
How History Justifies System Architecture (or not)

Thomas Zimmermann Stephan Diehl Andreas Zeller

Computer Science, Saarland University
E-mail:zimmerth@st.cs.uni-sb.de · diehl@acm.org · zeller@acm.org

Abstract

The revision history of a software system conveys impor-
tant information about how and why the system evolved in
time. The revision history can also tell us which parts of the
system are coupled by common changes: “Whenever the
database schema was changed, thesqlquery() method was
altered, too.” This “evolutionary” coupling can be com-
pared with the coupling as imposed by the system architec-
ture; differences indicate anomalies which may be subject
to restructuring.

Our ROSEprototype analyzes fine-grained coupling be-
tween software entities as indicated by common changes.
It turns out that common changes are a good indicator
for modularity, that evolutionary coupling should be de-
termined between syntactical entities (rather than files or
modules), and that common changes can indicate coupling
between software entities and non-program artifacts that is
unavailable to the analysis of a single version.

1. Introduction

In a software product, two entities arecoupledwhenever
a change in an entityA implies a change in another en-
tity B—one says thatB depends onA. Good software
design attempts to minimize and encapsulate dependencies
such that future changes induce as few further changes as
possible.

Traditionally,program analysisdeduces potential depen-
dencies between program entities from source code. In par-
ticular, change impact analysisdetermines all partsB of a
program that may be affected by a change inA.

In this paper, we take an alternate approach to detect de-
pendencies that is orthogonal to program analysis and ex-
ploits alternate knowledge. Rather than focusing on po-
tential dependencies as determined from program code, we
focus on factual dependencies as indicated by therevision
historyof the software.

The basic idea is thatcommon changesof entities indi-
cate “evolutionary” dependencies: “Whenever the database

schema was changed, thesqlquery() method was altered,
too”. The more frequently entities have been changed to-
gether, the stronger they are coupled.

As a simple example, consider Figure 1, visualizing the
evolutionary coupling of some program entities in theGNU
Compiler Collection (GCC), as obtained from theGCC CVS
history using ourROSEprototype. We see two filesdbx-
out.c andsdbout.c (square rectangles) that issue debugging
symbols inDBX andSDB format, respectively.

Both files contain some program entities, depicted as
vertices—variablessuch asdbx debug hooks in dbxout.c
and methodssuch assdb global decl(). The numbers in
brackets show how frequently the entity has been changed
over the revision history ofGCC—xcoff debug hooks, for
instance, has been changed ten times.

Two entities are related byedgesif they ever have been
changed at the same time—that is, they arecoupledby a
common change in theGCC CVSarchive. The number as-
sociated with each edge indicateshow oftenthe related en-
tities have been changed together. So, we can see that

• In all 12 cases wheredbx debug hooks was changed,
so wassdb debug hooks, and vice versa.

• In all 4 cases wheresdb global decl() was changed, so
were the otherdebug hooks variables—in both files.

• dbx functions end() anddbx symbol name() have been
changed together, but never with an entity insdbout.c.

12

10

 4

 410

gcc/gcc/dbxout.c gcc/gcc/sdbout.c

dbx_debug_hooks

xcoff_debug_hooks

sdb_debug_hooks

sdb_global_decl()

[12]

[10]

[12]

[4]

 4

dbx_functions_end()

[7]

dbx_symbol_name()

[6] 2

Figure 1. Evolutionary coupling in GCC

1

These couplings show that the separation of concerns into
dbxout.c andsdbout.c is not yet perfect: The evolutionary
coupling shows up some cross-cutting concerns—at least
between the individual debug hooks. In terms of modu-
larity, it may be wise to introduce acommon abstraction
for debug hooks—such as a type, a superclass, or an as-
pect. This abstraction could then be used by the individual
modules—and, consequently, there would only be one place
to change in future.

In general, using the revision history as additional
knowledge source allows for animproved assessment of
software architectures:

Detecting coupling between non-program entities.
Think of a simple coupling between a database
schema and anSQL query method: Whenever the
former is changed, the latter must be adapted, too.
Detecting such a coupling from the software product’s
contents would require a very specific analysis that
knows about syntax and semantics of the database as
well as the query method. However, this coupling can
easily be established from revision history.

Detecting coupling without program analysis. Revision
histories are available for almost every non-trivial
software project. To establish coupling between stored
artifacts (typically files), it is not required to analyze
the artifact contents. A light-weight analysis can easily
associate textual changes to syntactic entities, such
that coupling can be established on a finer-grained
basis (say, coupling between functions stored in a file).

Comparing evolutionary and specified coupling.
“Evolutionary” coupling from revision history and
“analytical” coupling from program analysis can
be determined independent of each other, and thus
compared with each other. In the ideal case, every
evolutionary coupling should also be a analytical
coupling, thus justifying the system architecture.
Mismatches indicate possible targets for restructuring.

Earlier work has leveraged release or revision histories
to detectcoarse-grained couplingbetween modules [3],
files [6] or classes [1]. The present work is the first, though,
that relates changes to individualprogram entitieslike func-
tions, methods, and attributes. It thus detectsfine-grained
couplingbetween these entities, allowing for a much better
understanding of commonalities and anomalies—as shown
in theGCCexample above.

