse existinginternalclasses2, e.g., theJavaStructureCreator.

Furthermore,ECLIPSEprovides an easy access toJAVA abstract syntax trees and facilitates
further analysis of source code. The only drawback is that many of those features cannot be
executed from the command line. For that reason,ROSEdoes not useECLIPSEfeatures during
preprocessing.

3.4.3 The Database Schema for Entities

All computed fine- and coarse-grained entities are stored in theROSEdatabase. Figure3.9 on
the next page shows the tables that are relevant for entities:

Entities contains all entities exactly once, regardless whether they have been changed or not.
An entity with nameEntityNameis identified by itsEntityID. Additionally, it has a refer-
ence to the enclosing fileFileID, which is a foreign key to tableFiles. The type of such
an entity is stored asEntityTypeID, which is a foreign key to tableEntityTypes.

2It is dangerous to useinternal classes, because they may change without prior announcement [Riv01]. How-
ever, most interesting features ofECLIPSEare internal.
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Figure 3.9: ROSEDatabase Schema: Tables for Entities

EntityTypes are, for instance,files, classes, methods, fields, sections, subsections, etc. A type
calledTypeNameis identified by anEntityTypeIDand described by aTypeDescription.

ModifiedEntities stores all entities that have been modified between two subsequent checkins.
The kind of modification—added, removed, or changed—is stored inAction. Recall that
ActionandEntityID form an item. The first revision is referenced by (FileID, LeftRevi-
sionID) and the second by (FileID, RightRevisionID).

Diffs contains output of thediff algorithm between two revisionsLeftRevisionIDandRightRe-
visionIDof a fileFileID. This output is stored inDiff .

TableModifiedEntitiescontains even those entities that are not used by mining. For efficiency,
a special table calledLineitemswill be created for mining, containing only relevant items (for
details see Section3.6).

3.5 Data Cleaning

This section discussesnoise—that is transactions that will likely induce or contribute to in-
correct results—and presents appropriate cleaning techniques. However, noise evolves from
several kinds of transactions:Large transactionsoften originate from infrastructure changes,
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import transactionscontain complete subsystems, andmerge transactionssimply reproduce
changes. Note that transactions can fit in multiple categories, e.g., large merge transactions.

ROSEperforms two kinds of data cleaning:

Explicit data cleaning identifies noisy transactionsbeforemining (during preprocessing) and
tags them so that they can be ignored later on. (Recall the attributeIsNoisein table
Transactions.)

Implicit data cleaning is performedafter mining and is based on the observation that rules
induced by noisy transactions usually are weak compared to regular rules. In some cases,
noise strengthens existing rules, but it never makes rules disappear. Thus, concentrating
on only strong rules filters out most noisy rules.

ROSEuses explicit data cleaning for large transactions, and implicit data cleaning for import and
merge transactions. Detecting user-created noise, like unrelated changes within one commit, is
out of reach for any approach. Although program analysis might be used, this conflicts with the
goal to recognize dependencies that are undetectable by program analysis. (Program analysis
would consider exactly these dependencies as noise.)

3.5.1 Large Transactions

Large transactions are very frequent in real-life. Here are two examples fromOPENSSL:

• “Change #include filenames from<foo.h> [sigh] to <openssl.h>.” (552 files)

• “Change functions to ANSI C.”(491 files)

As the log messages indicate, the files contained in these transactions have been changed be-
cause of some infrastructure changes (a new compiler version), and not because of logical
relations.

A solution is to ignore transactions of size greater thanN in the analysis. The boundN depends
on the examined software project. If desired, suspect transactions can be investigated manually
in order to guarantee that they are actually noise.

ROSEusesN = 30. This bound has been determined by investigating severalGCC transac-
tions. This bound may sound low, however, a transaction of 30 files contributes to at least230

association rules and increases the complexity for traditional mining algorithms dramatically.

3.5.2 Import Transactions

An import transaction consists exclusively of new files and contains in many cases a complete
subproject. Two examples taken fromGCCare:

• “Initial import of libgcj” (371 files)
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Figure 3.10: Merges Considered Harmful

• “initial import of Java front-end”(43 files)

Considering such transactions for mining induces many relations between unrelated entities.
It is straightforward to detect such transactions: Simply check for each transaction if all files
are additions to theCVS repository. Another possible approach is to ignore additions in all
transactions.

3.5.3 Merge Transactions

Another more sophisticated kind of noise are merges of branches.CVS simply reproduces all
changes made to one branch to the other—in one large transaction. One real-life example taken
from GCC is

“mainline merge as of 2003-05-04”(5874 files).

Figure3.10shows a smaller example. On the branch four transactions have been committed:
{A, B}, {C, D}, {E, F}, and{G, H}. These files are now again changed at the merge point
within a transaction that contains all changes made on the branch:{A, B, C,D,E, F,G,H}.
Merge transactions are noise for two reasons:

1. They contain unrelated changes, e.g.,B andC.

2. They rank changes on branches higher (those changes are duplicated), e.g.,A andB.

Taking such transactions into account has a significant influence on the results. Thus, transac-
tions that resulted from merges should be identified and ignored.

Unfortunately,CVS does not keep track of which revisions resulted from a merge. Michael
Fischer et al. proposed a heuristic to detect these revisions [FPG03b]. For each file on a branch
a potential merge point is determined and verified using similarity measures. If the potential
merge point is rejected, another one is tested until a valid merge point is found, or all revisions
have been tested. This approach is restricted to merges to the main branch, but it is straightfor-
ward to apply it to other branches. Additionally, they work only on revisions instead of analyz-
ing complete transactions. Analyzing transactions simplifies the detection of merges because if
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a merge is detected for a single file, the whole transaction is probably a merge. Nonetheless,
automatic merge detection is difficult to realize because of the large number of existing merge
policies. For example, as Figure3.10indicates, the development can continue on both branches
after a merge, creating additional complexity for all heuristics.

A simple but powerfulsuspect & verifyapproach is based on log messages and the observation
that merges are well-documented in those messages:

1. All transactions whose log message contains a “merge” (case-insensitive) aresuspectto
be a merge transaction.

2. Check each suspect transaction manually andverify merge or not. This step is essential
to avoid errors for log messages that incidentally contain a “merge”, like the ECLIPSE
transaction “New isMerge(), isMergeWithConflicts(), and setMerge() methods”.

Although this approach sounds time-consuming, the verification usually takes only a few min-
utes, which is nothing compared to the cost of designing and implementing an equal automatic
approach.

3.6 The Output of Preprocessing

The output of the preprocessing phase are fine-grained changes, represented by items and
grouped to transactions. All these results are linked in one database table (see Figure3.11on
the next page).

Lineitems contains for each transactionTransactionIDthe items, represented byAction and
EntityID. Additionally, the typeEntityTypeIDof each entity , the enclosing fileFileID,
and the start timestampTxBeginTimeof the transaction are stored. Most data ofLineitems
is redundant in order to avoid extensive join operations.

ROSEalways mines on the finest possible granularity: for source-code onmethodor field level,
for documentation onsubsectionlevel, and for all other files, e.g.,plugin.properties, on file
level. Thus, only those items are inserted into tableLineitems. We will discuss the mining
approaches in the next chapter.
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Figure 3.11: ROSEDatabase Schema: Tables for Mining
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Chapter 4

Mining Association Rules

There are far more papers published on algorithms to discover association rules
than there are papers published on applications of association rules.

– David Hand, Heikki Mannila, Padhraic Smyth in [HMS01]

The most popular application for association rule mining is market basket analysis. Based
on sales transactions, frequent patterns are searched and returned as association rules. One
common example is that diapers and beer often are sold together. Such information is valuable
for cross-selling, thus increasing the total sales of a company. For instance, a supermarket can
place beer next to diapers hinting to parents that they should buy not only necessities for their
baby but also luxury for themselves.

ROSEdoes pretty the same thing for software developers. It searches for patterns within the ver-
sion history and presents related entities in a view next to the source code (recall Figure1.2on
page3). However, we have to keep in mind that the objectives ofROSEare different from those
of supermarkets:ROSEdoes not benefit by selling diapers, beer, or changes. In other words, it
has no interest in increasing the total number of changes by developers.

The objectives pursued byROSEare:

• Simplify navigation through source code.

• Avoid errors due to missing updates.

We can think ofROSEas the owner of a small shop around the corner whose main interest are
happy customers. Of course,ROSEhas to take a small fee which is the version history plus
some computing power.

In this chapter we will discuss the techniques used byROSEto provide its functionality. We will
start with the concept of association rules and show howROSEuses them. Afterwards, we will
introduce a general mining technique, called the Apriori algorithm, and present an improved
mining algorithm forROSE.



38 Chapter 4. Mining Association Rules

4.1 Association Rules

As indicated before association rules represent somepattern. For instance, the following rule
represents the pattern {fKeys[], initDefaults(), plugin.properties} within the version history of
ECLIPSE:

change(fKeys[]) ⇒ change(initDefaults()) ∧ change(plugin.properties) [0.875]

There are two different interpretations for this rule:

• The descriptiveinterpretation directs to the past: Whenever the user changed the field
fKeys[], she also changed the methodinitDefaults() and the fileplugin.properties with a
certainty of 87.5%.

