
Predicting Defects using Network Analysis
on Dependency Graphs

Thomas Zimmermann+
University of Calgary

Calgary, Alberta, Canada

tz@acm.org

Nachiappan Nagappan
Microsoft Research

Redmond, Washington, USA

nachin@microsoft.com

ABSTRACT
In software development, resources for quality assurance are li-
mited by time and by cost. In order to allocate resources effective-
ly, managers need to rely on their experience backed by code
complexity metrics. But often dependencies exist between various
pieces of code over which managers may have little knowledge.
These dependencies can be construed as a low level graph of the
entire system. In this paper, we propose to use network analysis
on these dependency graphs. This allows managers to identify
central program units that are more likely to face defects. In our
evaluation on Windows Server 2003, we found that the recall for
models built from network measures is by 10% points higher than
for models built from complexity metrics. In addition, network
measures could identify 60% of the binaries that the Windows
developers considered as critical—twice as many as identified by
complexity metrics.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Performance measures,
Process metrics, Product metrics. D.2.9 [Software Engineering]:
Management—Software quality assurance (SQA)

General Terms
Management, Measurement, Reliability, Experimentation

1. INTRODUCTION
Software errors cost the U.S. industry 60 billion dollars a year
according to a study conducted by the National Institute of Stan-
dards and Technology [48]. One contributing factor to the high
number of errors is the limitation of resources for quality assur-
ance (QA). Such resources are always limited by time, e.g., the
deadlines that development teams face, and by cost, e.g., not
enough people are available for QA. When managers want to
spend resources most effectively, they would typically allocate
them on the parts where they expect most defects or at least the
most severe ones. Put in other words: based on their experience,

managers predict the quality of the product to make further deci-
sions on testing, inspections, etc.
In order to support managers with this task, research identified
several quality indicators and developed prediction models to
predict the quality of software parts. The complexity of source
code is one of the most prominent indicators for such models.
However, even though several studies showed McCabe’s cyclo-
matic complexity to correlate with the number of defects [2, 35,
47], there is no universal metric or prediction model that applies to
all projects [35]. One drawback of most complexity metrics is that
they only focus on single elements, but rarely take the interactions
between elements into account. However, with the advent of static
and dynamic bug localization techniques, the nature of defects has
changed and today most defects in bug databases are of semantic
nature [26].
In this paper we will pay special attention to interactions between
elements. More precisely, we will investigate how dependencies
correlate with and predict defects for binaries in Windows Server
2003. While this is not the first work on defects and dependencies,
we will cover a different angle: In order to identify the binaries
that are most central in Windows Server 2003, we apply network
analysis on dependency graphs. Network analysis is very popular
in social sciences which studies networks between humans (ac-
tors) and their interactions (ties). In our context the binaries are
the “actors” and the dependencies are the “ties”.
The outline of this paper is as follows: We will motivate our study
with two special dependency structures. For central binaries (in
terms of network analysis) we could observe a substantial correla-
tion with defects (Section 2). After a discussion of related work
(Section 3), we will present the data collection for our study: for
Windows Server 2003 we computed dependencies, complexity
metrics, and measures from network analysis (Section 4). In our
experiments, we will evaluate network measures against complex-
ity metrics. Additionally, we show that network analysis succeeds
in identifying binaries that are considered as most harmful by
developers (Section 5). We close our paper with conclusion and
consequences (Section 6).

2. MOTIVATION
When we analyzed defect data and dependency graphs for Win-
dows Server 2003, we made the following observations.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’08, May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05...$5.00.

+ Tom Zimmermann was an intern with the Software Reliability Research
Group, Microsoft Research in the summer of 2006 when this work was
carried out.

Central binaries tend to be defect-prone. We identified several
network motifs in the dependency graph of Windows Server 2003.
Network motifs are patterns that describe similar, but not neces-
sarily isomorphic subgraphs; originally they were introduced in
biological research [29]. One of the motifs for Windows Server
2003 looks like a star (see Figure 1): it consists of a binary B that
is connected to the main component of the dependency graph.
Several other “satellite” binaries surround B and exclusively de-
pend on binary B. In most occurrences of the pattern, the binary B
was defect-prone, while the satellite binaries were defect-free.
Network analysis identifies binary B as central (a so-called ‘Bro-
ker”) in the dependency graph because it controls its satellite bina-
ries. We conjecture that binaries that are identified as central by
network analysis are more defect-prone than others.
The larger a clique, the more defect-prone are its binaries. A
clique is a set of binaries for which between every pair of binaries
(X, Y) a dependency exists—we neglect the direction, i.e., it does
not matter whether X depends on Y, Y on X, or both. Figure 2
shows an example for an undirected clique; a clique is maximal if
no other binary can be added without losing the clique property.
We enumerated all maximal undirected cliques in the dependency
graph of Windows Server 2003 with the Bron-Kerbosch algorithm
[12]. The enumeration of cliques is a core component in many
biological applications. Next we grouped the cliques by size and
computed the average number of defects per binary. Figure 3
shows the results, including a 95% confidence interval of the av-
erage. We can observe that the average number of defects in-
creases with the size of the clique a binary resides in. Put in
another way, binaries that are part of more complex areas (cli-
ques) have more defects.
Again, this observation motivates network analysis: binaries that
are part of cliques are close to each other, which is measured by
the network measure closeness. We hypothesize that closeness, as
well as other network measures, correlates with the number of
defects.
In this paper, we will compute measures from network analysis on
dependency graphs. More formally, the hypotheses that we will
investigate are the following:

H1 Network measures on dependency graphs can indicate
critical binaries that are missed by complexity metrics.