The remainder of this paper is organized as follows: In
Section 2, we show how to obtain and summarize evolu-
tionary coupling from revision archives. Sections 3 and 4
present more findings from the evolution ofGCC and the
GNU Data Display Debugger (DDD). These findings moti-
vate Section 5, where we show how to assess system archi-

tectures in terms of given modularity versus detected evo-
lutionary coupling. In Section 6, we apply these methods
to further examples. Section 7 discusses related work; Sec-
tions 8 and 9 end with conclusion and future work.

2. Analyzing Evolution

The data source for all our findings areautomated revi-
sion archives,as realized in common configuration manage-
ment systems. One of the most popular systems, especially
for open-source projects, is theconcurrent versions system
(CVS). We thus choseCVS archives as the base for our in-
vestigations and implemented a prototype calledROSE1 to
analyze the evolution ofCVS archives.

Each original change to a software system, as stored in
theCVS archive, is tagged as follows:

• The author of the change, i.e. the user id of the pro-
grammer who committed the change;

• Theextentof the change, i.e. the file and location af-
fected by the change;

• The contentof the change, i.e. the actual text or data
inserted or deleted;

• Therationaleof the change, i.e. the reason of why the
change was made;

• Thedateof the change.

Although CVS allows changes that affect several files,
the coupling between the individual changes is lost upon
archival. Thus, the coupling between changes has to be
restored. This problem occurs for all tools that attempt
to analyzeCVS histories. As an example, consider the
cvs2cl script which summarizesCVSarchives to change log
files [2]. When can merge duplicate changes into a single
transaction?

The way adopted bycvs2cl is called the “Right Way”—
changes from different authors, with different rationales, or
more than three minutes apart are not considered coupled
and thus part of different transactions.ROSEadopts pre-
cisely this approach. In fact, there are not that many alter-
natives:

• Choosing a smaller time window results in the risk
of longer transactions being split. That is, ifCVS
needs more than three minutes for a transaction, the
changes would be considered part of different trans-
actions. In our experience as programmers, we never
had any transactions that would take longer than three
minutes.

1ROSE stands forReengineering Of Software Evolution;it is a non-
Rational tool.

2

• Choosing a larger time window, though, may result in
unrelated transactions to be merged. We found it un-
likely that a programmer can start and complete a to-
tally new task in less than three minutes.

These problems are specific to the analysis ofCVSarchives;
more sophisticated version control systems do not lose the
coupling of changes. In the remainder of this paper, an “in-
dividual” change is the change to a single file; a “logical
change” can be composed of several individual changes and
may thus affect multiple files. Unless stated otherwise, a
“change” stands for a logical change.

Besides restoring the coupling between changes,ROSE
does a light-weight syntactical analysis of the program
source to associate the change extent to individual program
entities such as functions, methods, attributes and variables.
Thus, it can induce that a change to, say, line 50 ofmain.c
affected the declaration of theoptions variable.

While we can easily determine whetherchangesare cou-
pled, determining whether programentitiesare coupled is
not so simple. In fact, coupling between entities is not a
matter of “whether”, but rather of “how much”.

Figure 1 illustrates this problem. Thedebug hooks
variables are strongly coupled (every change in one vari-
able was accompanied by a change in another variable).
The coupling between the functionsdbx functions end and
dbx symbol name, though, is much weaker: Only a third of
the respective changes also involved the other function. We
thus require a means to express theevidence of coupling,
based on the numbers of common changes.

OurROSEprototype uses a simple approach to determine
this evidence. For each pair of entities, we count the number
of changes that affected this pair of entities—that is, how
often have the two entities been changed together. As a
result, we obtain a table ofchange counts.Table 1 shows
such a table for a project with six directories.

S A B C D E F
Proposal A 8 6 0 0 0 0
Appendices B 6 7 0 0 0 0
Third Party API C 0 0 9 3 0 0
Data Acquisition D 0 0 3 3 2 1
Test Cases E 0 0 0 2 9 8
Visualization F 0 0 0 1 8 8

Table 1. Support matrix S

This table can be read as follows:A has been changed
together withA eight times—that is, the overall number of
changes toA was eight. Out of these eight changes, six also
affectedB, and none affected the other components. The
table is symmetrical, as we cannot tell whether a change
in A induced a change inB, or vice versa, or not at all. The

matrix gives an indication of how evident the coupling is—
a coupling supported by many common changes is more
evident than a coupling supported by few common changes.

Formally,S is computed as follows. LetE be the set of
changed entities to be considered. Then, agroupingis a list
of setsG1, . . . , Gk whereGi ⊆ E . Each setGi stands for
a single change affecting its elements. Note that the sets
Gi should usually not be disjoint—that is, we have changes
affecting multiple entities.

For each pair(e1, e2) ∈ E × E of entities, we compute
its absolute number of occurrences

Se1,e2 =
∣∣{Gi | e1 ∈ Gi ∧ e2 ∈ Gi}

∣∣
We call the resulting matrixS thesupport matrixas it indi-
cates how much evidence is there for each dependency. In
particular,Se,e is the number of setsGi containinge.