• In contrast,predictiveinterpretation (as used byROSE) directs to the future: Now, the
rule means that, whenever the user changes the fieldfKeys[], sheshouldalso change the
methodinitDefaults() and the fileplugin.properties. Here, “should” means that the rule is
based on experience (with a certainty of 87.5%) and does not constitute absolute truth1;
the character “⇒” is thus not to be read as a logical implication that always holds.

As mentioned before, rules have aprobabilistic interpretation based on theamount of evidence
in the transactions they are derived from. This amount of evidence is determined by three
measures:

Frequency. The frequency(or count) determines the number of transactions the rule has been
derived from. Assume that the fieldfKeys[] was changed in 8 transactions. Of these
8 transactions, 7 also included changes of both the methodinitDefaults() and the fileplu-
gin.properties. Then, the frequency for the above rule is 7.

Support. The supportrelates the frequency of a rule to the total number of transactions. As
ECLIPSEhas 44,786 transactions the support for the above rule is7/44786 = 0.00016.

Confidence. Theconfidencedetermines the certainty of the consequence if the left hand side
of the rule is satisfied. In the above example, the consequence of changinginitDefaults()
and plugin.properties applies in 7 out of 8 transactions involvingfKeys[]. Hence, the
confidencefor the above rule is7/8 = 0.875.

For the formal definition of association rules we adopt [HMS01]. Let I = {i1, . . . , in} be the set
of all items recognized during preprocessing. Recall that anitem is an entitye combined with
an action2, e.g., change entitye. LetD be the task-relevant data, i.e., the set of all transactions3,
where each transactionT is a set of items such thatT ⊆ I.

1 Note that using predictive interpretation an association rulenevercan constitute absolute truth, even if its
certainty is 100%.

2 Currently, ROSEmines only items where the action is “change”. The resulting rules are calledsingle-
dimension association rulesbecause each action corresponds to one dimension.

3 Recall that we have two different notations for transactions:∆ is based on the composition of changes
represented by functions, andT is a list of items, in particular of the changed entities.ROSEuses the latter for
mining.
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An association ruleis an implication of the formA ⇒ B whereA ⊂ I, B ⊂ I, andA∩B = ∅.
Theantecedentof a rule isA and theconsequentis B. Usually,A andB are conjunctions, but
it is possible to use any kind of proposition. However, we will focus on conjunctions.

Formally, we define the frequency, support, and confidence of an association rule as follows:

• Thefrequencyof a setX in the task-relevant dataD is defined as:

frequencyD(X) = |{T |T ∈ D, X ⊆ T}|

Thefrequencyof an association ruleA ⇒ B in the task-relevant dataD is defined as:

frequencyD(A ⇒ B) = frequency(A ∪B)

• Thesupportof a setX in the task-relevant dataD is defined as:

supportD(X) =
frequencyD(X)

|D|
= P (X)

Thesupportof an association ruleA ⇒ B in the task-relevant dataD is defined as:

supportD(A ⇒ B) =
frequencyD(A ∪B)

|D|
= P (A ∪B)

• Theconfidenceof an association ruleA ⇒ B in the task-relevant dataD is defined as:

confidenceD(A ⇒ B) =
frequencyD(A ∪B)

frequencyD(A)
= P (B|A)

We omit the task-relevant dataD if it is known in the context or irrelevant. The shorthand
notationr[s; c] denotes a ruler with s = support(r) andc = confidence(r).

For a set of itemsI, many possible rules exists: Each of the2|I| patterns contributes to one
or more rules. Thus, thresholds for support (min_supp) and confidence (min_conf) are used to
reduce the number of total rules. A ruler is calledstrongif and only if support(r) ≥ min_supp
andconfidence(r) ≥ min_conf.

Obviously, the support threshold can be replaced by a frequency threshold:

min_freq= dmin_supp· |D|e

ROSEuses frequency instead of support for two reasons:

1. Frequency is easier to understand for developers.
Support values like 0.00016 give them no idea whether this value is high or low. In
contrast, the corresponding frequency of 7 clearly expresses the significance of the rule.

2. Frequency allows comparison of different projects.
It is not possible to reuse a support threshold for another project. ConsiderECLIPSEwith
a total of 44,786 transactions, andJEDITwith only 1,905 transactions. Usingmin_supp=
0.0001 we mine inECLIPSEwith min_freq= 5, but in JEDIT only with min_freq= 1.
Using such low frequency thresholds is not reasonable.
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Confidence is an Indicator for Certainty.

The confidence of a rule can be misleading as the example below shows:

B B
A 20% 5% 25%
A 70% 5% 75%

90% 10% 100%

Consider the ruleA ⇒ B with the high confidence ofP (B | A) = P (A∩B)
P (A)

= 0.20
0.25

= 0.80.
This rule is misleading since the rule has a high confidence, but the occurrence ofA actually
decreasesthe likelihood ofB from P (B) = 0.90 to P (B | A) = 0.80. This observation led to
a variant of association rule mining called correlation mining [SBM98].

ROSEdoes not care if a rule is misleading or not. In the example above,B has been changed in
80% after a change onA, and is therefore still important for developers.

Support is an Indicator for Statistical Significance.

The support value of a rule is a measure for its statistical significance. If the following condition
holds,A andB are likely independent and their co-occurrence in transactions is incidentally:

support(A ⇒ B) ≈ support(A) · support(B)

However, this is not the case for the following condition:

support(A ⇒ B) � support(A) · support(B) (4.1)

This condition can be transformed in an in-equation that is based on the confidence of a rule:

support(A ⇒ B) � support(A) · support(B)

support(A ⇒ B)

support(A)
� support(B)

frequency(A ⇒ B)· | D |
frequency(A)· | D |

� support(B)

support(A ⇒ B)

support(A)
� support(B)

confidence(A ⇒ B) � support(B) (4.2)

However, we can determine an upper bound forsupport(B). It is obvious that the support is
highest for a singletonB. Table4.1on the next page contains the most frequently changed files
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Project (#Txs4) File Count Max. Support

ECLIPSE org.eclipse.jdt.core/buildnotes_jdt-core.html 2,403 0.054
(44,786 Txs.) org.eclipse.jdt.debug/buildnotes_jdt-debug.html 1055

org.eclipse.debug.core/buildnotes_platform-debug.html 548
org.eclipse.ant.core/buildnotes_platform-ant.html 357
org.eclipse.jdt.ui/buildnotes_jdt-ui.html 314

GCC gcc/gcc/ChangeLog 21,261 0.463
(45,983 Txs.) gcc/gcc/version.c 4,361

gcc/gcc/cp/ChangeLog 3,913
gcc/gcc/testsuite/ChangeLog 3,370
gcc/libf2c/libI77/Version.c 3,265

GIMP gimp/ChangeLog 5,795 0.660
(8,783 Txs.) gimp/po/ChangeLog 884

gimp/po-plug-ins/ChangeLog 554
gimp/configure.in 476
gimp/po-script-fu/ChangeLog 285

JBOSS build/jboss/build.xml 459 0.040
(11,543 Txs.) jboss/build.xml 217

jboss/src/etc/conf/default/jboss-service.xml 151
contrib/jetty/build.xml 142
jboss/src/etc/conf/default/standardjbosscmp-jdbc.xml 135

JEDIT jEdit/doc/TODO.txt 578 0.304
(1,905 Txs.) jEdit/doc/CHANGES.txt 560

jEdit/org/gjt/sp/jedit/textarea/JEditTextArea.java 208
jEdit/org/gjt/sp/jedit/jedit_gui.props 184
jEdit/org/gjt/sp/jedit/jEdit.java 143

KOFFICE koffice/kword/kwview.cc 990 0.051
(19,781 Txs.) koffice/kpresenter/kpresenter_view.cc 866

koffice/kword/kwtextframeset.cc 685
koffice/kspread/kspread_view.cc 592
koffice/kword/kwdoc.cc 592

PYTHON python/dist/src/Misc/NEWS 1,022 0.036
(28,802 Txs.) python/dist/src/configure.in 484

python/dist/src/Python/ceval.c 372
python/dist/src/Objects/typeobject.c 340
python/dist/src/Doc/Makefile 309

POSTGRESQL pgsql-server/doc/TODO 1,050 0.082
(12,894 Txs.) pgsql-server/src/backend/parser/gram.y 410

pgsql-server/src/bin/pg_dump/pg_dump.c 277
pgsql-server/configure 264
pgsql-server/src/backend/postmaster/postmaster.c 263

Table 4.1: Most Frequently Changed Files



42 Chapter 4. Mining Association Rules

and the resulting upper bound forsupport(B). In most cases this bound is well below 10%.
Thus, using a confidence threshold of at least 10%ROSE is on the safe side and can set the
significance test aside. For the projects with a bound above 10%,ROSEwill likely recommend
entities that are not statistically significant, but are still justified (e.g.,TODO.txt for JEDIT).

