
Changes and Bugs – Mining and Predicting Development Activities

Thomas Zimmermann
Microsoft Research

Redmond, WA, USA
tzimmer@microsoft.com

Abstract

Software development results in a huge amount of data:
changes to source code are recorded in version archives,
bugs are reported to issue tracking systems, and communi-
cations are archived in e-mails and newsgroups. We present
techniques for mining version archives and bug databases
to understand and support software development.

First, we introduce the concept of co-addition of method
calls, which we use to identify patterns that describe how
methods should be called. We use dynamic analysis to vali-
date these patterns and identify violations. The co-addition
of method calls can also detect cross-cutting changes, which
are an indicator for concerns that could have been realized
as aspects in aspect-oriented programming.

Second, we present techniques to build models that can
successfully predict the most defect-prone parts of large-
scale industrial software, in our experiments Windows
Server 2003. This helps managers to allocate resources for
quality assurance to those parts of a system that are ex-
pected to have most defects. The proposed measures on de-
pendency graphs outperformed traditional complexity met-
rics. In addition, we found empirical evidence for a domino
effect, i.e., depending on defect-prone binaries increases the
chances of having defects.

1. Introduction

The amount of data generated during software develop-
ment is continuously increasing. According to the web-site
CIA.vc every 26 seconds a change is reported for an open-
source project. As of February 2008, the software develop-
ment community SourceForge.net hosted 169,383 projects.
Besides change, another constant in software development
is to err. The bug databases of ECLIPSE and MOZILLA com-
bined contain more 600,000 issue reports.

The availability of all this data recently led to a new re-
search area called mining software repositories (MSR). Both
software practitioners and researchers alike use such data

to understand and support software development and em-
pirically validate novel ideas and techniques. A detailed
survey on mining software repositories techniques was con-
ducted by Kagdi et al. [5]. As they show, research on MSR
is very inter-disciplinary. Commonly used techniques come
from applied statistics, information retrieval, artificial intel-
ligence, social sciences, and software engineering. Their
purpose is very diversified, ranging from empirical studies
and change prediction to the development of tools in order
to support programmers.

Two examples for MSR applications are project memo-
ries and recommender systems.

Project memories. The HIPIKAT tool recommends rele-
vant software development artifacts, such as source
code, documentation, bug reports, e-mails, changes,
and articles based on the context in which a developer
requests help. The project memory is built automati-
cally and is useful in particular for newcomers [3]. The
BRIDGE project at Microsoft is a comparable project
within an industrial setting [11].

Recommender systems. Just like Amazon.com suggests
related products after a purchase, the EROSE plug-in
for Eclipse guides programmers based on the change
history of a project. Suppose a developer changed an
array fKeys[]. EROSE then suggests to change the
initDefaults() function—because in the past,
both items always have been changed together. If
the programmer misses to commit a related change,
EROSE issues a warning [14]. While EROSE oper-
ates on change history as recorded in CVS, more recent
tools relied on navigation data [4, 10].

This dissertation makes two contributions to the body of
MSR research (see overview in Figure 1). First, it mines
fine-grained change for usage patterns and cross-cutting
concerns (Section 2). Next, it shows how to predict defects
from dependency data, which helps managers to allocate
quality assurance resources to the parts of a software that
need it most (Sections 3 and 4).

➙ Mining co-additions of method calls
➙ Finding usage patterns and violations
➙ Detecting cross-cutting changes (likely cross-cutting concerns)

➙ Predicting defects for binaries (network measures)
➙ Predicting defects for subsystems (dependency graph complexities)
➙ Domino effect (depending on defect-prone binaries increases risk)

Part 1: Mining version archives

Part 2: Defect prediction

CVS

CVS Bugs + Dependencies +

Figure 1. This thesis mines version archives
and predicts software defects.

2. Co-Addition of Method Calls

The first part of this dissertation mines version archives
for fine-grained changes, more precisely for co-addition of
method calls, which is when two or more invocations to
methods are introduced in the same CVS transaction.

Mining usage patterns. A great deal of attention has al-
ways been given to addressing software bugs such as
errors in operating system drivers or security bugs.
However, there are many other lesser known errors
specific to individual applications or APIs and these
violations of application-specific coding rules are re-
sponsible for a multitude of errors.

We propose DYNAMINE (see Figure 2), which is a tool
that analyzes version archives to find highly correlated
method calls (usage pattern). Potential patterns are
passed to a dynamic analysis tool for validation. The
combination of mining software repositories and dy-
namic analysis techniques proves effective for discov-
ering new application-specific patterns and for finding
violations in very large applications with many person-
years of development [7].