In the next step, we want to know thestrengthof the
coupling: Of all changes to an entity, how often (as a per-
centage) was some other specific entity affected? For this
means,ROSEcomputes theconfidence matrixC which con-
tains therelative numbers of occurrences

Ce1,e2 =
Se1,e2

Se1,e1

Given a support matrixS, we can easily computeC by di-
viding every row by its element on the diagonal. In our
example, this results in in the confidence matrix shown in
Table 2. Zero entries indicate that there is no dependency
between two entities with respect to the grouping criteria.
Note that whileS is symmetric,C is not.

C A B C D E F
A 1 6/8 0 0 0 0
B 6/7 1 0 0 0 0
C 0 0 1 3/9 0 0
D 0 0 1 1 2/3 1/3
E 0 0 0 2/9 1 8/9
F 0 0 0 1/8 1 1

Table 2. Confidence matrix C

The strongest dependencies are those that have both high
confidence and high support. To find these dependencies,
we use 3D bar charts to emphasize strong dependencies as
shown in Figure 2.

The bar chart combines both confidence and support in-
formation. Confidence is indicated by the height of each
bar, while support is encoded by the color; the darker the
color, the higher the support. In Figure 2, we immediately
see that for example the dependency betweenE andF is
much stronger than the one betweenD andF . It is also in-
teresting to note the light grey bars in the middle represent-
ing dependencies with high confidence but little support.

3

Figure 2. Dependency strength between
items. Greater height indicates higher confi-
dence, darker color indicates higher support.

In addition to the table and the bar chart, we can gain in-
sight into the dependencies between the entities by drawing
the graph

G =
{
E , {(e1, e2) | e1, e2 ∈ E andSe1,e2 > 0}

}
and labelling its edges with support values (or alternatively
with the confidence). For our above example, the graph is
shown in Figure 3.

In the graph there are two important aspects:

Existence of edges.Entities that are related are connected
by edges and sets of entities with many interrelations
form clusters. In the example graph we see for exam-
ple that D, E and F are related to each other.

Absence of edges.The absence of edges indicates that en-
tities are not related. In the example graph we imme-
diately see that there are two unconnected subgraphs.

Actually, the above example stems from theCVS archive of
theROSEtool—that is, we appliedROSEto itself. A and B
are directories containing the project proposal, whereas the
other directories contain the source code and test cases of
our implementation.

ForROSE, we also found that there is no dependency be-
tween E (test cases) and C (third party API), but between
E and D (data acquisition) as well as E and F (visualiza-
tion tool). This very much matches the structure of our sys-
tem, as the tests never directly invoke the third party library,
but only the visualization and data acquisition methods. To

Figure 3. Support graph G of the ROSE project

sum up, the support graph for directories grouped by logical
changes actually reflects the module structure ofROSE.

None of the visualizations above is suitable for fine-
grained analysis. For instance, a large open-source sys-
tem likeMOZILLA contains more than 77,000 files; conse-
quently, we obtain a matrix with 77,000× 77,000 entries. A
fine-grained analysis, counting program entities rather than
files, would result in even larger matrices.

To select particular information in the matrices we can
use filtering. LetB be a support or confidence matrix, as
described above. Then, we can use athresholdt to obtain a
filteredmatrixA:

AB,t
e1,e2

=
{

0 if Be1,e2 < t
Ae1,e2 otherwise

As an example, we can examine the filtered confidence
matrix CC,t which only contains values greater than the
threshold. In practice, it is very useful to use thesupport
as a filter for the confidence matrixCS,t—that is, we only
keep entries with a support greater or equal tot.

In practice filtering reduces the number of non-zero en-
tries considerably, but it does not change the size of the ma-
trix. Instead we can remove entities with no strong depen-
dencies by restricting the matrices to areduced entity set
Et = {e|Se,e ≥ t}. As can be seen from the filtered matrix
in Figure 4 all dependencies of D are weak, thus it makes
sense to completely remove the row and column of D from
the matrix.

To get an overview of huge matrices and select inter-
esting parts,ROSEpresents its findings asinteractive pix-
elmaps, shown in Figure 4. Here every pixel represents one
entry of the matrix; the value is encoded by color (darker
pixels = higher values). A user can select individual parts
and ask for details on the specific entry; she can also have
3D bar charts drawn in a separate window.

4

Figure 4. Pixelmap of matrices S, C, CS,4 and
C restricted to E4. Rows depend on columns.

3. Example: The GCC Compiler

The GNU Compiler Collection (GCC) is one of the most
popular open source projects. It stands out due to its porta-
bility and its support for a variety of programming lan-
guages, like C,C++, ADA , FORTRAN or JAVA. These char-
acteristics are reflected in the revision archive ofGCC: The
20,839 files split up into about 274 file extensions. The
revision history ofGCC consists of more than 160,000 in-
dividual changes that we grouped to about 35,000 logical
changes; we analyzed all changes between 1997-08-11 (the
creation of theCVS archive) and 2003-03-12.