4.2 Association Rules in ROSE

4.2.1 Choosing the Task-Relevant Data

ROSEsearches for patterns in the task-relevant dataD which consists of past transactions that
have been inferred during preprocessing. Patterns evolve during time; one pattern being im-
portant may become less important or even incorrect later in a project. In addition, the set of
entities constantly evolves, too (functions are added or removed). Thus, the concept of patterns
softens.

These problems can be addressed using two different approaches:

Mine from transactions of the last, say, year.Thus, only new or constantly occurring pat-
terns are found. Additionally, new patterns establish fast because strong old patterns
are discarded.

Rate new transactions higher than old ones.This approach introduces an implicit aging for
rules. Still, all patterns (old and new ones) are found, but usually new or constantly
occurring patterns are rated higher than old ones.

Currently,ROSEapplies none of these techniques because the main focus of this work is on
general predictiveness. The realization of the approaches above will be future work.

4.2.2 From Rules to Recommendations

As soon as the programmer begins to make changes, theROSEclient suggests possible further
changes. This is done byapplyingmatching rules. In general, two notions of matching rules
exist:

Weak matching. A rule A ⇒ B matchesa set of itemsΣ (e.g., changed entities) if the an-
tecedent is a subset ofΣ, i.e.,A ⊆ Σ.

Strong matching. A rule matchesa set of itemsΣ if this set is equal to the antecedent of the
rule, i.e., the rule isΣ ⇒ B.

For both notions, the antecedent of a rule is satisfied, but only for strong matching it is satisfied
exactly. We refer to the set of itemsΣ as thesituationin which ROSE makes recommendations.
Recall that an item is an action, e.g., change, and an entity.

4Table4.1: Number of transactions isafter data cleaning.
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Figure 4.1: An Example for an ECLIPSE preference

Considering weak matching rules for recommendations is not reasonable because this bypasses
support and confidence thresholds. Suppose that we have three functionsf(), g(), andh(). The
functionsg() andh() exclude each other. Thus, no strong rulef() ∧ g() ⇒ h() exists because it
has no support. The user changesf() andg(). Using weak matching, we would consider the rule
f() ⇒ h() and falsely recommendh() —which is excluded by the occurrence ofg(). Thus,ROSE
uses onlystrongrules andstrongmatching.

How doesROSEcompute suggestions? The set of suggestions for a situationΣ and a set of
rulesR is defined as theunionof the consequents of all matching rules:

applyR(Σ) =
⋃

(Σ⇒B)∈R

B

Recall Figure1.2on page3; assume the task of a programmer is to extendECLIPSE5 with a new
preference. Usually, a preference consists of GUI elements, a default value, and a description
(see the example in Figure4.1). In Figure1.2 the programmer has extended the arrayfKeys[]
in file ComparePreferencePage.java. Thus, the situationΣ1 is:

Σ1 = {change(fKeys[])}

ROSEfinds many matching rules for this situation; one of them isr:

change(fKeys[]) ⇒ change(initDefaults()) ∧ change(plugin.properties) [7; 0.875]

Using the ruler in the given situationΣ1, ROSEsuggests the consequent ofr:

apply{r}(Σ1) = {change(initDefaults()), change(plugin.properties)}

The entire setR of actually mined rules contains further rules, though. The actual result of
applyR(Σ1) is shown in Figure1.2, ordered by confidence. In practice,ROSEuses all strong
rules for recommendations.

Let us assume the user decides to follow the first recommendation forinitDefaults() (with a
confidence of 1.0); it is obvious that a new preference should get a default value. So, she

5It is important to capture thatROSEis used inandonECLIPSE.
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changes the methodinitDefaults(). Again,ROSEproposes additional changes which are in this
case the same as before, except that nowinitDefaults() is missing. The situation now additionally
containsinitDefaults():

Σ2 = {change(fKeys[]), change(initDefaults())}

The user examines methodscreateGeneralPage() andcreateTextComparePage() because they
are in the same file asfKeys[] andinitDefaults(). Each of these two methods creates a page where
preferences can be set (in Figure4.1pageGeneralis open). Now, she extends thecreateGen-
eralPage() method, resulting in a new situationΣ3:

Σ3 = {change(fKeys[]), change(initDefaults()), change(createGeneralPage())}

Given this situation, a minimum support of3, and a minimum confidence of0.5, ROSEcomputes
the following rules:

Σ3 ⇒ {change(plugin.properties)} [5; 1.0]
Σ3 ⇒ {change(TextMergeViewer())} [3; 0.6]
Σ3 ⇒ {change(propertyChange())} [3; 0.6]
Σ3 ⇒ {change(build.html)} [3; 0.6]

Applying the above rules yields the union of the consequents of all rules because they have the
same antecedent and match the situationΣ3. ROSEwill rank the entities by their confidence,
suggesting the user to change the fileplugin.properties next. This file contains the descriptions
that are used for the labels of a preference (e.g., “Open structure compare automatically” in
Figure4.1).

The next two sections present mining techniques: TheApriori algorithm mines forall strong
rules; theROSEapproach in contrast mines only forstrongandmatchingrules. Whether rules
are matching or not depends on the situationΣ in which ROSEis called.

4.3 The Apriori Approach for Mining Association Rules

One of the most popular approaches for miningall strongassociation rules is the Apriori algo-
rithm [AS94, MTV94]. It takes amin_suppand amin_confthreshold and the task-relevant data
D as an input6.

Internally, the Apriori algorithm represents patterns withitemsets7. A k-itemset is an itemset of
sizek. An itemset is calledfrequentif it satisfies the support (or frequency) threshold. The set
of all frequentk-itemsets is denoted asLk.

TheApriori propertyhelps to reduce the search space for frequent itemsets:

All nonempty subsets of a frequent itemset must also be frequent.

6The threshold for the frequencymin_freqis computed usingmin_suppand| D |.
7In data mining literature item sets are spelled as itemsets.
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This is obvious because the support increases, if itemsX are removed from an itemsetI:
P (I) ≤ P (I − X). Thus, if I was frequent,min_supp≤ P (I), thenI − X is frequent,
too: min_supp≤ P (I) ≤ P (I −X).

The Apriori algorithm consists of two phases:

1. Find all frequent itemsets.
Frequent itemsets are generated level-wise: FirstL1 is computed, thenL1 is used to find
L2 which is used to computeL3, and so on. This phase terminates if for ak no more
frequentk-itemsets are found. Each level, i.e., the creation of a setLk, consists of four
steps:

– The join step:
A candidatek-itemsetCk is generated by joiningLk−1 with itself. The join condition
is that the firstk − 1 items of two itemsetsl1 and l2 are equal and only the last
elements differ:l1[k] < l2[k].

– Theprunestep:
Remove itemsets fromCk that cannot be frequent by means of the Apriority prop-
erty. The check whether subsets are frequent or not can be done quickly by main-
taining a hash tree of all frequent itemsets.

– Thescanor countstep:
Scan the databaseD and count the frequency of each remaining candidate inCk.

– Thecreatestep:
The frequentk-itemsetsLk are those sets inCk that satisfy the frequency threshold.

Searching for frequent itemsets is the most time consuming part of the Apriori algorithm;
each level requires a full scan of the database. Thus, the support (or frequency) threshold
has a huge impact on running time.

2. Generate association rules from frequent itemsets.

For each frequent itemsetl all nonempty subsetss are created. Such a subset results in a
rules ⇒ l − s if and only if:

confidence(s ⇒ l − s) = P (l − s | s) =
frequency(l − s)

frequency(s)
≥ min_conf

The test for the support (or frequency) threshold can be omitted because rules are created
from frequent itemsets, and therefore the following test is always true:

support(s ⇒ l − s) = P (l − s ∪ s) = P (l) ≥ min_supp

Figure4.2 on the following page shows an example for the Apriori algorithm. The candidate
1-itemsetC1 corresponds to the set of all itemsI. The count step reveals that itemset{E} is
not frequent. Next the candidate2-itemsetsC2 are generated by joiningL1 with itself (C2 is
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Relevant transactions: D
TxID List of items
100 A, B, C
200 A, D
300 A, B, C
400 B, D
500 A, D
600 B, E
700 A, B

Generate frequent 1-itemsetL1

join−−−−→

C1

Itemset
{A}
{B}
{C}
{D}
{E}

count−−−−→

C1

Itemset Count
{A} 5
{B} 5
{C} 2
{D} 3
{E} 1

create−−−−→

L1

Itemset Count
{A} 5
{B} 5
{C} 2
{D} 3

Generate frequent 2-itemsetL2

join−−−−→

C2

Itemset
{A,B}
{A,C}
{A,D}
{B,C}
{B,D}
{C, D}

prune−−−−→

C2

Itemset
{A,B}
{A,C}
{A,D}
{B,C}
{B,D}
{C, D}

count−−−−→

C2

Itemset Count
{A,B} 3
{A,C} 2
{A,D} 2
{B,C} 2
{B,D} 1
{C, D} 0

create−−−−→

L2

Itemset Count
{A,B} 3
{A,C} 2
{A,D} 2
{B,C} 2

Generate frequent 3-itemsetL3

join−−−−→

C3

Itemset
{A,B, C}
{A,B, D}
{A,C,D}

prune−−−−→
C3

Itemset
{A, B, C}

count−−−−→
C3

Itemset Count
{A, B, C} 2

create−−−−→
L3

Itemset Count
{A,B, C} 2

Generate association rules fromL2 and L3
Frequent itemset Rule Confidence Strong

{A,B} A ⇒ B 3/5 = 0.60 yes
B ⇒ A 3/5 = 0.60 yes

{A,C} A ⇒ C 2/5 = 0.40 no
C ⇒ A 2/2 = 1.00 yes

{A,D} A ⇒ D 2/5 = 0.40 no
D ⇒ A 2/3 = 0.67 yes

{B,C} B ⇒ C 2/5 = 0.40 no
C ⇒ B 2/2 = 1.00 yes

{A,B,C} A ⇒ B ∧ C 2/5 = 0.40 no
B ⇒ A ∧ C 2/5 = 0.40 no
C ⇒ A ∧B 2/2 = 1.00 yes
A ∧B ⇒ C 2/3 = 0.67 yes
A ∧ C ⇒ B 2/2 = 1.00 yes
B ∧ C ⇒ A 2/2 = 1.00 yes

