
Improving Bug Tracking Systems

Thomas Zimmermann1,2

tz@acm.org
Rahul Premraj3

rpremraj@cs.vu.nl
Jonathan Sillito2

sillito@ucalgary.ca
Silvia Breu4

silvia.breu@cl.cam.ac.uk

1 Microsoft Research, Redmond, USA
2 Department of Computer Science, University of Calgary, Canada

3 Vrije Universiteit, Amsterdam, The Netherlands
4 Computer Laboratory, University of Cambridge, UK

Abstract

It is important that information provided in bug reports is
relevant and complete in order to help resolve bugs quickly.
However, often such information trickles to developers af-
ter several iterations of communication between develop-
ers and reporters. Poorly designed bug tracking systems
are partly to blame for this exchange of information being
stretched over time. Our paper addresses the concerns of
bug tracking systems by proposing four broad directions for
enhancements. As a proof-of-concept, we also demonstrate
a prototype interactive bug tracking system that gathers rel-
evant information from the user and identifies files that need
to be fixed to resolve the bug.

1. Introduction

Alice, a real person: My ECLIPSE crashed.
Bob, a bug-tracking system: What did you do?
Alice: I clicked on File→ New Project and OK.
Bob: Did you choose a Java project?
Alice: No.

. . . (a few questions later)

Bob: Thanks Alice. The bug is likely in ProjectCreator.java
and we will fix it soon.

The use of bug tracking systems as a tool to organize main-
tenance activities is widespread. The systems serve as a
central repository for monitoring the progress of bug re-
ports, requesting additional information from reporters, and
discussing potential solutions for fixing the bug. Develop-
ers use the information provided in bug reports to identify
the cause of the defect, and narrow down plausible files
that need fixing. A survey conducted amongst developers
from the APACHE, ECLIPSE, and MOZILLA projects found
out which information items are considered useful to help

resolve bugs [4]. Items such as stack traces, steps to re-
produce, observed and expected behavior, test cases, and
screenshots ranked high on the list of preferred information
by developers.

Previous research has shown that reporters often omit
these important items [4, 6]. Developers are then forced to
actively solicit information from reporters and, depending
on their responsiveness, this may stall development. The
effect of this delay is that bugs take longer to be fixed and
more and more unresolved bugs accumulate in the project’s
bug tracking system. We believe that one reason for this
problem is that current bug tracking systems are merely in-
terfaces to relational databases that store the reported bugs.
They provide little or no support to reporters to help them
provide the information that developers need.

Our on-going work is directed towards rectifying the sit-
uation by proposing ideas that can fundamentally transform
bug tracking systems to enhance their usability such that
relevant information is easier to gather and report by a ma-
jority of users (Section 2). Further, we present a simulation
of an interactive bug tracking system, using a decision tree,
which extracts relevant information from the user to iden-
tify the file that contains the bug, as in the above discourse,
as a means to help developers. (Section 3). The paper closes
with a look at related work (Section 4) followed by conclu-
sions (Section 5).

2. Better bug tracking systems

Having complete information in the initial bug report (or as
soon as possible) helps developers to quickly resolve the
bug. The focus of our work is on improving bug track-
ing systems with the goal of increasing the completeness
of bug reports. Specifically, we are working on improving
bug tracking systems in four ways (see Figure 1):

1Many thanks to Sascha Just for creating the template for Figure 1.



Improving
bug tracking

systems

Tool
Centric

Process
Centric

Information
Centric

User 
Centric

Figure 1. Improving bug tracking systems.1

Tool-centric. Tool-centric enhancements are made to the
features provided by bug tracking systems. They can
help to reduce the burden of information collection and
provision. For example, bug tracking systems can be
configured to automatically locate the relevant stack
trace and add it to a bug report. Also, providing steps
to reproduce can be automated by using capture/replay
tools or macro-recorders; observed behavior can be
easily shown by simplifying screen capture; test cases
can be automatically generated [3]. All of the above
examples aim to help with the collection of informa-
tion needed by developers to fix bugs.

Information-centric. These improvements focus directly
on the information being provided by the reporter. Bug
tracking systems can be embedded with tools such as
CUEZILLA [4] that provide real-time feedback on the
quality of the information provided and what can be
added to increase value. With helpful reminders from
the system, reporters may be motivated to go the ex-
tra mile and collect more information. Systems can
be further modified to perform validity checks such as
verifying whether the reported stack trace is consistent
and complete, submitted patches are valid, and the like.