3.1. Coarse-Grained Analysis

To develop a feel for the nature ofGCC, we first analyzed
coupling between file types. Therefore, we summarized the
most frequent file extensions into categories, e.g. C files,
C++ files,ADA files, and so on and determined the coupling
between them (see Figure 5). It turned out that most cate-
gories are loosely coupled, except for one exception: About
90% of the logical changes that contained an .OUT file also
contained aJAVA file; this is so because .OUT files contain
expected output of theJAVA test suite. Another notewor-
thy exceptions are C implementation files that depend on C
header files (no big surprise here),TEXINFO documentation
(but not vice versa), andADA files.

As the support for those inter-category coupling was
rather small, we decided to concentrate our fine-granular
analysis on methods and declarations of C source files.

3.2. Fine-Grained Analysis

The amount of coupling between methods and declarations
in GCC was overwhelming. We found exactly 3,424,012
evolutionary dependencies between 92,948 program enti-
ties. Because of this huge number, we concentrated on de-
pendencies with a minimum support of 8 and at least 80%
confidence. For this characteristics we found 115 depen-
dencies. Cutting down the minimum support to 4 resulted
in 6,484 dependencies. A selection of interesting couplings
is described below.

Discover dependencies.One example for coupling be-
tween program entities of different files is contained

ADA: .ads .adb
C: .c

C++: .cc .cpp
Fortran: .f

C-Header: .h
Makefile: .in .am

Java: .java
.out .out+ .out++

Texinfo: .texi

Figure 5. Coupling between file types in GCC.
Rows depend on columns; darker color indi-
cates higher confidence.

within directory gcc/gcc/config/i386/. In file i386.c
the initializations of the arraysi386 cost, i486 cost,
pentium cost, pentiumpro cost, and k6 cost are very
strongly coupled with a confidence of 90% to 100%
and a support of 11 changes. These arrays all contain
the costs of different assembler operations for specific
Intel related processors. Furthermore, it turns out that
these arrays are of typeprocessor costs, defined in file
i386.h. This dependency is reflected in an evolutionary
coupling betweenprocessor costs and the above cost
arrays with a confidence of 82% and a support of 9.
In other words, we have rediscovered the dependency
between thecost arrays and their type definition.

Assistance in program understanding.A coupling be-
tween two functions appears inside the filelcm.c in
directory gcc/gcc/. This file contains routines that
are used byGCC for lazy code motion optimiza-
tion, e.g. global common subexpression elimina-
tion. Between some of these routines exist coupling:
compute antinout edge() andcompute available() with
support 15 and 100% confidence;compute available()
and compute antinout edge() again with support 15
and 94% confidence;compute nearerout() and com-
pute laterin() with support 11 and 92% confidence. For
lcm.c this is a valuable information for program com-
prehension.

Guidance for software development.In the same di-
rectory we discovered a coupling between a method
and an enumeration withintoplev.c: In 23 cases
dump file was changed together with function
rest of compilation(). The reason is obvious:toplev.c
performs optimization passes during compilation,
dump file contains an enumeration of all available
dump formats that may be used for debugging pur-
poses, andrest of compilation() controls the dumping
to files. So each time when a dump format is added or
modified, a change inrest of compilation() is required,

5

File f1 → File f2 Support Confidence
options.h options.C 60 100 %
HelpCB.h HelpCB.C 26 100 %
CallNode.h ListNode.h 16 100 %
. . .
UndoBuffer.h UndoBuffer.C 30 97 %
. . .
DataDisp.h DataDisp.C 117 95 %
AppData.h resources.C 134 95 %

Table 3. Coupling between files in DDD

too. Such an information may be used to guide a
developer towards locations where related changed
are typically applied.

Overall, we find that althoughGCC history has several
changes that span multiple files, few of these changes in-
dicate bad programming practice or a need for major re-
structuring. In other words, history confirms the system ar-
chitecture ofGCC.

4. Example: The DDD Debugger

Let us now turn to another open source project where things
are not as nice as inGCC. TheGNU Data Display Debug-
ger (DDD) is a graphical front-end for several command-
line debuggers.2 Compared toGCC, DDD is a rather small
project consisting of 1,511 files. Its revision history consists
of about 18,302 individual changes that can be grouped to
6,203 logical changes between 1995-02-09 and 2001-08-24.

4.1. Coarse-Grained Analysis

On the file level we found very promising and strong de-
pendencies, especially between header and C source files.
Some of them are listed in Table 3.

Figure 6 visualizesall dependencies between files in
DDD. The files are sorted by the containing directory. The
large block at the upper left represents theddd/ directory
of DDD. This directory contains the source code and some
pictures. This structure is clearly visible in the pixelmap,
and it turns out that these two components are very loosely
coupled.

DDD uses some third party libraries, visualized at the
bottom right. Although there is some coupling between the
DDD core and these components, no evolutionary depen-
dencies can be found between them. This makes sense as
changes on external libraries are usually checked-in sepa-
rately. But still, some directories are related with the source

2We chose DDD because it was co-written and maintained by the third
author in the time period under examination, and he did not mind being
faced with his sins.