Figure 4.2: An Example for the Apriori Algorithm (min_freq= 2; min_conf= 0.5)
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always the cross product ofL1). Fork = 2 it is never possible to prune any elements because
all subsets are singletons and always contained inL1. The count step identifies{B, D} and
{C, D} as not frequent. Next the candidate3-itemsetsC3 are generated fromL2 using the join
conditionl1[1] = l2[1] ∧ l1[2] > l2[2]. This returns three itemsets. Two of them are not frequent
by the Apriori property and pruned: For{A, B, D} the subset{B, D} is not frequent and for the
itemset{A, C,D} subset{C, D} is not frequent. For the third candidate{A, B, C} a database
scan verified that it is frequent. After all frequent itemsets have been computed, each itemset
in L2 andL3 is used to create rules. The confidence is computed for each rule and only strong
rules are returned.

Keep in mind, that the Apriori property can only tell that an itemset isnot frequent. A check
for an itemsetbeingfrequent always has to scan the database.

The Apriori algorithm has several drawbacks: The databaseD is repeatedly scanned for each
level of the frequent itemset creation. Additionally, the creation of candidate sets is expensive.
If there are104 frequent 1-itemsets about108 candidate 2-itemsets are generated. Moreover, to
discover a pattern of size 100, the Apriori algorithm must create more than2100 candidates in
total.

It is possible to mine association rules without candidate generation based on a divide-and-
conquer strategy. The algorithm is calledfrequent-pattern growthand also known asFP-growth
[HPY00].

4.4 The ROSE Approach for Mining Association Rules

The classical use of the Apriori algorithm is to compute all rules above a minimum support and
confidence. However, computing all rules is useful for searching general patterns but not for
making recommendations:

The coverage of Apriori is too low. The coverageis directly proportional to the number of
distinct antecedents within a rule setR. A high coverage is desirable becauseROSEcan
then make recommendations in most cases. A low coverage means thatROSE is often
clueless.

The coverage can be increased by extending the rule setR, e.g., by lowering the con-
fidence and especially the support thresholds. However, for too low support thresholds
Apriori may take months. The bottleneck is not Apriori but the circumstance thatR gets
too large—greater than2|I| in worst case.

Of course, too low support thresholds have a bad influence on the quality of recommen-
dations. Nevertheless, the developer should be able to decide on support thresholds and
not any technical boundaries created by the Apriori algorithm.

Search for matching rules is expensive.As mentioned above,R gets very large—for most
projects a multiple of the number of transactions. Thus, the search for matching rules is
expensive ifR does not fit into memory and no suitable index structures are available.
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Therefore,ROSEuses its own mining algorithm that minesonly requiredruleson the fly. This
algorithm is based on two optimizations:8

Mine with constrained antecedents.In our specific case, the antecedent is equal to the situa-
tion; hence, we only mine ruleson the flywhich matchthe situationΣ, i.e., rules that are
Σ ⇒ B. Mining with such constrained antecedents [SVA97] takes only a few seconds.
An additional advantage of this approach is that it is incremental in the sense that it allows
new transactions to be added toD between two situations. Thus, recommendations are
always up-to-date.

Mine only single consequents.To speed up the mining process even more, we only compute
rules with a single item in their consequent. So, for a situationΣ, the rules have the
form Σ ⇒ {i}. For ROSE, such rules are sufficient becauseROSEcomputes the union
of the consequents anyway. Therefore, considering non-singleton consequents is su-
perfluous: For each itemi ∈ B of a ruleΣ ⇒ B[s; c] exists a single consequent rule
Σ ⇒ {i} [si; ci] with higher or equal support and confidence valuessi ≥ s andci ≥ c
becausefrequency(Σ ∪ {i}) ≥ frequency(Σ ∪B).

TheROSEmining algorithm consists of three steps:

Find transactions. Find all transactionsT that containall items of the situationΣ, i.e.,Σ ⊆ T .
Using the database schema of Chapter3 and relation algebra, we denote these transactions
asσTransactionID(Lineitems÷ Σ).

Group & sort. Group the itemsLineitems./ σTransactionID(Lineitems÷ Σ) of these transac-
tions byEntityID, and sort them by their descending count.

Create rules. Each group corresponds to exactly one single-consequent rule.

– The frequency ofΣ is the maximal count of a group (which is likely for an group of
an itemi ∈ Σ and is always for the first returned group).

– The count for a group of an itemi is the frequency for the ruleΣ ⇒ {i}.
– The confidence of a ruleΣ ⇒ {i} is

frequency(Σ ⇒ {i})
frequency(Σ)

– Ignoretrivial rules—that are rulesΣ ⇒ {i} with i ∈ Σ.

Return only rules that satisfy the support and confidence thresholds.

Figure4.3 on the next page shows an example for theROSEmining algorithm. Suppose, the
situation isΣ = {A, B}. First,ROSEsearches all transactions that containΣ: 100, 300, and 700.
Next, it groups exactly those transactions by items and sorts them by their descending count.
The highest count is for itemA, thus thefrequencyfor Σ is 3. The rules forA andB are trivial
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Situation Σ = {A,B} and k =| Σ |= 2

Generate frequentk-itemsets andk + 1-itemsets that containΣ

TxID List of items
100 A, B, C
200 A, D
300 A, B, C
400 B, D
500 A, D
600 B, E
700 A, B

find−−−−→

TxID List of items
100 A, B, C
300 A, B, C
700 A, B

group & sort−−−−−−−→

Item Frequency
A 3 ⇒ {A, B }
B 3 ⇒ {A, B }
C 2 ⇒ {A, B, C }

Create single-consequent rules with antecedentΣ

Item Frequency
A frequency(Σ) =3 {A,B} ⇒ {A} is trivial
B 3 {A,B} ⇒ {B} is trivial
C 2 {A,B} ⇒ {C} has frequency=2, confidence=2/3 and is strong

Figure 4.3: An Example for the ROSE Algorithm (min_freq= 2; min_conf= 0.5)

(because both are in the situation), thus they are ignored. ForC, the ruleΣ = {A, B} ⇒ {C}
is strong because the thresholds formin_freqandmin_confare satisfied.

The optimizations above make mining very efficient: The average runtime of a query is about
0.5s for large version histories likeGCC.9

ROSEprovides another mining algorithm forsingle antecedent single consequentrules{a} ⇒
{b}. Such rules are less precise for recommendations, but valuable for measurement and visu-
alization of coupling between entities (see Section5.1 for some examples). The algorithm is
exactly like the Apriori algorithm presented in Section4.3, except that only2-frequent itemsets
are generated and used for rule creation.

In the next chapter we will present some examples for association rules.

8These optimizations have already been used in the example of Subsection4.2.2.
9Measured on a PC with Intel 2.0 GHz Pentium 4 and 1 GB RAM.
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Chapter 5

Real Life Examples

The young men know the rules.
The old men know the exceptions

– Oliver Wendell Holmes

This chapter gives anecdotic evidence for the usefulness ofROSE. We start with the most basic
kind of rules calledsingle antecedent single consequentrules. Then we show the superiority of
single consequent rules. We will see in the last section thatROSEis not restricted to specific
programming languages—it even detects relations between source code and text files.

5.1 Visualization of Binary Coupling

Single antecedent single consequentrules (or sometimes referred to asbinaryrules) are the most
simple kind of association rules. They are implications of the form{a} ⇒ {b} with a, b ∈ I.

Their value for recommendations is limited because they cannot take advantage of the situation
Σ. This means whenever a user changes more entities, e.g.,e andf , an entityg may be pro-
posed, although the association rulee∧f ⇒ g has no or to few support. Thus, using such rules,
one will get more but less precise recommendations.

However, binary rules are very important for measuringcouplingbetween modules, directo-
ries, files, or functions (which we subsume as entities): Two elements are coupled if they occur
together in at least one transaction. The stronger the support and confidence values are the
stronger is the coupling. Such coupling by simultaneous changes is referred to aslogical cou-
pling [GJKT97, GJK03]. However, we will prefer the termevolutionary couplingbecause it
clearly states the domain of this kind of coupling [ZDZ03].