Mining cross-cutting concerns. Aspect mining identifies
cross-cutting concerns in a program to help migrat-
ing it to an aspect-oriented design. Such concerns
may not exist from the beginning, but emerge over
time. By analyzing where developers add code to a
program, our history-based aspect mining (HAM) iden-
tifies and ranks cross-cutting concerns. HAM scales
up to industrial-sized projects: for example, we were
able to identify a locking concern that cross-cuts 1,284
methods in ECLIPSE. Additionally, the hit rate of HAM
is high; for ECLIPSE, it reaches 90% for the top-10
candidates [1].

3. Defect Prediction

The second part of this dissertation additionally takes in-
formation from bug databases into account and moves to
an industrial setting. In software development, resources
for quality assurance are limited by time and by cost. In
order to allocate resources effectively, managers need to
rely on their experience backed by complexity metrics [2].
However, often dependencies exist between various pieces
of code over which managers may have little knowledge.
These dependencies can be constructed as a low level graph
of the entire system.

Predicting defects for binaries. We propose to use net-
work analysis on dependency graphs to predict the
number of defects for binaries. In our evaluation on
Windows Server 2003, we found the recall for models
built from network measures is by 10% points higher
than for models built from complexity metrics. In ad-
dition, network measures could identify 60% of the
binaries that the Windows developers considered as
critical—twice as many as identified by complexity
metrics [13].

Predicting defects for subsystems. We investigated the
architecture and dependencies of Windows Server
2003 to show how to use the complexity of a subsys-
tem’s dependency graph to predict the number of fail-
ures at statistically significant levels [12].

Our techniques allows managers to identify central program
units that are more likely to face defects. Such predictions
can help to allocate software quality resources to the parts
of a product that need it most, and as early as possible.

4. Domino Effect

In 1975, Randell defined the domino effect principle [9]:

“Given an arbitrary set of interacting processes,
each with its own private recovery structure, a
single error on the part of just one process could
cause all the processes to use up many or even all
of their recovery points, through a sort of uncon-
trolled domino effect.”

Restating Randell on dependency relationships, we
found empirical evidence for a domino effect in Windows
Server 2003. Defects in one component can significantly
increase the likelihood of defects (in other words the prob-
ability of defects) in dependent components. This is a sig-
nificant issue in understanding the cause-effect relationship
of defects and the potential risk of propagating a defect
through the entire system.

CVS
histories

Revision
database

Likely
patterns

Eclipse
pattern view

Step 1: Mining software repositories

extract revisions mine likely patterns present for review

Instrumented
program

Eclipse dynamic
results view

Confirmed
patterns

Pattern
violations

Step 2: Dynamic program analysis

run instrumented program; load dynamic results into Eclipse

Figure 2. Architecture of DYNAMINE. The first row represents revision history mining. The second
row represents dynamic analysis.

d=1

d=2

d=3

p=2/3=0.66

p=2/4=0.50

p=2/5=0.40

Binary B
(with defects)

= Binary with defects

= Binary without defects

Figure 3. Illustrative example of a domino ef-
fect. The defect probability decreases as the
distance to a defect-prone binary increases.

5 Contributions

Software development results in a huge amount of data:
changes to source code are recorded in version archives,
bugs are reported to issue tracking systems, and commu-
nications are archived in e-mails and newsgroups. Mining
software repositories makes use all of this data to under-
stand and support software development. This dissertation
makes the following contributions to this area.

Fine-grained analysis of version archives. The work on
DYNAMINE was the first to analyze particular
code changes and not only the changed location.
DYNAMINE learned project-specific usage pattern of
methods from version archives and validated the pat-
terns with dynamic program analysis, which is another
novelty.

The aspect-mining tool HAM reveals cross-cutting
changes: “A developer invoked lock() and unlock() in
1,284 different locations.” In aspect-oriented program-
ming, such changes can be encapsulated as aspects.
By breaking down large code-bases into their evolution
steps, HAM scales to large systems such as Eclipse.

Mining bug databases to predict defects. In software de-
velopment, the resources for quality assurance (QA)
are typically limited. A common practice among man-
agers is resource allocation that is to direct the QA
effort to those parts of a system that are expected to
have most defects.

This dissertation presented techniques to build mod-
els that can successfully predict the most defect-prone
parts of large-scale industrial software, in our experi-
ments Windows Server 2003. The proposed measures
on dependency graphs outperformed traditional com-
plexity metrics. In addition, we found empirical evi-
dence for a domino effect: depending on defect-prone
binaries increases the chances of having defects.

Dependencies between subsystems are typically de-
fined early in the design phase; thus, designers can
easily explore and assess design alternatives in terms
of expected quality.