DDD Source

Libraries
Pics

Icons

Patches

Tests

Directory
ddd/

Figure 6. Coupling between files in DDD.
Rows depend on columns; darker color in-
dicates higher confidence.

code directory ofDDD. Two examples are thepatches and
tests directories. This kind of coupling manifests itself in
the thin rectangles at the lower left of the pixelmap.

4.2. Fine-Grained Analysis

After analyzing coupling between files, we increased the
granularity, and examined coupling between classes, meth-
ods and declarations. We found a total of 1,228,042 depen-
dencies. Again, we filtered the result of our analysis to get
the most interesting couplings. This time we used a mini-
mal support of 5 and a minimal confidence of 60%. Still,
more than 700 dependencies match these criteria.

Coupling within files. In file UndoBuffer.C we found a
very strong coupling: Each time when functionredo()
was modified, functionundo() was modified, too and
vice versa. The support for this dependency is 15,
and the confidence 100% in both directions. A sim-
ilar coupling was found in the same file for functions
redo action() andundo action(). Again we found 100%
confidence, but only a support of 7.

Another easy understandable coupling revealed within
file ddd.C which contains the main program ofDDD.
The fieldscommand menubar[] andsource menubar[]
are coupled with 100% confidence and a support of
10 to the fielddata menubar[]. It turned out thatall

6

menubars inddd.C are coupled among themselves with
a high support and a strong confidence—a coupling
that is not detectable by program analysis.

Weird dependencies.The couplings described above all
occured within single files. ButDDD also contains
strong evolutionary couplings across files. For exam-
ple between filedisp-read.C and filePosBuffer.C: Each
time when functionis single display cmd() is modi-
fied, the functionPosBuffer::filter() is changed, too.
The support for this dependency is 6. At first glance,
these two methods have no recognizable dependency.
However, theDDD maintainer confirmed that the two
functions must typically be changed together. This is
another example where our approach reveals depen-
dencies that may not be recognized by traditional pro-
gram analysis.

Complex coupling. One example for a coupling with a
very large support was found between the struct
Appdata defined in file AppData.h and the field
ddd resources[] defined in fileresources.C. Both code
entities were changed 128 times in the same logical
change. ForAppData, this is a 96% confidence. The
AppData struct holds the global configuration ofDDD;
ddd resources[] contains about 200 definitions which
relate resource names to members ofAppData.

Again, this is a dependency which is usually out of
reach for program analysis. Note that the coupling be-
tweenAppData andddd resources[] is also visible at
file level (see Table 3).

Increasing granularity does not always result in dependen-
cies with a higher confidence. For example the filesop-
tions.handoptions.Care related very strongly on file level
with a high support of 60 and a confidence of 100%. In
the fine-granular analysis it turned out that this coupling re-
sulted from many dependencies with a small support. In
our exampleoptions.h contained the function prototypes,
andoptions.C their implementation. Most of the 60 simul-
taneous changes added new options toDDD. This resulted
in many fine-granular couplings with a low support of one
or two changes. Hence, many weak, fine-granular depen-
dencies may form a strong, coarse coupling, and a weak,
coarse-granular coupling may result in a single strong, fine-
granular dependency.

Overall, we find that the evolution history ofDDD shows
several weaknesses in the system architecture: too often,
a conceptual change must be applied to several unrelated
locations. In particular, there is a risk that programmers un-
aware ofDDD evolution history might perform incomplete
changes, thus endangering the stability of the system.

5. Metrics for Evolutionary Coupling

We have now shown how to obtain and use evolutionary
coupling forGCCandDDD, and also presented some anec-
dotical evidence thatGCCis better structured thanDDD. Let
us now investigate how toquantifythis evidence. Just how
well does the system evolution justify its architecture? To
this end, we define indices that summarize the overall den-
sity and coupling.

The evolutionary density indexEDI relates the number of
non-zero entries to the total number of entries of the support
matrix:

EDI =
|{(e1, e2)|Se1,e2 > 0 ∧ e1 6= e2}|

|E|2 − |E|

The EDI relates the number of actual dependencies to
that of possible dependencies. A lowerEDI indicates a
lower coupling: The lower theEDI, the better the modu-
larity.

TheEDI for the file-level ofGCC is 0.03886, whereas for
the program-entity level it is 0.00079 (see Table 5). This
means that 4% of all possible dependencies between files,
but only 0,08% between all program entities exist.

For most of the entities that we deal with there exists a
hierarchical ordering, e.g. functions are defined within files,
files are contained within directories. TheEDI does not take
into account the hierarchical structure. To this end we in-
troduce another metric. Once again assuming that functions
have been grouped by checkin time intervals, comparing the
number of related functions within the same file with that
of related functions in different files can be used to measure
the strength of the coupling of these files.

In more general terms, we assume that there is a disjoint
partitioningP = {p1, . . . , pk} of the entitiesE . Then the
sets of all possible internal and external dependencies are

EXTRA = {(e1, e2) |e1 ∈ pi, e2 ∈ pj , i 6= j}
INTRA = {(e1, e2) |e1 ∈ pi, e2 ∈ pj , i = j}

The evolutionary coupling indexECI relates the actual
number of external dependencies to the actual number of
internal dependencies:

ECI =

∣∣{(e1, e2) ∈ EXTRA |Se1,e2 > 0}
∣∣∣∣{(e1, e2) ∈ INTRA |Se1,e2 > 0}
∣∣

A lower ECI indicates a lower ratio of external to internal
dependencies: As with theEDI, the lower theECI, the better
the modularity.