Evolutionary coupling can be represented as a graphG = (V, E), with the entities as nodes
V = E and for each coupling between to entitiese andf an edge(e, f) ∈ E. We will call these
graphscoupling graphs. However, drawing such huge graphs will be expensive and provides
only unsatisfying results.

One special layout for coupling graphs arepixel-maps. The idea is to visualize not the graph
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Figure 5.1: An Example for a Pixel-Map

itself, but its adjacency matrix. Each edge is thus represented by a singlepixeland each node as
two lines (one horizontal and one vertical). Thus, pixel-maps can easily visualize large graphs.
Figure5.1shows an abstract example for an pixel-map. For instance, fileA/C is represented by
the third row and the third column.

Another advantage of pixel-maps is that using a specific order, e.g., lexicographically by direc-
tory and file name, we can emphasize a given structure. For instance the boldfaced blocks in
Figure5.1represent all coupling within directories. Everything outside these blocks is coupling
between different directories.

An important aspect is the use of color in pixel-maps. We can color a pixel(x, y) by:

• thesupportor frequencyof the rulex ⇒ y,

• theconfidenceof the rulex ⇒ y, or

• thecorrelationof the rulex ⇒ y which is:

correlation(x ⇒ y) =
support(x ⇒ y)

support(x) · support(y)

Note that support pixel-maps are symmetric. Confidence and correlation pixel-maps are not
symmetric: The pixel(x, y) usually has a different color than(y, x). All pixels (x, x) on the
top-down diagonal of a confidence pixel-map have the same confidence valueconfidence(x ⇒
x) = 1.0 and thus the same color.



5.1 Visualization of Binary Coupling 53

In the remainder we will focus on confidence pixel-maps. The color ranges fromblue, for low
confidence values, tored, for high confidence values.

5.1.1 Coupling within DDD

Figure5.2 on the next page shows such a confidence pixel-map for theDDD debugger. Each
pixel (x, y) represents the coupling between two filesx and y. The files have been sorted
lexicographically by directory and file name.

How do we read such pixel-maps? Basically, we look forpresenceandabsenceof coupling.
This coupling may have different forms:

Pixels—Coupling between files.This is the most basic kind of coupling.

Lines—Coupling between a files and a directory.In Figure 5.2 the ddd/-directory consists
of two parts: thesource codeandpictures(in directoryPICS). One can easily spot four
lines (for this example we take symmetry into account and consider only lines below the
diagonal):

– theupper horizontal lineis the fileDDD.mk.in

– the lower horizontal lineis the fileMakefile.bin

– the left vertical lineis the filePICS/ddd-graph.eps

– theright vertical line is the filePICS/FIX-XPM

ThusDDD.mk.in andMakefile.bin are coupled with thePICS/-directory; and the source
code is coupled withPICS/ddd-graph.eps andPICS/FIX-XPM.

Blocks—Coupling between directories.Figure5.2contains several blocks aligned to the di-
agonal, e.g., the source code block or pictures block in directoryddd/. These blocks
represent coupling within one directory.

But Figure5.2also shows coupling between different directories, e.g., the block labeled
Testsrepresents coupling between thetest-directory and the source code.

Concentrating on the absence of blocks, we will notice that most externallibraries are
not coupled by evolution with the other parts ofDDD.

5.1.2 Coupling within ECLIPSE

Figure 5.3 on the following page shows a pixel-map for theJAVA debugging component of
ECLIPSE. We can spot four independent parts that match different plug-ins ofECLIPSE:

• theorg.eclipse.jdt.debug.jdi.testsplug-in:
Interestingly, almost no coupling exists within this plug-in.

• theorg.eclipse.jdt.debug.testsplug-in.
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DDD Source

Libraries
Pics

Icons

Patches

Tests

Directory
ddd/

DDD.mk.in

Makefile.bin
ddd-graph.eps

FIX-XPM

Figure 5.2: A Confidence Pixel-Map forDDD

org.eclipse.jdt.debug.ui

icons/

ui/

jdi interfaces/

jdi/

jdi/...spy/

org.eclipse.jdt.debug.jdi.tests

org.eclipse.jdt.debug.tests

org.eclipse.jdt.debug

jdi interfaces/.../event/

eval/

model/

Figure 5.3: A Confidence Pixel-Map for theJAVA Debugging Component ofECLIPSE
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Figure 5.4: Evolutionary Coupling between Debugging Symbols inGCC

• theorg.eclipse.jdt.debug.uiplug-in:
This plug-in consists of two independent parts: theiconsand the actualuser interface.

• theorg.eclipse.jdt.debugplug-in:
Almost everything within this plug-in is coupled. But the strong (red) coupling appears
near the diagonal in subdirectories calledeval/, jdi interfaces/, andjdi/. Usually this is an
indicator for good architecture.

Note that there exists some coupling between themodel/ directory and theui/ directory of
theorg.eclipse.jdt.debug.uiplug-in.

5.2 Association Rules Increase Clarity

5.2.1 Debugging Symbols in GCC

Consider Figure5.4, visualizing the coupling graph of some program entities in theGNU Com-
piler Collection (GCC). We see two filesdbxout.c andsdbout.c (square rectangles) that issue
debugging symbols inDBX andSDB format, respectively.

Both files contain some entities, depicted as vertices—variablessuch asdbx_debug_hooks in
dbxout.c andmethodssuch assdb_global_decl(). The numbers in brackets show how frequently
the entity has been changed over the revision history ofGCC—xcoff_debug_hooks, for instance,
has been changed ten times. The number associated with each edge indicateshow oftenthe
related entities have been changed together. So, we can see that

• In all 12 cases wheredbx_debug_hooks was changed, so wassdb_debug_hooks, and
vice versa.

• In all 4 cases wheresdb_global_decl() was changed, so were the otherdebug_hooks
variables—in both files.
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i386.h

9

Figure 5.5: Evolutionary Coupling between Processor Costs inGCC

• dbx_functions_end() anddbx_symbol_name() have been changed together, but never with
an entity insdbout.c.

However, such graphs are difficult to read, expecially if one is interested in multiple files. For in-
stance, we can express the relation between the filesdbxout.c andsdbout.c using two unlimited
association rules instead of four binary rules:

change(dbx_debug_hooks) ∧ change(xcoff_debug_hooks)
⇒ change(sdb_debug_hooks) ∧ change(sdb_global_decl)

[frequency=4, confidence=0.40]

change(sdb_debug_hooks) ∧ change(sdb_global_decl)
⇒ change(dbx_debug_hooks) ∧ change(xcoff_debug_hooks)

[frequency=4, confidence=1.00]

5.2.2 Processor Costs in GCC

GCC has arrays that define the costs of different assembler operations forINTEL processors:
i386_cost, i486_cost, pentium_cost, pentiumpro_cost, andk6_cost. These have been changed
together in 11 transactions. In 9 of these 11 transactions, this change was triggered by a change
in the typeprocessor_costs. Figure5.5shows the corresponding binary relations.

With association rules the relation between the cost arrays and their type will be expressed more
clearly. For this example, three possible frequent itemsets are:

F1 ={change(processor_cost)}
F2 ={change(i386_cost), change(i486_cost), change(k6_cost),

{change(pentium_cost), change(pentiumpro_cost)}
F3 =F1 ∪ F2
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We can create the following association rule using the itemsetsF1 andF3:

change(processor_cost) ⇒ change(i386_cost) ∧ change(i486_cost)
∧ change(k6_cost) ∧ change(pentium_cost)
∧ change(pentiumpro_cost)

[frequency= 9; confidence= 0.82]

So, whenever the costs type is changed (e.g., extended for a new operation),ROSEsuggests to
extend the appropriate cost instances, too.1

5.3 ROSE Mines Everything

ROSEalso detects coupling that is out of reach for most program analyes:

Coupling between different programming languages.
ROSEis not restricted to a specific programming language. In fact, it can detect coupling
between program parts written in different languages. Here is an example, taken from the
PYTHON library:

change((function, GrafObj_getattr(), _Qdmodule.c))
⇒ change((function, outputGetattrHook(), qdsupport.py))

[frequency= 10; confidence= 0.91]

Whenever the C file_Qdmodule.c was changed, so was thePYTHONfile qdsupport.py—a
classical coupling between interface and implementation—ROSEeven detects the affected
functionsGrafObj_getattr() andoutputGetattrHook(). Detecting such coupling might be
possible with program analysis, but will be very complex.

Coupling between source code and non-source code.
Recall the preference example from the Chapter4:

change(fKeys[]) ⇒ change(initDefaults()) ∧ change(plugin.properties)
[frequency=7; confidence=0.875]

Whenever a programmer extendsECLIPSEwith a new preference (infKeys[]), she also
has to set a default value (ininitDefaults() and a description for the user interface inplu-
gin.properties.

Coupling between source code and text files (likeplugin.properties) is undetectable by
program analysis. More than 12,000 of the 27,000ECLIPSEfiles are configuration, build,
documentation, and images files and thus out of reach for program analysis.

