
Predicting Subsystem Failures using Dependency Graph Complexities

Thomas Zimmermann
+

University of Calgary

Calgary, Alberta, Canada

tz@acm.org

Nachiappan Nagappan

Microsoft Research

Redmond, Washington, USA

nachin@microsoft.com

Abstract

In any software project, developers need to be

aware of existing dependencies and how they affect

their system. We investigated the architecture and de-

pendencies of Windows Server 2003 to show how to

use the complexity of a subsystem’s dependency graph

to predict the number of failures at statistically signifi-

cant levels. Such estimations can help to allocate soft-

ware quality resources to the parts of a product that

need it most, and as early as possible.

1. Introduction

Software dependencies are often spread across bina-

ries that are developed by different teams. These teams

have to be aware of existing dependencies and how

they affect (or should affect) their development

process. More dependencies generally result in more

complex code that is harder to manage. There has been

scant empirical evidence of this very common problem

in the software development industry. Further, with

recent trends in the global nature of software develop-

ment teams, it becomes more crucial to understand

software dependencies to make sound design and busi-

ness decisions.

In this paper, we use dependency and system archi-

tecture data to identify their relation to failures. More

specifically, we focus on the level of subsystems (as

defined by the system’s architecture) and compute the

complexity of the subsystem’s dependency graphs us-

ing concepts adapted from classical graph theory. We

hypothesize that these complexities correlate with fail-

ures—as code complexity metrics do. (We use the

IEEE definition of a failure as the inability of a system

or component to perform its required functions within

specified performance requirements [13].) We also

show how to use such graph complexities adapted from

graph theory to predict the number of failures. Having

reliable predictions of failures supports the following

two tasks in software engineering.

Resource allocation. Software quality assurance con-

sumes a considerable effort in any large-scale software

development. To raise the effectiveness of this effort, it

is wise to spend more attention on the components that

are more likely to fail and need quality assurance most.

Decision making. Predictions on the number of fail-

ures can also support other decisions such as choosing

the correct requirements or design. However, for this

case, one needs early indicators of failures. Many de-

pendencies are known early in the development, while

code metrics cannot be used until implementation be-

gins or until a substantial part of the code is written.

We studied the dependency data of the Windows

Server 2003 operating system which is a large com-

mercial software project, with an analyzed code base of

28.3 MLOC comprising 2252 compiled binaries.

The outline of this paper is as follows: We motivate

the relevance of dependencies with two observations

and state our research hypotheses in Section 2. Next,

we summarize related work in Section 3. In Section 4

we discuss our data collection, i.e., how we obtained

the architecture and dependency data and how we

computed complexity. Section 5 presents several expe-

riments to support our hypothesis. We conclude the

paper with our plans for future work in Section 6.

2. Motivation

When we analyzed failure data and dependency

graphs for the binaries of Windows Server 2003, we

made the following observations.

Cycles had on average twice as many failures. We

investigated whether dependency cycles have impact

on failures. A simple example for a dependency cycle

is a mutual dependency, i.e., binaries X and Y depend

on each other; for this experiment, we considered

cycles of any size, but ignored self-cycles such as X

+ Tom Zimmermann was an intern with the Software Reliability

Research Group, Microsoft Research in the summer of 2006 when

this work was carried out.

depends on X. Based on whether binaries are part of a

cycle, we divided them into groups. Binaries that were

part of cycles had on average twice as many failures as

the other binaries, at a significance of 99%.

The larger a clique the more failure-prone are its

binaries. A clique is a set of binaries for which be-

tween every pair of binaries (X, Y) a dependency ex-

ists—we neglect the direction, i.e., it doesn’t matter

whether X depends on Y, Y on X, or both. Figure 1

shows an example for an undirected clique; a clique is

maximal if no other binary can be added without losing

the clique property. We enumerated all maximal undi-

rected cliques in the dependency graph of Windows

Server 2003 with the Bron-Kerbosch algorithm [7].

Next we grouped the cliques by size and computed the

average number of failures per binary. Figure 2 shows

the results, including a 95% confidence interval of the

average. We can observe that the average number of

failures increases with the size of the clique a binary

resides in. Put another way, binaries that are part of

more complex areas (cliques) have more failures.

These observations suggest that certain properties of

dependency graphs (such as the presence of cycles and

cliques) correlate with failures. In this paper, we will

therefore investigate whether dependency data predicts

failures. Rather than using code complexity metrics for

individual binaries, we will compute complexity meas-

ures for the dependency graphs of whole subsystems.

By using graph theoretic properties we can take the

interaction between binaries into account. Formally,

our research hypotheses are the following.

H1 For subsystems, the complexity of dependency

graphs positively correlates with the number of

post-release failures—an increase in complexity

is accompanied by an increase in failures.

H2 The complexity of dependency graphs can predict

the number of post-release failures.