An ECI greater than 1 indicates that there are more ex-
ternal then internal dependencies. In some open source
projects, we found a lot of weak dependencies and so

7

decided to also compute afiltered ECI considering only
stronger dependencies:

ECIsc =

∣∣{(e1, e2) ∈ EXTRA |Se1,e2 > s ∧ Ce1,e2 > c}
∣∣∣∣{(e1, e2) ∈ INTRA |Se1,e2 > s ∧ Ce1,e2 > c}
∣∣

Note thatECI = ECI00 holds.
To compare different systems we use in this paper the

following particular indices:

• The program-entity-levelEDI is based on the support
matrix for program entities (functions, methods, at-
tributes) grouped by checkin time interval.

• The file-levelEDI is based on the support matrix for
files grouped by checkin time interval.

• The entity/fileECI is based on the support matrix for
program entities grouped by checkin time interval. A
partition contains all program entities defined in the
same file.

• The file/directoryECI is based on the support matrix
for files grouped by checkin time interval. A partition
contains all files defined in the same directory.

In the following section, we give some examples of find-
ings that we made with the above approach for different
kinds of entities and software archives.

6. Comparing Evolutionary Coupling

In addition toGCC andDDD we analyzed three additional
open source projects: thePYTHON language, theAPACHE
web server and theOPENSSLtoolkit.

PYTHON ThePYTHONproject consists of 5,693 files with
57,815 revisions between 1990-08-09 and 2003-03-
29. We expected to find dependencies between files
of different programming languages, because some
PYTHON functionality is implemented in C. Actually
we found such dependencies; for a selection, see Ta-
ble 4. None of these dependencies could be uncovered
by program analysis—although the coding convention
dictates that C implementations ofPYTHON modules
share the same base name. Note that only the support
affects the fine-granular search, the confidence has ac-
tually no influence.

Performing the fine-granular turned out to be difficult.
At the time of writing this paper, our disk space was
not yet sufficient to hold the dependencies between the
106,596 source code entities. Therefore we could not
calculate the fine-grainedECI. For theECI calculation,
we used an estimated valued provided by the query an-
alyzer of the database.

File f1 → File f2 Support Confidence
cgsupport.py CGmodule.c 6 100 %
filesupport.py Filemodule.c 16 94 %
. . .
ctlsupport.py Ctlmodule.c 38 72 %
sndsupport.py Sndmodule.c 15 71 %
Qdmodule.c qdsupport.py 30 71 %

Table 4. Coupling between files in PYTHON

APACHE APACHE is a rather small project with 1,207
files and 19,419 revisions between 1996-01-14 and
2003-05-05. We found both coarse-grained and fine-
grained dependencies. One interesting observation for
APACHE is the extreme low filteredECI 1

0.5. Such a low
value is usually achieved by changing single or only a
few entities and immediately commiting this modifica-
tion to the revision archive.

OPENSSL The basis for our analysis ofOPENSSLis a his-
tory of 2,532 files with 23,124 revisions between 1998-
12-21 and 2003-05-07. Again we found dependen-
cies on file and on function-level. The highECI for
OPENSSLmay have various reasons. Beside the obvi-
ous one, a high coupling between files an a need for
restructuring, highECI values may also result by ran-
dom checkins into the revision archive, e.g. empty log
messages or changes of the complete work instead of
splitting it up into logical changes.

The results of all analyzed projects are compared in Ta-
ble 5 and 6. It turns out that theEDI differs dramatically
depending on the granularity. For instance, inDDD, the file-
levelEDI is 18.2%, meaning that 18.2% of all dependencies
between files actually exist. This is by far the largest cou-
pling of all systems we examined. The fine-grained entity-
level EDI, though, tells a different story; here,DDD is only
average. Regardless of granularity, the density of coupling
is generally higher inDDD than inGCC.

The ECI, relating external to internal dependencies, is
very low for DDD at the file level—which is most probably
due to the fact that most of theDDD code (and thus all de-
pendencies between files) are contained within one single
directory. Again, the more fine-granularECI at entity level
increases precision: on average, there are 4 times as many
dependencies across files than internal dependencies. The
big surprise here isOPENSSLwith anEDI of more than 100;
this is either a sign of bad modularity or a change policy
that simply involves changing nearly all files at once. Our
findings can thus be summarized asmeasuring evolution-
ary coupling at the file level can be misleading and should
generally be replaced by coupling at the level of program
entities.