1This rule also holds for the other direction, with the same support and (incidentally) the same confidence.
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Coupling between documentation.
ROSEcan also reveal coupling between items that are not even programs, as in thePOST-
GRESQLdocumentation:

change(createuser.sgml) ∧ change(dropuser.sgml)
⇒ change(createdb.sgml) ∧ change(dropdb.sgml)

[frequency= 11; confidence= 1.00]

Whenever bothcreateuser.sgml anddropuser.sgml have been changed, the filescreat-
edb.sgml anddropdb.sgml have been changed, too.

The next chapter will give empirical evidence for the usefulness ofROSE.



59

Chapter 6

Evaluation

After these rule examples, let us now give empirical evidence for the following objectives:

Navigation through source code.Given a single changed entity, canROSEpoint programmers
to entities that should typically be changed, too?

Error prevention. CanROSEprevent errors? Say, the programmer has changed many entities
but has missed to change one entity. CanROSEfind the missing one?

Closure. Suppose a transaction is finished and the programmer made all necessary changes.
How often doesROSEerroneously suggest that a change is missing?

Granularity. By default,ROSEsuggests changes tofunctionsand other fine-grained entities.
What are the results ifROSEsuggests changes tofiles instead?

6.1 Evaluation Setting

For our evaluation, we analyzed the archives of eight large open-source projects (Table6.1 on
the following page). For each archive, we chose a number of full months containing the
last 1,000 transactions, but not more than 50% of all transactions as ourevaluation period.
In this period, we check for each transactionT whether its items can bepredicted from earlier
history:

1. We create atest caseq = (Q,E) consisting of aqueryQ ⊆ T and anexpected outcome
E = T −Q.

2. We take all transactionsTi that have been completed beforetime(T ) as atraining setand
mine a set of rulesR from these transactions.

3. To avoid having the user work through endless lists of suggestions,ROSEonly shows the
top ten single-consequent rulesR10 ⊆ R ranked by confidence. In our evaluation, we

1Table6.1: Number of transactions isbeforedata cleaning.
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History (Training) Evaluation
Project (in CVS since)
Description #Txns1 #Txns/Day #Etys/Txn Period #Txns

ECLIPSE (2001-04-28)
integrated environment

46,843 56.0 3.17 2003-03-01 to 03-31 2,965

GCC (1997-08-11)
compiler collection

47,424 22.4 3.90 2003-04-01 to 04-30 1,083

GIMP (1997-01-01)
image manipulation tool

9,796 4.1 4.54 2003-02-01 to 07-31 1,305

JBOSS (2000-04-22)
application server

10,843 9.0 3.49 2003-04-01 to 07-31 1,320

JEDIT (2001-09-02)
text editor

2,024 2.9 4.54 2003-02-01 to 07-31 577

KOFFICE (1998-04-18)
office suite

20,903 11.2 4.25 2003-02-01 to 05-31 1,385

POSTGRESQL (1996-07-09)
database system

13,477 5.4 3.27 2003-01-01 to 05-31 925

PYTHON (1990-08-09)
language + library

29,588 6.2 2.62 2003-05-01 to 07-31 1,201

Table 6.1: Analyzed Projects (Txn = Transaction; Ety = Entity)

applyR10 to get the result of the queryAq = applyR10
(Q). Thus, the size ofAq is always

less or equal than ten.

4. The resultAq of a test caseq consists of two parts:

• Aq∩Eq are the items thatmatchedthe expected outcome and are consideredcorrect
predictions.

• Aq −Eq are unexpected recommendations that are considered aswrongpredictions
and calledfalse positives.

Additionally, ROSEmay have missed items:

• Eq − Aq aremissingpredictions and calledfalse negatives.

The setsAq andEq are illustrated in Figure6.1on the next page.

For the assessment of a resultAq, we use two measures from information retrieval [Rij79]: The
precisionPq describes which fraction of the returned items was actually correct, i.e., expected
by the user—the higher the precision the fewer the false positives. Therecall Rq indicates the
percentage of correct predictions—the higher the recall the fewer false negatives.

Pq =
|Aq ∩ Eq|
|Aq|

and Rq =
|Aq ∩ Eq|
|Eq|

In the case that no entities are returned (Aq is empty), we define the precision asPq = 1, and in
the case that no entities are expected, we define the recall asRq = 1.
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What ROSE finds What it should find

False positives False negatives
Correct prediction

Figure 6.1: Precision and Recall

Our goal is to achievehigh precisionas well ashigh recall values—that is to recommendall
(recall of 1) andonlyexpected entities (precision of 1).

In practice, though, recall and precision correlate negatively with each other. For a high recall,
one could return many or even all items resulting in a low precision. On the other hand only
recommending a few certain items results in a high precision, but a low recall.

For each queryqi we get a precision-recall pair(Pqi
, Rqi

). We summarize these pairs into a
single pair using two different averaging techniques from information retrieval.

Macro-evaluation simply takes the mean value of the precision-recall pairs:

PM =
1

N

N∑
i=1

Pqi
and RM =

1

N

N∑
i=1

Rqi

This approach uses the precision and recall values that have been computed for each
query. As users usually think in queries, macro-evaluation is sometimes referred to as a
user-orientedapproach. It determines the predictive strengthper query.

Micro-evaluation in contrast builds an average precision-recall pair based on items. It does
not use the precision and recall values of single queries, but thesumsof returned, correct,
and expected items.

Pµ =

∑N
i=1 |Aqi

∩ Eqi
|∑N

i=1 |Aqi
|

and Rµ =

∑N
i=1 |Aqi

∩ Eqi
|∑N

i=1 |Eqi
|

One can think of micro-evaluation as summarizing all queries into one large query, and
then computing precision and recall for this large query. It therefore allows statements
that summarize all querieslike “every n-th suggestion is wrong/correct”. For example,
the precisionPµ for PYTHON is 0.50: Every second suggestion is correct which means,
that the recommended entity was actually changed later. Micro-evaluation is sometimes
referred to as asystem-orientedapproach because it focuses on theoverall performance
of the system and not on the average query performance.
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The difference between macro-evaluation and micro-evaluation is important. Micro-evaluation
computes average precision and recallper itemandnot per query. This is illustrated in the
following example:2

Suppose we have two lectures:

• LectureA with 100 students of which 25 wear glasses. The ratio for this
lecture is thus 25%.

• LectureB with 20 students of which 15 wear glasses; resulting in a ratio of
75%.

Averaging these figures with macro- and micro-evaluation we get:

• Macro-evaluationtakes the average of both ratios:

25% + 75%

2
= 50%

The average value is calculated onlecture-level. This means that a lecture has
on average 50% students that were glasses.

• Micro-evaluation, in contrast, calculates the average-value onstudent-level:

100 · 25% + 20 · 75%

100 + 20
=

25 + 15

120
= 33.3%

If the students ofA andB are disjoint, this means that every third student of
these two lectures wear glasses.

This example shows that one has to use and interpret average values very carefully.

As macro-evaluation is misleading in some cases, all averages are given by micro-evaluation,
unless otherwise noted. We will also determine the likelihood that the topmost three recom-
mendations contain at least one correct prediction (see Section6.3for details).

6.2 Precision vs. Recall

A major application forROSEis to guide users through source code: The user changes some
entity, andROSEautomatically recommends possible future changes in a view (Figure1.2).
We evaluated the predictive power ofROSEin this situation. For each transactionT , and each
item i ∈ T , we queriedQ = {i}, and checked whetherROSEwould predictE = T − {i}. For
each transaction, we thus tested|T | queries, each with one element.

Figure 6.2 on the facing page shows a so-calledprecision-recall graphwith the results for
the ECLIPSEproject. For each combination of minimum support and minimum confidence
the resulting precision-recall pair is plotted. Additionally, subsequent confidence thresholds
that have the same support are connected with lines. As a result we get threeprecision-recall

2inspired by [SM83]
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Figure 6.2: Varying Support and Confidence

curves, one for each investigated support. (The connecting lines between measured values are
for the sake of clarity and not for interpolation.)

In Figure6.2, ROSEachieves for a support of1 and a confidence of0.1 a recall of0.15 and a
precision of0.26:

• The recall of 0.15 states thatROSE’s suggestion correctly included 15% of all changes
that were actually carried out in the given transaction.

• Theprecisionof 0.26 means that 26% of all recommendations were correct—every fourth
suggested change was actually carried out (and thus predicted correctly byROSE). On
average, the programmer has to check about four suggestions in order to find a correct
one.

Figure6.2 also shows thatincreasingthe support threshold alsoincreasesthe precision, but
decreasesthe recall asROSEgets more cautious. However, using the highest possible thresh-
olds does not always yield the best precision and recall values: If we increase the confidence
threshold above0.80, bothprecision and recall decrease.

Furthermore, Figure6.2 shows that high supportand confidence thresholds are required for a
high precision. Still, such values result in a very low recall and thus indicate a trade-off between
precision and recall.

In practice, a graph such as the one in Figure6.2 is thus necessary to select the “best” support
and confidence values for a specific project. In the remainder of this paper, though, we have
chosen values that are common across all projects in order to facilitate comparison.