H3 The quality of the predictions improves when

they are made for subsystems that are higher in

the system’s architecture.

3. Related work

In this section we discuss related work; it falls into

three categories: software architecture and dependen-

cies, complexity metrics, and historical data.

3.1. Architecture and dependencies

There are many different ways to describe software

architecture: relationships and properties of architec-

tural elements [2, 26], architectural style which means

a set of design rules combined with local or global

constraints [29], and of course architectural description

languages [17]. Pinzger et al. [27] integrated informa-

tion on the evolution of software architecture from the

source basis of a project and from the release history

data such as modification and problem reports. The

integrated architectural views show intended and unin-

tended couplings between architectural elements. This

information can be used to highlight to software engi-

neers the locations in the system that may be critical

for on-going and future maintenance activities.

Schröter et al. [28] showed that the actual import

dependencies (not just the count) can predict defects.

Earlier work on at Microsoft [21] showed that code

churn and dependencies can be used as efficient indica-

tors of post-release failures. The basic idea is that

churn often will propagate across dependencies. Sup-

pose that component A has many dependencies on

component B. If the code of component B changes

(churns) a lot between versions, we may expect that

component A will need to undergo a certain amount of

churn in order to keep in synch with component B.

Together, a high degree of dependence plus churn can

cause errors that will propagate through a system, re-

ducing its reliability.

Figure 2. Failure-proneness of cliques.

Undirected clique of size 3
(not maximal because of X)

Undirected clique of size 4

(maximal)

Figure 1. Undirected cliques.

3.2. Complexity metrics

Typically, research on failure-proneness captures

software complexity with metrics and builds models

that relate these metrics to failure-proneness [9]. Basili

et al. [3] were among the first to validate that OO me-

trics predict defect density. Subramanyam and Krish-

nan [31] presented a survey on eight more empirical

studies, all showing that OO metrics are significantly

associated with defects.

Our experiments focus on post-release failures since

they matter for the end-users of a program. Only few

studies addressed post-release failures: Binkley and

Schach [5] developed a coupling metric and showed

that it outperforms several other metrics; Ohlsson and

Alberg [24] used metrics to predict modules that fail

during operation. Additionally, within five Microsoft

projects, Nagappan et al. [23] identified metrics that

predict post-release failures and reported how to sys-

tematically build predictors for post-release failures

from history. In contrast to their work, we develop new

metrics on dependency data from a graph theoretic

point of view.

3.3. Historical data

Several researchers used historical data for predict-

ing defect density: Khoshgoftaar et al. [15] classified

modules as defect-prone when the number of lines

added or deleted exceeded a threshold. Graves et al.

[12] used the sum of contributions to a module to pre-

dict defect density. Ostrand et al. [25] used historical

data from up to 17 releases to predict the files with the

highest defect density of the next release. Further,

Mockus et al. [18] predicted the customer perceived

quality using logistic regression for a commercial tele-

communications system (of size seven million lines of

code) by utilizing external factors like hardware confi-

gurations, software platforms, amount of usage and

deployment issues. They observed an increase in prob-

ability of failure by twenty times by accounting for

such measures in their prediction equations.

4. Data collection

In this section we explain how we collect hierarchy

information and software dependencies and how we

measure the complexity of subsystems. For our expe-

riments we used the Windows Server 2003 operating

system which is decomposed into a hierarchy of sub-

systems as shown in Figure 3. On the highest level are

areas such as ―Multimedia‖ or ―Networking‖. Areas

are further decomposed into components such as

―Multimedia: DirectX‖ (DirectX is a Windows tech-

nology that enables higher performance in graphics and

sound when users are playing games or watching video

on their PC) and subcomponents such as ―Multime-

dia: DirectX: Sound‖. On the lowest level are the bi-

naries to which we can accurately map failures; we

considered post-release failures because they matter

most for end-users. Since failures are mapped to the

level of binaries, we can aggregate the failure counts

of the binaries of a subsystem (areas, components,

subcomponents) to get its total subsystem failure

count.

We first generate a dependency graph for Windows

Server 2003 at the binary level (Section 4.1). Then we

divide this graph into different kinds of subgraphs us-

ing the area/component/subcomponent hierarchy (Sec-

tion 4.2). For the subgraphs, we compute complexity

measures (Section 4.3) which we finally use to predict

failures for subsystems. We placed our analysis on the

level of binaries for two reasons: (1) Binaries are easier

to analyze since one is independent from the build

process and other specialties such as preprocessors. (2)

Defects were collected on binary level; mapping them

back to source code is challenging and might distort

our study.

4.1. Software dependencies

A software dependency is a directed relation be-

tween two pieces of code (such as expressions or me-

thods). There exist different kinds of dependencies:

data dependencies between the definition and use of

values and call dependencies between the declaration

of functions and the sites where they are called.