Like all metrics, theECI and EDI indices can only be
as good as the data they rely upon. In particular,unusual

8

File Program Entity
Files # Dependencies EDI # Entities # Dependencies EDI

GCC 20,839 16,877,141 3.886 % 92,948 6,848,024 0.079 %
DDD 1,511 414,900 18.185 % 20,524 2,456,084 0.583 %
PYTHON 5,693 512,288 1.581 % 106,596 ∼126,592,039 ∼1.114 %
APACHE 1,207 138,724 9.530 % 15,038 1,837,938 0.813 %
OPENSSL 2,532 562,304 8.774 % 21,240 19,953,046 4.423 %

Table 5. Summarized results for the evolutionary density index EDI (lower EDI = less density)

File/Directory Entity/File Entity/File (Filtered)
Across # Within ECI # Across # Within ECI # Across # Within ECI 1

0.5

GCC 14,379,559 2,497,582 5.757 5,364,194 1,483,830 3.615 125,368 83,344 1.504
DDD 82,988 331,912 0.250 2,006,400 449,684 4.462 26,945 14,017 1.922
PYTHON 293,930 218,358 1.346
APACHE 102,476 36,248 2.827 1,694,512 143,426 11.815 11,664 17,277 0.675
OPENSSL 504,122 58,182 8.665 19,757,530 195,516 101.053 150,687 19,174 7.859

Table 6. Summarized results for the evolutionary coupling index ECI (lower ECI = less coupling).
“# Across” is the number of dependencies across directory boundaries (left) or file boundaries
(right). “# Within” counts dependencies within directories or files, respectively.

change policies can lead to imprecise results.In our anal-
ysis of theMOZILLA CVS archive, for example, we found
virtually no dependencies across module boundaries. The
reason is that each submitted logical change is split into in-
dividual changes at the module level. Each module main-
tainer reviews “her” changes and separately checks them
into theCVS archive. Consequently, the coupling between
changes is lost—and cannot be reconstructed from theCVS
archive. We are currently investigating alternate sources,
such as theMOZILLA bug database, to restore change cou-
pling.

Another source for imprecision isnoise.Any analysis of
evolutionary coupling contains some noise due to changes
that are unrelated, but nonetheless coupled within the revi-
sion archive. A typical example would be a programmer
who fixes a bug in the program and, incidentally, an unre-
lated typo in the documentation in the same logical change,
thus suggesting an evolutionary coupling between the bug
and the typo.

To reduce such noise, we have determined a filteredECI
which only includes evolutionary coupling with a support
greater than 1 and a confidence greater than 0.5. Surprise:
While theECI of GCC andDDD shrinks by 50%, theECI
of APACHE andOPENSSLshrinks by more than a magni-
tude when filtered. These results suggests thatfiltering is
a necessity to reduce noise.We are currently investigating
whetherECI andEDI stabilize with increasing filter thresh-
olds and when which threshold should be used in practice.

7. Related Work

Among the first approaches that analyze different program
revisions to detect coupling and interference between mod-
ules is theNORA/RECS tool of Snelting [5]. NORA/RECS
usesconcept analysisto detect fine-grained coupling be-
tweenvariant configurations,such as the (optional) exis-
tence ofNFS and the (optional) existence of arename()
function. In general, there is no conceptual difference be-
tween changes applied to create new revisions or changes
applied to create new variants; hence, the approach could
also be used to detect coupling between changes. Nonethe-
less,NORA/RECSrelies uniquely on variants, while we use
the much richer revision history to detect coupling.

To our knowledge, the first work that leverages theprod-
uct historyto detect coupling within a system is the paper
of Gall, Hajek, and Jazayeri [3]. They have used theirCAE-
SAR system to analyze the coupling within a large telecom-
munication switching system, and found that the history of
20 releases can indeed show up coupling within a system. A
similar work was conducted by Bieman, Andrews and Yang
on classes [1], using 39 releases of a commercial object-
oriented system.

In contrast to these two approaches, we do not analyze
release histories of the entire system, butrevision histories
of the individual product files. This results in many more
individual changes and thus a finer granularity. The finer
granularity also allows us to relate program entities with
each other: While the above approaches show up coupling
between modules or classes, we are able to determinefine-

9

grained couplingbetween individual functions, methods,
and attributes.

The HIPIKAT project [6] supports program understand-
ing by detecting related files. Two files may be “related” if
they occur in the same individual change to aCVS archive
(as in our approach); by means of a “What’s related” but-
ton, a programmer can haveHIPIKAT suggest files that are
closely related to the file under consideration. In contrast to
our approach,HIPIKAT determines coarse-grained relation-
ships between files only.

In HIPIKAT , though, “related” is more than evolution-
ary coupling: Two artifacts may also be related if they re-
fer to the same bug report number, if they appear together
in project e-mail, or if the respective log messages contain
similar text. It is yet unclear whether e-mail and log mes-
sages can be sufficiently precise to assess the quality of a
system’s architecture. However, exploiting and integrating
these additional data sources can be very useful for making
suggestions to programmers. We’d expect fine-grained re-
lationships between program entities, as in our approach, to
increase the quality ofHIPIKAT ’s suggestions even further.

Regarding metrics, the paper of Bieman, Andrews and
Yang on classes [1] introduces the metricsLCP, PCC and
SPC which count the absolute numbers of dependencies.
Roughly, thePCC is the support matrix for classes and the
SPC of a class is the sum of the values in its row (without
the diagonal element). These metrics are suitable to detect
change-prone classes. Being based on absolute numbers,
the metrics can not be used for comparing systems, such as
our EDI andECI metrics.