One can either haveprecisesuggestions ormanysuggestions, but not both.
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6.3 Likelihood

A precision like 26% sounds low, but keep in mind that this is the likelihood ofeach single
recommendationpredicting a specific location. If some change inA results in eitherB, C, orD
being changed,ROSEsuggestsB, C, andD, resulting in an average precision of only 33% per
recommendation.

To assess the actual usefulness for the programmer, we checked thelikelihood whether the
expected location would be included inROSE’s top threenavigation suggestions (assuming that
a programmer won’t have too much trouble judging the first three suggestions). Formally,L3

is the likelihood that for a queryq = (Q,E) at least one of the first three recommendations is
correct:

L3 = L(
∣∣applyR3

(Q) ∩ E
∣∣ > 0) ,

whereL(p) stands for the probability of the predicatep.

If, in the example above,ROSEalways suggestedB, C, andD as topmost suggestions,L3 =
100% would hold.

6.4 Results: Navigation through Source Code

We repeated the experiment from Section6.2 for all eight projects with a support threshold of
1 and a confidence threshold of0.1—such that for navigation, the user gets several recommen-
dations. The results are shown in Table6.2on page66 (columnNavigation). For these settings
the average recall is 15%, and the average precision is 26%; these values are also found for
ECLIPSE(Section6.2). The average likelihoodL3 of the three topmost suggestions predicting
a correct location is 64%.

While KOFFICEandJEDIT have lower recall, precision, and likelihood values,GCCstrikes by
overall high values. The reason is thatKOFFICE andJEDIT are projects where continuously
many new features are inserted (which cannot be predicted from history), whileGCC is a stable
system where the focus is on maintaining existing features.

When given one initial changed entity,ROSEcan predict 15% of all entities changed
later in the same transaction. In 64% of all transactions,ROSE’s topmost three
suggestions contain a correct location.

6.5 Results: Error Prevention

Besides supporting navigation,ROSEshould alsoprevent errors.The scenario is that when a
user decides to commit all her changes to the version archive,ROSEchecks if there are related
changes that have not been changed. If there are, it issues a pop-up window with a warning; it
also suggests one or more “missing” entities that should be considered—in Figure6.3 on the
facing page the developer has missed to changedinitDefaults() andplugin.properties.
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Figure 6.3: Error Prevention inROSE

We determined in how many casesROSEcan predict such a missing entity. For this purpose,
we took each transaction, left out one item and checked ifROSEcould predict the missing item.
In other words, the query was the complete transaction without the missing item. So, for each
single transactionT , and each itemi ∈ T , we queriedQ = T −{i}, and checked whetherROSE
would predictE = {i}. For each transaction, we thus again ran|T | tests.

As too many false warnings might undermineROSE’s credibility, ROSEis set up to issue warn-
ings only if thehigh confidence thresholdof 0.9 is exceeded3. Still, we wanted to get as many
missing entities as possible, which resulted in a support threshold of 3.

The results are shown in Table6.2(columnPrevention):

• The averagerecall is about 4%. This means that in only one out of 25 queries (inGCC:
every 5th query),ROSEcorrectly recognizedandpredicted the missing entity.

• The averageprecision is above 50%. This means that every second recommendation
of ROSE is correct, or: If a warning occurs, andROSErecommends further entities, it
predicts in every second case the missing entity.

Given a transaction where one change is missing,ROSEcan predict 4% of the entities
that need to be changed. On average, every second recommended entity is correct.

6.6 Results: Closure

The final question in the “Error Prevention” scenario is how many false alarmsROSEwould
produce in the case that no entity is missing. We simulated this by testingcomplete transactions.
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Navigation Prevention Closure
Support 1 3 3
Confidence 0.1 0.9 0.9
Project Rµ Pµ L3 Rµ Pµ RM PM

ECLIPSE 0.15 0.26 0.53 0.02 0.48 1.0 0.979
GCC 0.28 0.39 0.89 0.20 0.81 1.0 0.953
GIMP 0.12 0.25 0.91 0.03 0.71 1.0 0.978
JBOSS 0.16 0.38 0.69 0.01 0.24 1.0 0.981
JEDIT 0.07 0.16 0.52 0.004 0.59 1.0 0.986
KOFFICE 0.08 0.17 0.46 0.003 0.24 1.0 0.990
POSTGRES 0.13 0.23 0.59 0.03 0.66 1.0 0.989
PYTHON 0.14 0.24 0.51 0.01 0.50 1.0 0.986
Average 0.15 0.26 0.64 0.04 0.50 1.0 0.980

Table 6.2: Results for Fine Granularity (R = Recall;P = Precision;L = Likelihood)

For each transactionT , we queriedQ = T , and checked whetherROSEwould predictE = ∅.
Thus, we had one test per transaction.

As the expected outcome is the empty set, the recall is always1. To measure the number of
false warnings, we cannot use micro-evaluation anymore as one single false alarm results in a
summarized precision of0. We thus turn tomacro-evaluationprecision: The precision for a
single query in this setting is either0 if at least one entity is recommended, or1 if no entities
are recommended;PM is the percentage of commits whereROSEhas not issued a warning, and
1− PM is the percentage of false alarms.

The results are shown in Table6.2 (columnClosure). We see that precision is very high for all
projects, usually around 0.98. This means thatROSE issues a false alarm in only every 50th
transaction.

ROSE’s warnings about missing changes should be taken seriously: Only 2% of all
transactions cause a false alarm. In other words:ROSEdoes not stand in the way.

6.7 Results: Granularity

By default,ROSErecommends entities at a fine granularity level, e.g., variables or functions4.
This results in a low coverage of the rules for a project as most functions are rarely changed.

Our hypothesis was that, if we applied mining exclusively tofiles rather than to variables or
functions, we would get a higher support (and thus a higher recall).

Therefore, we repeated the experiments from Sections6.4 to 6.6 with a coarse granularity—
e.g., mining and applying rules betweenfilesrather than between entities. The results are shown
in Table6.3 on the next page. It turns out that the coarser granularity increases recall inall

4By default,ROSErecommends only complete files if it cannot look inside a file, like forplugin.properties.
For source code the preferred granularity is onfunctionsandfields, and for TEX files onsubsections.
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Navigation Prevention Closure
Support 1 3 3
Confidence 0.1 0.9 0.9
Project Rµ Pµ L3 Rµ Pµ RM PM

ECLIPSE 0.17 0.26 0.54 0.03 0.48 1.0 0.980
GCC 0.44 0.42 0.87 0.29 0.82 1.0 0.946
GIMP 0.27 0.26 0.90 0.08 0.74 1.0 0.963
JBOSS 0.25 0.37 0.64 0.05 0.44 1.0 0.980
JEDIT 0.25 0.22 0.68 0.01 0.44 1.0 0.984
KOFFICE 0.24 0.26 0.67 0.04 0.61 1.0 0.971
POSTGRES 0.23 0.24 0.68 0.05 0.59 1.0 0.978
PYTHON 0.24 0.36 0.60 0.03 0.67 1.0 0.991
Average 0.26 0.30 0.70 0.07 0.66 1.0 0.973

Table 6.3: Results for Coarse Granularity (R = Recall;P = Precision;L = Likelihood)

cases (sometimes even dramatically, as the factors 3–8 inKOFFICEshow). The precision stays
comparable or is even increased.

If ROSEthus suggests only a file rather than an entity, the suggestions become more frequent
and more precise. However, each single suggestion becomes less useful as it suggests a less
specific location—namely only a file rather than a precise entity.5

A possible consequence of this result is to haveROSEstart with rather vague suggestions (say,
regarding files or packages), which become more and more specific as the user progresses.
We plan to apply and extendgeneralized association rules[SA95] (also known asmultilevel
association rules[HF95]) such thatROSEcan suggest thefinest granularitywherever possible.

When given one changedfile, ROSEcan predict 26% of the files actually changed in
the same transaction. In 70% of all transactions,ROSE’s topmost three suggestions
contain a correct location.

6.8 Threats to Validity

We have studied 10,761 transactions of eight open-source programs. Although the programs
themselves are very different, we cannot claim that their version histories would berepresen-
tative for all kinds of software projects.In particular, our evaluation does not allow any con-
clusions about the predictive power for closed-source projects. However, a stricter software
process would result in higher precision and higher recall—and hence, a better predictability.

Transactions do not record theorder of the individual changes involved. Hence, our evaluation
cannot take the order into account in which the changes were made—and treats all orderings
equal. In practice, we expect specific orderings of changes to be more frequent than others,
which may affect results for navigation and prevention.

5This is a general trade-off: If all entities were contained within one file, then any suggestion regarding this
one file would yield a precision of 100% and a recall of 100%—and be totally useless at the same time.
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We have made no attempt to assess thequality of transactions—ROSElearned from past trans-
actions, regardless of whether they may be desired or not. Consequently, the rules learned and
evaluated may reflect good as well as bad practices. However, we believe that competent pro-
grammers make more “good” than “bad” transactions; and thus, there is more good than bad to
learn from history.