Process-centric. Process-centric improvements to bug
tracking systems focus on administration of activities
related to bug fixing. For example, bug triaging, i.e.,
determining which developer should resolve the bug,
can be automated to speed up the task [1,5]. Other ex-
amples are better awareness of the progress made on
bug reports (so that reporters are aware of the actions
taken as a response for their efforts) or to provide users
with an early estimate for when their bug will be fixed.

User-centric. This includes both reporters and developers.
Reporters can be educated on what information to pro-
vide and how to collect it. Developers too can benefit
from similar training on what information to expect in
bug reports and how this information can be used to
resolve bugs.

The following section presents a prototype developed
around the information-centric direction that gathers infor-
mation from reporters to identify candidate files to be fixed.

3. Asking the right questions in bug reports

When a user submits a bug report she is asked many ques-
tions: What is the name of the product? In which plug-
in/component? What is the Build ID? What is the bug
about? What are the steps to reproduce the bug? Any ad-
ditional information? However, the initial information pro-
vided in a bug report is often incomplete and developers of-
ten have follow-up questions: Do you have flash installed?
Can you provide a screenshot? Getting replies by users
takes time (often weeks) and slows down the progress on
open bugs. Furthermore, research has shown that develop-
ers get responses to only two out of three questions [6].

Ideally, follow-up questions would be asked immediately
after a user has submitted a bug report and is still within
reach. We therefore propose to build expert systems that
automatically ask relevant questions and gather all required
information once an initial failure description has been pro-
vided. The selection and order of questions should not be
static (as in current bug tracking systems), but rather de-
pend on previous responses. We believe that such an expert
system can provide better bug descriptions and also narrow
down the location of the defect.2

To create such a system the following data is needed:

1. Information that developers use to find the location of
a defect. For each kind of information one can then
formulate a question.3 Some might be general such
as asking for screenshots, build identifiers, and stack
traces, but other questions might be more specific, for
example asking about certain menus or dialogs.

2. The defect location and question/answer-pairs for a
large number of fixed bugs. One can then use these
bugs to build machine learning models (e.g., decision
trees, neural networks) which select questions and pre-
dict the location of the defect based on the responses.

2One can think of this approach to bug reporting as a computerized ver-
sion of the twenty questions game. The bug tracking system asks the user
several questions (one question at a time) and the user provides responses.
After this process is finished, the developer would have a description of the
failure and ideally the bug tracking system could make a good guess at the
location of the defect.



In this paper, we show an early proof-of-concept study that
uses data that is readily available in bug reports (such as
component, version, reporter). We are currently working
on compiling a catalog of information frequently needed by
developers. Once we have this catalog we will implement a
tool and conduct a fully-fledged evaluation.

3.1. A first experiment

To check whether question/answer-pairs can predict the lo-
cation where a bug has been fixed, we conducted the fol-
lowing experiment. For the twenty most frequently fixed
files in ECLIPSEJDK we selected all related bug reports. We
then used the resulting 2,875 cases to train a decision tree
to predict the location of the fix (name of the file).4

As input features, we used the following questions
for which we could extract the answers easily from the
ECLIPSE bug database.

• How severe is the bug? (bug severity)

• On what operating system does it occur? (op sys)

• What is the affected component? (component id)

• How important is the bug? (priority)

• Which version of ECLIPSE is affected? (version)

• What is your name?5 (reporter)

• What platforms are affected? (rep platform)

The resulting decision tree is in Figure 2. The root node
shows the defect distribution for all twenty selected files,
e.g., 11% of bugs have been fixed in GenericTypeTest.java.
For all other nodes, we report only the three files with the
highest likelihood.

Out of the seven input features, only three influenced the
location of a defect. The feature with the most influence is
component id, which comes as no surprise because compo-
nents almost directly map to source code. The next most
influential feature is version, which indicates that defect-
prone hot-spots in components change over time.

The reporter of a bug also predicts the location of the
defect, likely because reporters use ECLIPSE differently and
thus trigger bugs in different parts. For example in Figure 2,
the reporter set R1 mostly reveals bugs related to Java for-
matting, while R2 reveals bugs related to AST conversions
and R3 reveals bugs related to the ECLIPSE Java model.6

3The user can be an end-user or a tester and both would require different
sets of questions. For example, an end-user will not be familiar with the
internal structure of a system, while a tester might be.