Microsoft has an automated tool called MaX [30]

that tracks dependency information at the function lev-

el, including calls, imports, exports, RPC, COM, and

Registry accesses. MaX generates a system-wide de-

pendency graph from both native x86 and .NET ma-

Multimedia
(Area)

Networking
(Area)

...
...

...

DirectX
(Component)

Sound
(Subcomponent)

...

...

Binaries

Figure 3. Example architecture of Windows

Server 2003

naged binaries. This graph can be viewed as the low-

level architecture of Windows Server 2003. Within

Microsoft, MaX is used for change impact analysis and

for integration testing [30]. There are freely available

tools like Dependency Finder or JDepend (for Java)

and MakeDep (for C++) which can be used to repeat

our study for other projects.

For our analysis, we use MaX to generate a system-

wide dependency graph at the function level. Since we

collect failure data for binaries, we lift this graph up to

binary level in a separate post-processing step. Consid-

er for example the dependency graph in Figure 5. Cir-

cles denote functions and boxes are binaries. Each thin

edge corresponds to a dependency at function level.

Lifting them up to binary level, there are two depen-

dencies within A and four within B (represented by

self-edges), as well as three dependencies where A

depends on B. We refer to these numbers as multiplici-

ty of a dependency/edge.

As a result of this lifting operation there may be

several dependencies between a pair of binaries (like in

Figure 5 between A and B), which results in several

edges in the dependency graph. For our predictions, we

will consider both regular graphs (where only one edge

between two binaries is counted) and multigraphs

(where every edge between two binaries is counted).

Formally (for our experiments), a dependency graph

is a directed multigraph G = (V, A) where

 V is a set of nodes (binaries) and

 A = (E, m) a multiset of edges (dependencies) for

which E V×V contains the actual edges and the

function m: E N returns the multiplicity (count)

of an edge.

The corresponding regular graph (without multiedges)

is G’ = (V, A). We allow self-edges for both regular

graphs and multigraphs.

4.2. Dependency subgraphs

We use hierarchy data from Windows Server 2003 to

split the dependency graph G=(V,A) into several sub-

graphs; for a subsystem that consists of binaries B, we

compute the following subgraphs (see also Figure 4):

Intra-dependencies (INTRA). The subgraph (Vintra,

Eintra) contains all intra-dependencies, i.e., dependen-

cies (u,v) that exist between two binaries u,vB within

the subsystem. This subgraph is induced by the set of

binaries B that are part of the subsystem.

𝑉intra = 𝐵

𝐸intra = 𝑢, 𝑣 𝑢, 𝑣 ∈ 𝐸, 𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵
𝐴intra = (𝐸intra , 𝑚)

Outgoing dependencies (OUT). The subgraph (Vout,

Eout) contains all outgoing inter-dependencies (u,v) that

connect the subsystem with other subsystems, i.e.,

uB, vB. This subgraph is induced by the set of

edges that represent outgoing dependencies. We focus

on outgoing dependencies because they are the ones

that can make code fail.

𝐸out = 𝑢, 𝑣 𝑢, 𝑣 ∈ 𝐸, 𝑢 ∈ 𝐵, 𝑣 ∉ 𝐵
𝐴out = (𝐸out, 𝑚)

𝑉out = 𝑢 𝑢, 𝑣 ∈ 𝐸out ∪ 𝑣 𝑢, 𝑣 ∈ 𝐸out

Subsystem dependency graph (DEP). The subgraph

(Vdep, Edep) combines the intra-dependencies and the

outgoing dependencies subgraphs. Note that we addi-

tionally take edges between the neighbors of the sub-

system into account.

𝑉dep = 𝑉intra ∪ 𝑉out

𝐸out = 𝑢, 𝑣 𝑢, 𝑣 ∈ 𝐸, 𝑢 ∈ 𝑉dep, 𝑣 ∈ 𝑉dep

𝐴out = (𝐸out, 𝑚)

Sample graph INTRA OUT DEP

Figure 4. Different subgraphs for a subsystem that consists of binaries A, B, C, D, and E:

intra-dependency (INTRA), outgoing dependency (OUT), and combined dependency graph (DEP).

Figure 5. Lifting up dependencies. The edges

are labeled by the multiplicity of a dependency

Considering different subgraphs allows us to investi-

gate the influence of internal vs. external dependencies

on post-release defects. We compute the dependencies

across all the three subsystem levels (area, component,

and subcomponent).

4.3. Graph-Theoretic Complexity Measures

On the subgraphs defined in the previous section, we

compute complexity measures which we will later use

to predict post-release failures. The complexity meas-

ures are computed for both regular graph and multi-

graphs with the main difference being the number of

edges 𝐸 and 𝑚 𝑒 𝑒∈𝐸 respectively. Some of the

measures are aggregated from values for nodes and

edges by using minimum, maximum and average. The

formulas are summarized in Table 1 and discussed

below.