8. Conclusion

Our conclusions can be summarized as follows:

1. Fine-grained analysis of revision histories allows to
detect evolutionary coupling between program entities
such as functions, methods, or attributes.

2. Evolutionary coupling augments analytical coupling as
determined from program analysis. Evolutionary cou-
pling can show up factual dependencies that are un-
available to program analysis; on the other hand, an-
alytical coupling shows dependencies that were (yet)
never exercised in history.

3. Mismatches between evolutionary coupling and ana-
lytical coupling show up weaknesses in the system
architecture; they also suggest possible restructurings
that would avoid such evolutionary coupling in the fu-
ture.

4. Compared with coarse-grained approaches that rely
only on a release history (rather than a revision his-
tory), on coarse-grained relationships between files

(rather than syntactic entities), our fine-grained ap-
proach brings a higher precision and a better under-
standing of commonalities and anomalies.

According to IEEE Standard 1471 [4], the system architec-
ture consists of two parts:

1. The fundamental organization of a system embodied in
its components, their relationships to each other and
to the environment.Reengineering this organization
is typically addressed by traditional program analysis;
analyzing revision histories can reveal additional in-
sights.

2. The principles guiding its design and evolution.These
are principles which evolutionary coupling may un-
cover from the revision history by observation and
induction—including facts that are never made explicit
or that are even in contrast to stated principles.

Consequently, observing the revision history can justify the
organization and principles of the system architecture—or
find out where reality diverges from policy.

9. Future Work

The present work summarizes our first experiences with
evolutionary coupling between program entities. Obvi-
ously, this is only a starting point. Our future work will
focus on the following topics:

Programmer support. Right now, ROSE is just a set of
scripts that extracts information fromCVSarchives and
stores it in a database. We are currently portingROSE’s
facilities to theECLIPSE programming environment.
This will allow a “What’s related” feature in the same
style asHIPIKAT , but relying on fine-grained relation-
ships between program entities.

Aspect identification. If program entities have been
changed together several times, the common abstrac-
tions behind the individual changes may be candidates
for aspects(as in aspect-oriented programming). An
evolutionary coupling would then be turned into a sin-
gle syntactic entity, such that future changes can be
made in one place only.

Richer models. Our model only considers pairwise cou-
pling between entities. We are exploring alternative
models that allow for detecting relationships between
multiple entities: “WheneverA andB were changed,
so wasC”. Other possible enhancements include addi-
tional information about the change, such as nature or
rationale, and additional data sources such as problem
databases.

10

Merging and splitting. ROSEis currently unable to detect
splitting and mergingof version histories. Changes
that are applied to some side branch of the history are
not detected until merged back into the main trunk. On
the other hand, this merging typically takes place as
a large number of changes being committed in a sin-
gle transaction (and thus ending up being related in
our analysis). Similar problems occur with renaming
files. We are currently working on identifying logical
changes in the presence of splitting, merging, and re-
naming.

Integration with program analysis. Traditional program
analysis is concerned withpotential dependenciesbe-
tween entities: “A change here may affect these other
places.”. Evolutionary coupling introducesfactual de-
pendencies: “A change here has affected these other
places”. It would be nice to see how these dependen-
cies can be combined to form a better platform for pro-
gram understanding.

At the dawn of the last century, the philosopher George San-
tayana famously remarked that those who do not learn from
history would be condemned to repeat it. Software has been
around long enough that we can exploit its history—to avoid
repeating the same mistakes over and over, and to restruc-
ture the system such that it can face further evolution.

Acknowledgments. Holger Cleve, Carsten G̈org, Stephan
Neuhaus, Peter Weißgerber, and the anonymous reviewers
provided useful and constructive comments on earlier revi-
sions of this paper. Michael Burch developed the interactive
pixelmap.

References

[1] J. M. Bieman, A. A. Andrews, and H. J. Yang. Understanding
change-proneness in OO software through visualization. In
Proc. 11th International Workshop on Program Comprehen-
sion, pages 44–53, Portland, Oregon, May 2003.

[2] K. Fogel and M. O’Neill. cvs2cl.pl: CVS-log-message-to-
ChangeLog conversion script, Sept. 2002. http://www.red-
bean.com/cvs2cl/.

[3] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical cou-
pling based on product release history. InProc. International
Conference on Software Maintenance (ICSM ’98), Washing-
ton D.C., USA, Nov. 1998. IEEE.

[4] IEEE Architecture Working Group. IEEE recommended
practice for architectural description of software-intensive
systems. IEEE Standard 1471-2000, 2000.

[5] G. Snelting. Reengineering of configurations based on mathe-
matical concept analysis.ACM Transactions on Software En-
gineering and Methodology (TOSEM), 5(2):146–189, 1996.

[6] D. Čubraníc and G. C. Murphy. Hipikat: Recommending per-
tinent software development artifacts. InProc. 25th Inter-
national Conference on Software Engineering (ICSE), pages
408–418, Portland, Oregon, May 2003.

11