4We decided to use a decision tree for illustrative purposes. It is possi-
ble and likely that neural networks or other machine learning models will
yield better results.

5Decision trees are computationally expensive when an input feature
can take many values, which is the case for reporter. We considered there-
fore only the twenty most active reporters and modeled less active reporters
as “other”.

6For privacy reasons, we omit the reporter names in Figure 2.

In Figure 2, the path that leads to JaveEditor.java would
ask only about the component (Text). In contrast the path
to ASTConverter15Test.java would ask about component
(Core, UI), version (3.1 or higher), and the reporter (R4).
This justifies the need for interactive bug tracking systems
(rather than static web-pages) because for certain responses
fewer questions are needed. With more questions and more
files we expect the decision tree to become more complex.
We also expect that the order of questions will change for
different paths in the tree.

3.2. Next steps and challenges

We showed that for some of the questions asked in bug re-
ports (component, version), the responses can potentially
predict the location of the defect. Our study is very prelim-
inary, and our next steps will be the following:

• Identify information needs in a large sample of bug
reports through manual inspection. This will help to
compile a catalog of questions that can be used for the
expert system.

• Using this catalog, collect answers and defect locations
for another large sample of bug reports. This dataset
will be used to automatically learn a prediction model.

• Evaluate the predictions and conduct usability studies.

One of the challenges for this project will be to find a
representative catalog of questions that is able to predict
defects. In addition, scalability will become an issue once
more questions with many unique values are used.

4. Related work

Many researchers have investigated what factors aid or
indicate the quick resolution of bugs. Hooimeijer and
Weimer [8] observed that bug reports with more comments
get fixed sooner. They also noted that bug reports that are
easier to read also have shorter life times (also confirmed by
our previous work [4]). More recently, Aranda and Venolia
have examined communication that takes place between de-
velopers outside the bug tracking system [2]. In our earlier
work, we discussed shortcomings of existing bug tracking
systems [9], which led to the four areas of improvements
presented in this paper. Asking the right questions, is a cru-
cial part of debugging and several techniques such as al-
gorithmic debugging [7] and the WhyLine tool [10] support
developers in doing so. In contrast, we propose to move this
process from the developer side to the user side. Instead of
recorded feedback by many users as it happens in Collab-
orative Bug Isolation [11], our proposed approach requires
explicit feedback by only a single user.



GenericTypeTest.java (0.11)
JavaCore.java (0.044)
JavaEditor.java (0.043)

JavaModelManager.java (0.034)
JavaProject.java (0.036)

JavaRuntime.java (0.043)
JDIModelPresentation.java (0.05)

ASTConverter.java (0.084)
GenericTypeTest.java (0.13)

Scope.java (0.082)

ASTConverter.java (0.31)
DefaultBindingResolver.java (0.25)

Parser.java (0.13)

ASTConverter.java (0.082)
FormatterRegressionTests.java (0.12)

Parser.java (0.08)

FormatterRegressionTests.java (0.2)
JavaCore.java (0.078)

Parser.java (0.076)

ASTConverter15Test.java (0.14)
ASTConverter.java (0.16)

ASTConverterTest2.java (0.11)

JavaCore.java (0.093)
JavaModelManager.java (0.14)

JavaProject.java (0.16)

ASTConverter15Test.java (0.097)
GenericTypeTest.java (0.23)

Scope.java (0.12)

ASTConverter15Test.java (0.17)
GenericTypeTest.java (0.097)
ProblemReporter.java (0.089)

GenericTypeTest.java (0.32)
MethodVerifyTest.java (0.11)

Scope.java (0.17)

CompletionEngine.java (0.0095)
JavaCore.java (0.0095)
JavaEditor.java (0.98)

JavaRuntime.java (0.31)
JDIModelPresentation.java (0.37)

JDIThread.java (0.31)

JavaRuntime.java (0.47)
JDIModelPresentation.java (0.18)

JDIThread.java (0.35)

JavaRuntime.java (0.26)
JDIModelPresentation.java (0.43)