Graph complexity. Besides simple complexity meas-

ures such as the number of nodes or number of edges,

we compute the graph complexity and the density of a

graph [32]. Although the graph complexity was devel-

oped for graphs in general, it is well known in the

software engineering community for its use on control

flow graphs (McCabe’s cyclomatic complexity).

Degree-based complexity. We measure the number of

ingoing and outgoing edges (degree) of nodes and ag-

gregate them by using minimum, maximum, and aver-

age. These values allow us to investigate whether the

aggregated number of dependencies has an impact on

failures.

Distance-based complexity. By using the Floyd-

Warshall algorithm [8], we compute the shortest dis-

tance between all pairs of nodes. For regular graphs,

the initial distance between two connected nodes is 1.

For multigraphs, we assume that the higher the multip-

licity of an edge e, the closer the incident nodes are to

each other; thus we set the initial distance to 1/m(e).

From the distances we compute the eccentricity of a

node v which is the greatest distance between v and

any other node. We aggregate all eccentricities with

minimum (=radius), maximum (=diameter), and aver-

age. With distance-based complexities we can investi-

gate if the propagation of dependencies has an impact

on failures.

Multiplicity-based complexity. For multigraphs, we

measure the minimum, maximum and average multip-

licity of edges. This also allows us to investigate the

relation between number of dependencies and failures.

5. Experimental analysis

In this section, we will support our hypotheses that

complexity of dependency graphs predicts the number

of failures for a subsystem, with several experiments.

We carried out the experiments on three different ar-

chitecture levels of Windows Server 2003: subcom-

ponents, components, and areas. Most of this paper

will focus on the subcomponent level: we start with a

correlation analysis of complexity measures and num-

ber of failures (Section 5.1) and continue with building

regression models for failure prediction (Section 5.2).

Next, we summarize the results for the component and

Table 1. Complexity for a multigraph G=(V,(E,m)) and its underlying graph G’=(V,E). The set of
weakly connected components is P; in(v) returns the ingoing and out(v) the outgoing edges of a node v.

 Regular graph Multigraph Aggregation

Number of NODES 𝑉 𝑉 Not necessary

Number of EDGES 𝐸 𝑚 𝑒 𝑒∈𝐸 Not necessary

COMPLEXITY 𝐸 − 𝑉 + 𝑃 𝑚 𝑒 − 𝑉 + 𝑃 𝑒∈𝐸 Not necessary

DENSITY
 E

 V ∙ V

 𝑚 𝑒 𝑒∈𝐸

 V ∙ V
 Not necessary

DEGREE of node v in 𝑣 ∪ out 𝑣 𝑚 𝑒 𝑒𝜖 in 𝑣 ∪out 𝑣
Over nodes 𝑣𝜖𝑉 using

min, max, avg.

ECCENTRICITY of node v max dist v, w wϵV max multidist v, w wϵV
Over nodes 𝑣𝜖𝑉 using

min, max, avg.

MULTIPLICITY of edge e 1 𝑚(𝑒)
Over edges 𝑒𝜖𝐸 using

min, max, avg.

area level and discuss the influence of granularity

(Section 5.3). Finally, we present threats to validity.

5.1. Correlation analysis

In order to investigate our initial hypothesis H1, we

determined the Pearson and Spearman rank correlation

between the dependency graph complexities measures

for each subcomponent (Sections 4.2 and 4.3) and its

number of failures. For Pearson correlation to be ap-

plied the data requires a linear distribution, Spearman

rank correlation can be applied even when the associa-

tion between values is non-linear [11]. The closer the

value of correlation is to –1 or +1, the higher two

measures are correlated—positively for +1 and nega-

tively for –1.

The results for subcomponent level of Windows

Server 2003 are shown in Table 2. The table shows the

complexity measures in the rows (Section 4.3) and the

different kinds of dependency graphs in the columns

(Section 4.2). Correlations that are significant at 0.99

are indicated with (*); note that the Multi_Edges and

Multi_Complexity measures were strongly inter-

correlated, which resulted in almost the same correla-

tions with the number of failures. For space reasons we

omit we the inter-correlations between the complexity

measures; the correlation for the area and component

level can be found in our technical report [33].

In Table 2 we can make the following observations.

O1 For most measures the correlations are significant

(indicated by *) and positive. This means that with

an increase of such measures there an increase in

the number of failures, though at different levels

of strength.

O2 The only notable negative correlation is for Densi-

ty, which means that with an increase in the densi-

ty of dependencies there is a decrease in the num-

ber of failures. This effect is strongest for DEP

graphs, but vanishes when taking multiedges into

account (Multi_Density).

