
Knowledge Collaboration by Mining Software Repositories

Thomas Zimmermann
Saarland University, Saarbrücken, Germany

tz@acm.org

Abstract

We will give a short overview on recent approaches

to support developers by mining software repositories
and outline current and future challenges from which
knowledge collaboration can benefit.

1. Introduction

When people collaborate, they communicate and
create documents that are shared among each other. In
most projects these artifacts are collected and archived
in software repositories: For open source projects,
communications between developers are stored in mail-
ing lists, newsgroups, and personal archives. Changes
to the source code of software are recorded in version
archives such as CVS. Failures and feature requests are
submitted to and discussed in issue tracking systems
such as Bugzilla. Explicit knowledge such as documen-
tation and design documents is published on websites
or wikis.

Recently a new research area evolved that mines
software repositories. Although most approaches have
focused on understanding software and its evolution so
far, software repositories can be leveraged to support
developers and their collaboration.

In this paper, we will give a short overview on the
state-of-art of mining software repositories with respect
to collaboration (Section 2), before we outline ongoing
and future challenges from which knowledge collabora-
tion can benefit (Section 3).

2. Supporting Developers

In this section we present several examples how his-
toric data was used to support collaboration among
developers. Our overview is not complete since we
favored research that actually resulted in tools. For a
broader view on mining software repositories we refer
to the MSR workshop series [6].

Figure 1. After an initial change to a method,
eROSE recommends related code locations.

Project memory. The Hipikat tool by Cubranic et
al. [2] was the first one to combine artifacts from
different software repositories such as version ar-
chives, bug databases, documentation, and mailing
lists. Developers can explicitly query this project
memory for related artifacts after selecting an initial
artifact. Hipikat’s recommendations are especially
useful for newcomers to a software project.

Guiding developers. The eROSE tool by Zimmer-
mann et al. [10] guides programmers along related
changes by mining version archives. When a devel-
oper changes f() and other people have changed f()
together with g() in the past, eROSE will detect this
and suggest “Programmers who changed function
f() also changed function g()” (see Figure 1). In
contrast to Hipikat, eROSE makes recommendations
automatically and suggests specific actions (change,
add, or delete something).

Software navigation. The NavTracks tool by Singer et
al. [7] monitors the navigation history of a single
developer and use this data to support her future
navigation. DeLine et al. [3] extended this work in
their Team Tracks tool to multiple developers that
share navigation history.

All these tools leverage one or more software reposito-
ries to support developers by providing knowledge that
is obtained from the past. In the next section, we will
outline ongoing research challenges that will further
improve knowledge collaboration.

3. Challenges

The research on mining software repositories is cur-
rently in an early stage. There are several ongoing chal-
lenges that are relevant for knowledge collaboration.

Multiple data sources. Most research focuses only on
one data source such as version archives or bug da-
tabases. In recent research several software reposito-
ries have been combined (starting with Hipikat [2]).
This gives additional context to mining. For in-
stance, one can assess changes using bug databases,
thus getting a notion of good vs. bad knowledge.

Fine-grained changes. All tools discussed in Section 2
focused only on artifact level such as files, methods,
or bug reports. Recently, more fine-grained changes
were analyzed [4] and used to identify usage pat-
terns [5] or cross-cutting concerns [1]. Combined
with context information this will lead to tools that
can assess new changes based on knowledge that is
mined from software repositories (think of a self-
learning bad smell check across developers).

Collecting new data. Most research analyzed existing
software repositories. However, at some point the
information available will be exhausted. The Nav-
Tracks [7] and Team Tracks [3] tools pioneered a
new direction. Instead of taking existing repositories
they build their own repositories which are then ana-
lyzed. This way, one gets more and better data to
turn into knowledge. Related research in this area
includes waypointing and social tagging of software
as proposed by Storey et al. [8].

Mining across projects. Typically multiple projects
are mined at the same time for understanding soft-
ware evolution. However, when it comes to support-
ing developer, only single projects were investigated
so far. Xie and Pei were the first ones to mine
knowledge (usage patterns) across multiple pro-
jects [9]. By considering a large amount of projects,
one can build a huge knowledge base. The goal will
be to improve search engines for source code such
as Koders1 and smoothly integrate them into IDEs.

Although mining software repositories does not explic-
itly support collaboration, it creates knowledge that
helps developers. Since this knowledge is mined from
data that comes from different developers, one can
think of implicit knowledge collaboration: the knowl-
edge is collected in the background and shared among
developers.

1 http://www.koders.com/

4. References

[1] Silvia Breu and Thomas Zimmermann. “Mining Aspects
from History.” In Proceedings of the 21st IEEE/ACM Inter-
national Conference on Automated Software Engineering
(ASE 2006), September 2006.

[2] Davor Cubranic, Gail C. Murphy, Janice Singer, Kellogg
S. Booth. “Hipikat: A Project Memory for Software Devel-
opment.” In IEEE Transactions on Software Engineering,
vol. 31, no. 6, pp. 446-465, June 2005.

[3] Robert DeLine, Mary Czerwinski, George G. Robertson.
“Easing Program Comprehension by Sharing Navigation
Data.” In IEEE Symposium on Visual Languages and Hu-
man-Centric Computing (VL/HCC 2005), September 2005,
Dallas, USA. IEEE Computer Society, pp. 241-248

[4] Beat Fluri and Harald C. Gall. “Classifying Change
Types for Qualifying Change Couplings.” In Proceedings of
the International Conference on Program Comprehension
(ICPC), Athens, Greece, June 2006, pp. 35-45.

[5] V. Benjamin Livshits and Thomas Zimmermann. “Dy-
naMine: Finding Common Error Patterns by Mining Soft-
ware Revision Histories.” In Proceedings of the 10th Euro-
pean Software Engineering Conference held jointly with
13th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering (ESEC/SIGSOFT FSE 2005),
Lisbon, Portugal, September 2005, pp. 296-305.

[6] International Workshop on Mining Software Repositories
2004-2006, http://msr.uwaterloo.ca/

[7] Janice Singer, Robert Elves, Margaret-Anne Storey.
"NavTracks: Supporting Navigation in Software Mainte-
nance.” In Proceedings 21st IEEE International Conference
on Software Maintenance (ICSM'05), pp. 325-334, Septem-
ber 2005.

[8] Margaret-Anne Storey, Li-Te Cheng, Ian Bull, and Peter
Rigby. “Waypointing and social tagging to support program
navigation.” In CHI '06: Extended Abstracts on Human Fac-
tors in Computing Systems. Montréal, Québec, Canada, April
2006. ACM Press, New York, NY, pp. 1367-1372.

[9] Tao Xie and Jian Pei. “MAPO: mining API usages from
open source repositories.” In Proceedings of the Interna-
tional Workshop on Mining Software Repositories (MSR
'06), Shanghai, China, May 2006. ACM Press, New York,
NY, pp. 54-57.

[10] Thomas Zimmermann, Peter Weissgerber, Stephan
Diehl, Andreas Zeller. "Mining Version Histories to Guide
Software Changes.” In IEEE Transactions on Software En-
gineering, vol. 31, no. 6, pp. 429-445, June 2005.