JDIThread.java (0.3)

component_id=Debugcomponent_id=Core,UI

component_id=Text

version=2.0.2,2.1,2.1.1,3.2version=2.0,2.1.2,3.0,3.1
version=3.1 or higherversion=1.0,2.0,2.1.1

version=2.0.1,2.0.2,2.1,2.1.2,3.0,3.0.1,3.0.2 

reporter=R4 reporter=R5reporter=R1 reporter=R2 reporter=R3

ASTConverter15Test.java (0.056)
ASTConverter.java (0.069)

ASTConverterTest2.java (0.036)
CodeFormatterVisitor.java (0.049)

CompletionEngine.java (0.048)
DefaultBindingResolver.java (0.038)

FormatterRegressionTests.java (0.055)

JDIThread.java (0.043)
MatchLocator.java (0.033)

MethodVerifyTest.java (0.035)
Parser.java (0.055)

ProblemReporter.java (0.056)
Scope.java (0.068)

Figure 2. The decision tree illustrates how questions could narrow down the location of a defect.
Each path corresponds to a question/answer series. The file in bold is the likely defect location.

5. Conclusions and consequences

Current bug tracking systems do not effectively elicit all of
the information needed by developers. Without this infor-
mation developers cannot resolve bugs in a timely fashion
and so we believe that improvement to the way bug tracking
systems collect information are needed.

This paper proposes four broad areas for improvements.
While implementing a range of improvements from these
areas may be ideal, bug tracking systems may instead pre-
fer to specialize, thus providing a rich set of choices. This
would be a healthy change to the current situation where
they all provide identical functionality.

As an example of the kind of improvements we envi-
sion, we have described an interactive system for collecting
information from reporters and leveraging that information
to locate the source of the bug. To demonstrate the potential
of this idea we have conducted an initial study in which we
simulated an interactive bug tracking system. The system
asks the user context-sensitive questions to extract relevant
information about the bug early on to suggest candidate files
that will need to be fixed. This is likely to speed up the pro-
cess of resolving bugs. In the future, we will move from the
current prototype of the interactive system to a full-scale
system that can deal with a variety of information to gather,
as commonly observed in the real world.

References

[1] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug?
In ICSE’06: Proceedings of the 28th International Conference on
Software engineering, pages 361–370, 2006.

[2] J. Aranda and G. Venolia. The secret life of bugs: Going past the
errors and omissions in software repositories. In ICSE’09: Proceed-
ings of the 31st International Conference on Software Engineering
(to appear), 2009.

[3] S. Artzi, S. Kim, and M. D. Ernst. Recrash: Making software fail-
ures reproducible by preserving object states. In ECOOP’08: Pro-
ceedings of the 22nd European Object-Oriented Programming Con-
ference, pages 542–565, 2008.

[4] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and
T. Zimmermann. What makes a good bug report? In FSE’08:
Proceedings of the 16th International Symposium on Foundations
of Software Engineering, pages 308–318, November 2008.

[5] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim. Duplicate
bug reports considered harmful ... really? In ICSM’08: Proceed-
ings of the 24th IEEE International Conference on Software Main-
tenance, pages 337–345, 2008.

[6] S. Breu, J. Sillito, R. Premraj, and T. Zimmermann. Frequently
asked questions in bug reports. Technical report, University of Cal-
gary, March 2009.

[7] P. Fritzson, T. Gyimothy, M. Kamkar, and N. Shahmehri. General-
ized algorithmic debugging and testing. In PLDI’91: Proceedings
of the ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, pages 317–326, 1991.

[8] P. Hooimeijer and W. Weimer. Modeling bug report quality. In
ASE’07: Proceedings of the 22nd International Conference on Au-
tomated Software Engineering, pages 34–43, 2007.

[9] S. Just, R. Premraj, and T. Zimmermann. Towards the next gener-
ation of bug tracking systems. In VL/HCC’08: Proceedings of the
2008 IEEE Symposium on Visual Languages and Human-Centric
Computing, pages 82–85, September 2008.

[10] A. J. Ko and B. A. Myers. Debugging reinvented: asking and an-
swering why and why not questions about program behavior. In
ICSE’08: Proceedings of the International Conference on Software
Engineering, pages 301–310, 2008.

[11] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scal-
able statistical bug isolation. In PLDI’05: Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 15–26, 2005.

To learn more about our work on bug tracking systems, we
invite you to visit http://www.softevo.org/