O3 When we neglect multiplicity and consider only

presence of dependencies, we obtain the highest

correlations for subgraphs that additionally contain

the neighborhood of a subsystem (DEP).

O4 When we take multiplicity of dependencies into

account the correlations are highest for subgraphs

that contain only dependencies within the subsys-

tem (INTRA).

O5 The correlations were highest for Multi_Edges,

and the inter-correlated Multi_Complexity, and for

Multi_Degree_Max and Multi_Multiplicity_Max

(highlighted in bold). All of these measures con-

sider multiedges, suggesting that the number of

dependencies matters and not just the presence.

To summarize we could observe significant correla-

tions for most complexity measures, and most of them

Table 2. Correlation between failures and complexity measures (on subcomponent level)

 Pearson Spearman

 INTRA OUT DEP INTRA OUT DEP

NODES .325(*) .497(*) .501(*) O3 .338(*) .579(*) .580(*) O3
EDGES .321(*) .454(*) .485(*) .353(*) .586(*) .567(*)

COMPLEXITY .319(*) .322(*) .481(*) .346(*) .387(*) .564(*)

DENSITY O2 -.312(*) -.292(*) -.418(*) -.294(*) -.506(*) -.519(*)

DEGREE_MIN .168(*) .054(*) .014(*) .182(*) .030(*) .145(*)

DEGREE_MAX .332(*) .409(*) .496(*) .347(*) .533(*) .569(*)

DEGREE_AVG .386(*) .377(*) .366(*) .332(*) .516(*) .526(*)

ECCENTRICITY_MIN .293(*) .164(*) .009(*) .314(*) .305(*) .079(*)

ECCENTRICITY_MAX .307(*) .201(*) .094(*) .323(*) .337(*) .370(*)

ECCENTRICITY_AVG .303(*) .193(*) .099(*) .317(*) .471(*) .527(*)

MULTI_EDGES O4 .728(*) .432(*) .393(*) O4 .667(*) .671(*) .524(*)

MULTI_COMPLEXITY .728(*) .432(*) .393(*) .667(*) .671(*) .524(*)

MULTI_DENSITY .290(*) .116(*) -.108(*) .455(*) .282(*) -.138(*)

MULTI_DEGREE_MIN .376(*) .006(*) .177(*) .296(*) -.298(*) .045(*)

MULTI_DEGREE_MAX .637(*) .395(*) .356(*) .643(*) .654(*) .511(*)

MULTI_DEGREE_AVG .538(*) .247(*) .148(*) .597(*) .597(*) .364(*)

MULTI_MULTIPLICITY_MIN .300(*) .005(*) -.020(*) .201(*) -.355(*) -.328(*)

MULTI_MULTIPLICITY_MAX .640(*) .389(*) .249(*) .640(*) .634(*) .418(*)

MULTI_MULTIPLICITY_AVG .454(*) .178(*) .013(*) .571(*) .505(*) .102(*)

MULTI_ECCENTRICITY_MIN .267(*) .136(*) -.010(*) .311(*) .313(*) .015(*)

MULTI_ECCENTRICITY_MAX .267(*) .141(*) -.010(*) .312(*) .346(*) .060(*)

MULTI_ECCENTRICITY_AVG .267(*) .137(*) -.010(*) .311(*) .302(*) .016(*)

were positive and high (O1, O5). This confirms our

initial hypothesis that the complexity of dependency

graphs positively correlates with the number of post-

release failures (H1). The only exception we observed

was the density of a dependency graph (O2). This is

surprising, especially since cliques tend to have a high

failure-proneness (see Section 2) and a high density at

the same time. One possible explanation for the poor

correlation of density might be that normalizing the

number of dependencies |E| by the squared number of

binaries |V|·|V| is too strong. This is supported by the

Degree_Avg measure which normalizes |E| only by |V|

and has a rather high positive correlation (up to 0.527

for Spearman).

The different results for complexity measures with

and without multiplicity (O3 and O4), might suggest

that one should consider both, the multiplicity of de-

pendencies and the neighborhood of a subsystem—

however, dependencies across subsystems should be

weighted less. In our future work, we will investigate

whether this actually holds true.

5.2. Regression analysis

So since complexity of dependency graphs corre-

lates with post-release failures, can we use complexity

to predict failures? To answer this question, we build

multiple linear regression (MLR) models where the

number of post-release failures forms the dependant

variable and our complexity measures form the inde-

pendent variables. We build separate models for every

type of subgraph (INTRA, OUT, and DEP) and a com-

bined model that uses all measures from Table 2 as

independent variables (COMBINED). We carried out

24 experiments: one for each combination out of two

kinds of regression (linear, logistic), three granularities

(areas, components, subcomponents,) and four differ-

ent sets of complexities (INTRA, OUT, DEP, COM-

BINED.

However, one difficulty associated with MLR is

multicollinearity among the independent variables.