We have examined the predictive power ofROSEand assumed that suggesting a change, nar-
rowed down to a single file or even a single entity, would beuseful.However, it may well be that
missing related changes could be detected during compilation or tests (in which caseROSE’s
suggestions would not harm), or may be known by trained programmers anyway (who may find
ROSE’s suggestions correct, but distracting). Eventually, usefulness for the programmer can
only be determined by studies with real users, which we intend to accomplish in the future.
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Chapter 7

Related Work

7.1 Data Preprocessing

Data extraction fromCVS is very well covered, and many tools are available for free: Daniel
German and Audris Mockus createdSOFTCHANGE[Sof04]—a tool that extracts and summa-
rizes information fromCVS and bug tracking databases [GM03]. Dirk Draheim and Lukasz
Pekacki developedBLOOF [Blo04] which extractsCVS log data into a database, and visualizes
the software evolution using metrics [DP03].

Michael Fischer et al. demonstrated how to populate arelease history databaselinking data
from CVS and BUGZILLA [FPG03b]. In [FPG03a] they also combined their approach with
features. Another project that considers multiple data sources isHIPIKAT by DavorČubraníc
and Gail Murphy [̌CM03]. They integrate information fromCVS, BUGZILLA , and developer
mailing lists using text similarity.

To our knowledge, transaction recovery has been used by many approaches but has nowhere
been covered in detail: Harald Gall, Daniel German, and Audris Mockus used fixed time win-
dows in the past [GJK03, GM03, MFH02], and we used sliding time windows in our previous
work [ZDZ03, ZWDZ04]. Commit mails have not been used in recent work to restore transac-
tions.

Up to now, only a few approaches have considered fine-grained changes: Harald Gall et al.
[GJK03] and James Bieman et al. [BAY03] both analyzed relations between classes. In our pre-
vious work we applied the approach presented in Section3.4and mined for relations [ZDZ03]
and association rules [ZWDZ04] between functions, sections, and other fine-grained building
blocks.

Michael Fischer et al. also proposed an algorithm for detecting merges of revisions in their
release history database paper [FPG03b]. Lijie Zou and Michael Godfrey showed how to use
origin analysis to detect merging and splitting of functions in [ZG03]. Nonetheless, data clean-
ing is often neglected, and there is still much room for improvement.
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7.2 Mining in Software Engineering

Independently from us, Annie Ying developed an approach that also uses association rule min-
ing on CVS version archives [Yin03, YMNCC04]. She especially evaluated the usefulness of
the results, considering a recommendation most valuable or “surprising” if it could not be de-
termined by program analysis. She found several such recommendations in theMOZILLA and
ECLIPSEprojects. In contrast toROSE, though, Ying’s tool can only suggest files, not finer-
grained entities, and does not support mining on the fly. A similar work has been done by
Ahmed Hassan [iSS04].

Change data has been used by various researchers for quantitative analyses. Word frequency
analysis and keyword classification of log messages can identify the purpose of changes and
relate it to change size and time between changes [MV00]. Various researchers computed met-
rics on the module or file level [BKPS97, GJKT97, GKMS00, HH03] or orthogonal to these
per feature [MWZ03], and investigated the change of these metrics over time, i.e., for different
releases or versions of a system.

Harald Gall et al. were the first to use release data to detect logical coupling between mod-
ules [GHJ98]. The CVS history allows to detect more fine-grained logical coupling between
classes [GJK03], files, and functions [ZDZ03]. None of these works on logical coupling did
address its predictive power. Jelber Sayyad-Shirabad et al. use inductive learning to learn dif-
ferent concepts of relevance between logically coupled files [SSLM01, SSLM03, SSLM04]. A
concept is a relevance relation, for example whether two files have been update simultaneously.
Instances of concepts are described in terms ofattributessuch as file name, extension and sim-
ple metrics like number of routines defined. Jelber Sayyad-Shirabad thoroughly evaluated the
predictive power of the concepts found, but none of the papers gives a convincing example of
such a concept.

Amir Michail used data mining on the source code of programming libraries to detect reuse
patterns in form of association [Mic99] or generalized association rules [Mic00]. The latter
take inheritance relations into account. The items in these rules are (re-)use relationships like
method invocation, inheritance, instantiation, or overriding. Both papers lack an evaluation of
the quality of the patterns found. However, Amir Michail mines a single version, whileROSE
uses the changes between different versions.

In order to guide programmers, a number of tools have exploitedtextual similarityof log mes-
sages [CCW+01] or program code [Atk98]. HIPIKAT [ČM03] by Davor Čubraníc improves
that by taking also other sources like mail archives and online documentation into account.
In contrast toROSE, all these tools focus on high recall rather than on high precision, and on
relationships between files or classes rather than between fine-grained entities.

7.3 Workshop on Mining Software Repositories (MSR)

Mining software repositories is an emerging research area. Therefore, it has been the topic of
the MSR workshop that has been co-located with ICSE 2004.
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Filip Van Rysselberghe et al. mined forfrequently applied changesusing clone detection tech-
nqiues [RD04], and Mohammad El-Ramly et al. mined software usage data, like system-user
interaction data [ERS04]. In the area ofdefect analysis, Chadd Williams et al. discussed how to
used bug data to find new bugs [WH04], and Thomas Ostrand et al. tried to predict fault-prone
files [OW04]. In order to analysisproject communities, Luis Lopez-Fernandez et al. applied so-
cial network analysis toCVS archives [LFRGB04], and Kevin Schneider et al. focused on local
interaction data [SGPP04]. Mining for reuseseems to be a hot topic in future: Frank McCarey
et al. applied collaborative filtering to recommend reuse [MCK04], and Yuhanis Yusof et al.
mined for code templates [YR04].

Most of this work is out of scope forROSEat the moment. However, it will be important for
future improvements onROSE.
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Chapter 8

Conclusion

Imagination is more important than knowledge.
Knowledge is limited. Imagination encircles the world.

– Albert Einstein

ROSEcan be a helpful tool to suggest further changes to be made and to warn about missing
changes. However, the more there is to learn from history, the more and better suggestions can
be made:

• For stable systems likeGCC, ROSEgives many and precise suggestions: 44% of related
files and 28% of related entities can be predicted, with a precision of about 40% for each
single suggestion, and a likelihood of over 90% for the three topmost suggestions.

• For rapidly evolving systems likeKOFFICE or JEDIT, ROSE’s most useful suggestions
are at the file level. Overall, this is not surprising, asROSEwould have to predictnew
functions, which is probably out of reach for any approach.

• In about 4–7% of all erroneous transactions,ROSEcorrectly detects the missing change.
If such a warning occurs, it should be taken seriously as only 2% of all transactions cause
false alarms.

What havewelearned from history, and what are our suggestions? Here are our plans for future
work:

Aspect identification. If program entities have been changed together several times, the com-
mon abstractions behind the individual changes may be candidates foraspects(as in
aspect-oriented programming). An evolutionary coupling would then be turned into a
single syntactic entity, such that future changes can be made in one place only.

Rule presentation. The rules detected byROSEdescribe the evolutionary software process—
which may or may not be the intended process. Consequently, these rules can and should
be made explicit. In previous work [ZDZ03], we used visual mining to detect regularities
and irregularities of logically coupled items. Such visualizations could further explain the
recommendations to programmers and managers.
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Taxonomies. Every change in a method implies a change in the enclosing class, which again
implies changes in the enclosing files or packages. We want to exploit suchtaxonomies
to identify patterns such as “this change implies a change in this package” (rather than “in
this method”). They may be less precise in the location, but provide higher confidence.

Sequence rules.Right now, we only relate changes that occur in thesametransaction. In the
future, we also want to detect rules across multiple transactions: “The system is always
tested before being released” (as indicated by appropriate changes).

Further data sources. Archived changes contain more than just author, date, and location.
One could scanlog messages(including the one of the change to be committed) to deter-
mine the concern the change is more likely to be related to (say, “Fix” vs. “New feature”).

Program analysis. Another yet unused data source is program analysis; although our approach
can detect coupling between items that are not even programs. Knowledge about the
semantics of programs could also help to separate related changes into likely and non-
likely. Furthermore, coupling that can be found via analysis [Yin03] need not be repeated
in ROSE’s suggestions.

From locations to actions. By combining version histories and program analysis it will be
possible to learn patterns, like whenever a developer uses a logger she first imports the
logger class and declares an instance.

In other words, after the user typeslog.info("Hello World") we recommend to insertimport
logger.Logger andLogger log = Logger.createLogger(#className). Such recommenda-
tions can be integrated in IDEs and executed at the touch of one button.

Currently, some simple code assist features based on program analysis exist. Leveraging
version archives we can automatically learn more complex features and additionally ver-
ify existing ones. The learning can take place at the user’s place thus enabling developer
or project specific patterns.

However,ROSEwill move closer towisdom, but never actually will be wise. Thus it will relieve
programmer’s work, but not make them unemployed. (For the difference between information,
knowledge, and wisdom read the cartoon in Figure8.1).

At the dawn of the last century, the philosopher George Santayana famously remarked that
those who do not learn from history would be condemned to repeat it. Those who do learn from
history, though, get thechanceto repeat it—and this is what our approach provides.
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Figure 8.1: The Information-Knowledge-Wisdom Hierarchy (taken from [Cle82])
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