6. Mining Repositories Across Projects

Mining software repositories works best on large projects
with a long and rich development history; smaller and new
projects, however, rarely have enough data for the above
techniques. Our future work, will therefore focus on mining
software repositories across projects. We hypothesize that
projects which do not have enough history can learn from
the repositories shared by other similar projects. For in-
stance, open-source communities (such as SourceForge.net)
host several thousand projects, which are all available for
mining. Similarly, within an industrial setting, companies
can learn from all their ongoing and completed projects.

Having access to the history of other projects supports
developers and managers to make well-informed decisions,
for instance with respect to design (“Which library should
we use?”), personnel (“Who is qualified for this task?”),
and resource allocation (“What parts should we test most?).
They can identify similar situations in the past, and see how
these situations impacted the evolution of a project. Over-
all, the goal is to automate most of this process and provide
appropriate tool support for both open- and closed-source
software development.

On the one hand, we expect that existing mining tech-
niques will benefit from a larger population of projects.
For instance, change classification frequently finds insuffi-
cient evidence within a single project to blame bad changes,
which results in a large number of false negatives [6]. By
extending the search space to many projects, we are more
likely to find enough evidence. We can also transfer knowl-
edge from one project to another similar project. Nagap-
pan et al. [8] observed that defect prediction models trained
on one project can reliably predict defects for projects with
comparable development processes. On the other hand,
having access to many projects poses new research ques-
tions, one of them being: “What can we mine from such
data in an automatic, large-scale (many projects), and tool-
oriented fashion to support software development?”

At the beginning of the last century, the philosopher
George Santayana remarked that those who could not re-
member the past would be condemned to repeat it. In other
words, to achieve progress, we must learn from history.
With our future research, everyone will get enough history
from which to learn.

To learn more about our research, we invite you to visit

http://www.softwaremining.org/

References

[1] S. Breu and T. Zimmermann. Mining aspects from version history.
In ASE ’06: Proceedings of the 21st IEEE/ACM International Con-
ference on Automated Software Engineering, pages 221–230, 2006.

[2] S. R. Chidamber and C. F. Kemerer. A metrics suite for ob-
ject oriented design. IEEE Transactions on Software Engineering,
20(6):476–493, 1994.

[3] D. Cubranic, G. C. Murphy, J. Singer, and K. S. Booth. Hipikat: A
project memory for software development. IEEE Transactions on
Software Engineering, 31(6):446–465, 2005.

[4] R. DeLine, M. Czerwinski, and G. Robertson. Easing program com-
prehension by sharing navigation data. In VLHCC’05: Proceedings
of the 2005 IEEE Symposium on Visual Languages and Human-
Centric Computing, pages 241–248, 2005.

[5] H. H. Kagdi, M. L. Collard, and J. I. Maletic. A survey and taxon-
omy of approaches for mining software repositories in the context
of software evolution. Journal of Software Maintenance, 19(2):77–
131, 2007.

[6] S. Kim, K. Pan, and E. J. Whitehead, Jr. Memories of bug fixes.
In SIGSOFT’06/FSE-14: Proceedings of the 14th ACM SIGSOFT
International Symposium on Foundations of Software Engineering,
pages 35–45, 2006.

[7] B. Livshits and T. Zimmermann. DynaMine: finding common error
patterns by mining software revision histories. In ESEC/FSE-13:
Proceedings of the 10th European Software Engineering conference
held jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 296–305, 2005.

[8] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict com-
ponent failures. In ICSE’06: Proceeding of the 28th international
conference on Software engineering, pages 452–461, 2006.

[9] B. Randell. System structure for software fault tolerance. IEEE
Transactions on Software Engineering, 1(2):221–232, 1975.

[10] J. Singer, R. Elves, and M.-A. Storey. NavTracks: Supporting
navigation in software maintenance. In ICSM’05: Proceedings of
the 21st IEEE International Conference on Software Maintenance,
pages 325–334, 2005.

[11] G. Venolia. Textual alusions to artifacts in software-related reposi-
tories. In MSR’06: Proceedings of the 2006 International Workshop
on Mining Software Repositories, pages 151–154, May 2006.

[12] T. Zimmermann and N. Nagappan. Predicting subsystem failures
using dependency graph complexities. In ISSRE ’07: Proceedings
of the The 18th IEEE International Symposium on Software Relia-
bility, pages 227–236, 2007.

[13] T. Zimmermann and N. Nagappan. Predicting defects using net-
work analysis on dependency graphs. In ICSE ’08: Proceedings of
the 30th International Conference on Software Engineering, pages
531–540, 2008.

[14] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller. Mining
version histories to guide software changes. IEEE Transactions on
Software Engineering, 31(6):429–445, June 2005.