Multicollinearity comes from inter-correlations such as

between the aforementioned Multi_Edges and Multi_-

Complexity. Inter-correlations can lead to an inflated

variance in the estimation of the dependant variable.

To overcome this problem, we use a standard statistical

approach called Principal Component Analysis (PCA)

[14]. With PCA, a small number of uncorrelated linear

combinations of variables are selected for use in re-

gression (linear or logistic). These combinations are

independent and thus do not suffer from multicollinear-

ity, while at the same time they account for as much

sample variance as possible—for our experiments we

selected principal components that account for a cumu-

lative sample variance greater than 95%. We ended up

with 5 principal components for INTRA, 7 for OUT, 6

for DEP, and 14 for the COMBINED set of measures

(for the composition of components we refer to our

technical report [33]). The principal components are

then used as the independent variables.

To evaluate the predictive power of graph com-

plexities we use a standard evaluation technique: data

splitting [20]. That is, we randomly pick two-thirds of

all binaries to build a prediction model and use the

remaining one-third to measure the efficacy of the built

model. For every experiment, we performed 50 random

splits to ensure the stability and repeatability of our

results—in total we trained 1200 models. Whenever

possible, we reused the random splits to facilitate com-

parison of results.

We measured the quality of trained models with:

 The R
2
 value is the ratio of the regression sum of

squares to the total sum of squares. It takes values

between 0 and 1, with larger values indicating

more variability explained by the model and less

unexplained variation—a high R
2
 value indicates

good explanative power, but not predictive power.

 The adjusted R
2
 measure also can be used to

evaluate how well a model fits a given data set [1].

It explains for any bias in the R
2
 measure by tak-

ing into account the degrees of freedom of the in-

dependent variables and the sample population.

The adjusted R
2
 tends to remain constant as the R

2

measure for large population samples.

Additionally, we performed F-tests on the regression

models. Such tests measure the statistical significance

of a model based on the null hypothesis that its regres-

sion coefficients are zero. In our case, every model was

significant at 99%.

For testing, we measured the predictive power with

the Pearson and Spearman correlation coefficients. The

Spearman rank correlation is a commonly-used robust

correlation technique [11] because it can be applied

even when the association between elements is non-

linear; the Pearson bivariate correlation requires the

data to be distributed normally and the association be-

tween elements to be linear. For completeness we

compute the Pearson correlations also. As before, the

closer the value of a correlation is to –1 or +1, the

higher two measures are correlated—in our case we are

correlating the predicted number of failures with the

actual number of failures (for MLR); and failure-

proneness probabilities with actual number of failures

(logistic regression), thus values close to 1 are desira-

ble. In Figures 6 to 8, we report only correlations that

were significant at 99%.

Linear regression

Figure 6 shows the results of four experiments on

subcomponent level for linear regression modeling,

each of them consisting of 50 random splits. Except for

OUT graphs, we can observe the consistent R
2
 and

adjusted R
2
 values. This indicates the efficacy of the

models built using the random split technique. The

values for Pearson are less consistent, still we can ob-

serve high correlations, especially for INTRA and

COMBINED (around 0.70). The values for Spearman

correlation (0.60) are very consistent and highest for

OUT and COMBINED subgraphs. These values indi-

cate the sensitivity of the predications to estimate fail-

ures—that is an increase/decrease in the estimated val-

ues is accompanied by a corresponding in-

crease/decrease in the actual number of failures.

Binary logistic regression

We repeated our experiments with the same 50 ran-

dom splits using a binary logistic regression model. In

contrast to linear regression, logistic regression pre-

dicts a value between 0 and 1. This value can be inter-

preted as failure-proneness, i.e., the likelihood to con-

tain at least one failure. Figure 7 shows the results of

our random split experiments. All results are consis-

tent, except the Pearson values. Compared to linear

regression, the Pearson correlations are lower because

the relation between predicted failure-proneness and

actual number of failures is obviously not linear. Thus,

using logistic regression did not make much difference

in our case. Still, the results for both linear and logistic

regression support our hypothesis, that the complexity

of dependency graphs can predict the number of post-

release failures (H2).

5.3. Granularity

The previous results were for subcomponent level.

Figure 8 shows how the results for linear regression

change when we make predictions for component and

area level. We can observe that for both the maxima of

correlation increases: for Pearson up to 0.927 (compo-

nents) and 0.992 (areas); for Spearman up to 0.877

(components) and 0.961 (areas). While for component

Figure 6. Linear regression.

Figure 7. Logistic regression results.

Figure 8. Correlations for different levels of

granularity (subcomponent/component/area)

level the results are stable, we can observe many fluc-

tuations for area level.

To summarize, the results for component level show

that the quality of the predications improves when they

are made for subsystems that higher in the system’s

architecture (H3)—the results for area level also sup-

port this hypothesis, however, they additionally dem-

onstrate that the gain in predictive power can come

with a decreased stability. Thus it is important to find a

good balance between the granularity of reliable pre-

dictions and stability.

5.4. Threats to validity

In this section we discuss the threats to validity of

our work. We assumed that fixes occur in the same

location as the corresponding failure. Although this is

not always true, this assumption is frequently used in

research [10, 19, 23, 25]. As stated by Basili et al.,

drawing general conclusions from empirical studies in

software engineering is difficult because any process

depends on a potentially large number of relevant con-

text variables [4]. For this reason, we cannot assume a

priori that the results of a study generalize beyond the

specific environment in which it was conducted.

Since this study was performed on the Windows oper-

ating system and the size of the code base and devel-

opment organization is at a much larger scale than

many commercial products, it is likely that the specific

models built for Windows would not apply to other

products, even those built by Microsoft. This threat in

particular is frequently misunderstood as a criticism on

empirical studies. However, data on defects is rare and

a common empirical research practice is to carry out

studies for one project and replicate them on others.

However, we are confident that dependency data has

predictive power for other projects—we will repeat our

experiments for other Microsoft products and invite

everyone to do the same for other software.

6. Conclusion and consequences

We showed that for subsystems, one can use the com-

plexity of dependency graphs for predicting failures.

This helps for resource allocation and decision making.

With respect to this, our lessons learned are as follows.

 Most dependency graph complexities can predict

the number of failures (Sections 5.1 and 5.2).

 Validate any complexity measure before using it

for decisions (Section 5.1).

 Find a balance between the granularity, reliability,

and stability of predictions (Section 5.3).

We do not claim that dependency data is the sole

predictor of post-release failures—however, our results

are another piece in the puzzle of why software fails.

Other effective predictors include code complexity

metrics [23] and process metrics like code churn [22].

In our future work, we will identify more predictors

and work on assembling the pieces of the puzzle. Also

we plan to look at more non-linear regression and other

machine learning teachniues. More specifically, we

will focus on the following topics.

Evolution of dependencies. We will combine code

churn and dependencies. More precisely, we will com-

pare the dependencies of different Windows releases to

identify churned dependencies and investigate their

relation to failures.

Development process. How can we include the devel-

opment process in our predictions? There are many

different characteristics to describe the process, rang-

ing from size of personnel to criticality, dynamism, and

culture [6]. How much difference do agile and plan-

driven development processes make with respect to

failures? And how much impact has global develop-

ment?

The human factor. Last but not least, humans are the

ones who introduce failures. How can we include the

human factor [16] into predictions about future fail-

ures? This will be a challenge for both software engi-

neering and human computer interaction—and ulti-

mately it will reveal why programmers fail and show

ways how to avoid it.

Acknowledgments

We would like to thank Thirumalesh Bhat for his sup-

port on the MaX tool. We would also like to thank

Tom Ball, Vic Basili, Marc Eaddy, Madan Musuvathi,

Adrian Schröter, and Andreas Zeller for discussions on

the relationship between dependencies and failures.

References

[1] F. B. e. Abreu and W. Melo, "Evaluating the Impact of

OO Design on Software Quality", Proceedings of Third

International Software Metrics Symposium, Berlin,1996.

[2] R. Allen, Garlan, D., "A Formal Basis for Architectural

Connection", ACM Transactions on Software Engineer-

ing and Methodology (TOSEM), 6(3), pp. 213-249,

1997.

[3] V. R. Basili, L. C. Briand, and W. L. Melo, "A Valida-

tion of Object Orient Design Metrics as Quality Indica-

tors", IEEE Transactions on Software Engineering,

22(10), pp. 751-761, 1996.

[4] V. R. Basili, F. Shull, and F. Lanubile, "Building Know-

ledge Through Families of Experiments", IEEE Transac-

tions on Software Engineering, 25(4), pp. 456 - 473,

1999.

[5] A. B. Binkley, Schach, S., "Validation of the coupling

dependency metric as a predictor of run-time failures

and maintenance measures", Proceedings of Interna-

tional Conference on Software Engineering, pp. 452 -

455, 1998.

[6] B. Boehm and R. Turner, Balancing Agility and Discip-

line: A Guide for the Perplexed. Boston, MA: Addison

Wesley, 2003.

[7] C. Bron and J. Kerbosch, "Algorithm 457: finding all

cliques of an undirected graph ", Commun. ACM, 16(9),

pp. 575-577, 1973.

[8] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.

Stein, Introduction to Algorithms, 2nd ed: The MIT

Press, 2001.

[9] G. Denaro, Morasca, S., Pezze., M, "Deriving models of

software fault-proneness", Proceedings of International

Conference on Software Engineering Knowledge Engi-

neering, pp. 361-368, 2002.

[10] N. Fenton, Ohlsson, N., "Quantitative analysis of faults

and failures in a complex software system", IEEE

Transactions in Software Engineering, 26(8), pp. 797 -

814, 2000.

[11] N. E. Fenton and S. L. Pfleeger, Software Metrics: A

Rigorous and Practical Approach: Brooks/Cole, 1998.

[12] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, "Pre-

dicting Fault Incidence Using Software Change Histo-

ry", IEEE Trans. Softw. Eng., 26 (7), pp. 653-661, 2000.

[13] IEEE, "IEEE Standard 982.2-1988, IEEE Guide for the

Use of IEEE Standard Dictionary of Measures to Pro-

duce Reliabile Software", 1988.

[14] E. J. Jackson, A Users Guide to Principal Components.

Hoboken, NJ: John Wiley & Sons Inc., 2003.

[15] T. M. Khoshgoftaar, E. B. Allen, N. Goel, A. Nandi, and

J. McMullan, "Detection of software modules with high

debug code churn in a very large legacy system", Pro-

ceedings of Seventh International Symposium on Soft-

ware Reliability Engineering, White Plains, NY, pp.

364-371, 1996.

[16] A. J. Ko and B. A. Myers, "A framework and methodol-

ogy for studying the causes of software errors in pro-

gramming systems", Journal of Visual Languages &

Computing, 16(1-2), pp. 41-84, 2005.

[17] N. Medvidovic, Taylor, R.N., "A Classification and

Comparison Framework for Software Architecture De-

scription Languages", IEEE Transactions in Software

Engineering, 26(1), pp. 70-93, 2000.

[18] A. Mockus, Zhang, P., Li, P., "Drivers for customer

perceived software quality", Proceedings of Interna-

tional Conference on Software Engineering, pp. 225-

233, 2005.

[19] K.-H. Möller and D. J. Paulish, "An empirical investiga-

tion of software fault distribution", Proceedings of Pro-

ceedings First International Software Metrics Sympo-

sium, pp. 82-90, 1993.

[20] J. Munson and T. Khoshgoftaar, "The Detection of

Fault-Prone Programs", IEEE Transactions on Software

Engineering, 18(5), pp. 423-433, 1992.

[21] N. Nagappan, Ball, T., "Explaining Failures Using Soft-

ware Dependences and Churn Metrics," Microsoft Re-

search Technical Report MSR-TR-2006-03, 2006.

[22] N. Nagappan, Ball, T., "Use of Relative Code Churn

Measures to Predict System Defect Density", Proceed-

ings of International Conference on Software Engineer-

ing (ICSE), pp. 284-292, 2005.

[23] N. Nagappan, Ball, T., Zeller, A., "Mining metrics to

predict component failures", Proceedings of Interna-

tional Conference on Software Engineering, pp. 452-

461, 2006.

[24] N. Ohlsson, Alberg, H., "Predicting fault-prone software

modules in telephone switches", IEEE Transactions in

Software Engineering, 22(12), pp. 886 - 894, 1996.

[25] T. Ostrand, Weyuker, E., Bell, R.M., "Predicting the

location and number of faults in large software systems",

IEEE Transactions in Software Engineering, 31(4), pp.

340 - 355, 2005.

[26] D. E. Perry, Wolf, A.E., "Foundations for the Study of

Software Architecture", ACM SIGSOFT Software Engi-

neering Notes, 17(4), pp. 40-52, 1992.

[27] M. Pinzger, Gall, H., Fischer, M., "Towards an Inte-

grated View on Architecture and its Evolution", Elec-

tronic Notes in Theoretical Computer Science, pp. 183-

196, 2005.

[28] A. Schröter, T. Zimmermann, and A. Zeller, "Predicting

Component Failures at Design Time," in International

Symposium on Empirical Software Engineering, 2006.

[29] M. Shaw, Clemants, P., "Toward boxology: preliminary

classification of architectural styles", Proceedings of

the Second international software architecture workshop

and international workshop on multiple perspectives in

software development, pp. 50 - 54, 1996.

[30] A. Srivastava, Thiagarajan. J., Schertz, C., "Efficient

Integration Testing using Dependency Analysis," Micro-

soft Research-Technical Report, MSR-TR-2005-94,

2005.

[31] R. Subramanyam and M. S. Krishnan, "Empirical Anal-

ysis of CK Metrics for Object-Oriented Design Com-

plexity: Implications for Software Defects", IEEE

Transactions on Software Engineering, 29(4), pp. 297-

310, 2003.

[32] D. B. West, Introduction to Graph Theory, 2nd ed: Pren-

tice Hall, 2001.

[33] T. Zimmermann and N. Nagappan, "Predicting Subsys-

tem Failures using Dependency Graph Complexities,"

Microsoft Research Technical Report MSR-TR-2006-

126. 2006.