H2 Network measures on dependency graphs correlate
positively with the number of post-release defects—an
increase in a measure is accompanied by an increase in
defects.

H3 Network measures on dependency graphs, can predict
the number of post-release defects.

3. RELATED WORK
In this section we discuss related work; it falls into three catego-
ries: social network analysis in software engineering, software
dependencies, and complexity metrics.

3.1 NETWORK ANALYSIS IN SE
The use of network analysis is not new to software engineering.
Several researchers used social network analysis to study the dy-
namics of open source development. Ghosh showed that many
SourceForge.net projects are organized as self-organizing social
networks [18]. Madley et al. conducted a similar study where they
focused on collaboration aspects by looking at the joint-

membership of developers in projects [28]. In addition to commit-
ter networks, Lopez et al. investigated module networks that show
how several modules relate to each other [27]. Ohira et al. used
social networks and collaborative filtering to support the identifi-
cation of experts across projects [38]. Huang et al. used historical
data to identify core and peripheral development teams in soft-
ware projects [22].
Social network analysis was also used on research networks. Has-
san and Holt analyzed the reverse engineering community using
co-authorship relations. They also identified emerging research
trends and directions over time and compared reverse engineering
to the entire software engineering community [20].
In contrast to these approaches, we do not analyze the relations
between developers or projects, but rather between binaries of a
single project. Also the objective of our study is different. While
most of the existing work considered organizational aspects, our
aim is to predict defects.

3.2 SOFTWARE DEPENDENCIES
Pogdurski and Clarke [42] presented a formal model of program
dependencies as the relationship between two pieces of code in-
ferred from the program text. Program dependencies have also
been analyzed in terms of testing [25], code optimization and
parallelization [17], and debugging [40]. Empirical studies have
also investigated dependencies and program predicates [7] and
inter-procedural control dependencies [45] in programming lan-
guage research. Bevan and Whitehead combined dependency
graphs and historic data to identify software instabilities [4, 5].

Figure 3. Defect-proneness of binaries in cliques.

Undirected clique of size 3
(not maximal because of X)

Undirected clique of size 4

(maximal)

Figure 2. Undirected cliques.

Figure 1. Star pattern.

The information-flow metric defined by Henry and Kafura [21],
uses fan-in (a count of the number of modules that call a given
module) and fan-out (a count of the number of modules that are
called by a given module) to calculate a complexity metric. Com-
ponents with a large fan-in and large fan-out may indicate poor
design. In contrast, our work uses not only calls, but also data
dependencies. Furthermore, we distinguish between different
types of dependencies such as intra-dependencies and outgoing
dependencies.
Schröter et al. [44] showed that the actual import dependencies
(not just the count) can predict defects, e.g., importing compiler
packages is riskier than importing UI packages. Earlier work on
dependencies at Microsoft [33] showed that code churn and de-
pendencies can be used as efficient indicators of post-release de-
fects. The basic idea being, for example suppose that component
A has many dependencies on component B. If the code of compo-
nent B changes (churns) a lot between versions, we may expect
that component A will need to undergo a certain amount of churn
in order to keep in synch with component B. That is, churn often
will propagate across dependencies. Together, a high degree of
dependence plus churn can cause errors that will propagate
through a system, reducing its reliability. This work was extended
to predict defects for subsystem by taking the complexity of de-
pendency graphs into account [50].

3.3 COMPLEXITY METRICS
Typically, research on defect-proneness captures software com-
plexity with metrics and builds models that relate these metrics to
failure-proneness [34]. Basili et al. [2] were among the first to
validate that OO metrics predict defect density. Subramanyam and
Krishnan [47] presented a survey on eight more empirical studies,
all showing that OO metrics are significantly associated with de-
fects. Briand et al. [9] identified several coupling measures for
C++ that could serve as early quality indicators for the design of a
project.
Our experiments focus on post-release defects since they matter
most for the end-users of a program. Only few studies addressed
post-release defects: Binkley and Schach [6] developed a coupling
metric and showed that it outperforms several other metrics;
Ohlsson and Alberg [39] used metrics to predict modules that fail
during operation. Additionally, within five Microsoft projects,
Nagappan et al. [35] identified metrics that predict post-release
defects and reported how to systematically build predictors for
post-release defects from history. In contrast to their work, we
develop new metrics on dependency data from a graph theoretic
point of view.

4. DATA COLLECTION
For our experiments we build a dependency graph of Windows
Server 2003 (Section 4.1) and we compute network measures on it
(Section 4.2). Additionally, we collect complexity metrics (Sec-
tion 4.3) which we use to quantify the contribution of network
analysis.

4.1 DEPENDENCY GRAPH
A software dependency is a directed relation between two pieces
of code (such as expressions or methods). There exist different
kinds of dependencies: data dependencies between the definition
and use of values and call dependencies between the declaration

of functions and the sites where they are called. Microsoft has an
automated tool called MaX [46] that tracks dependency informa-
tion at the function level, including calls, imports, exports, RPC,
COM, and Registry access. MaX generates a system-wide depen-
dency graph from both native x86 and .NET managed binaries.
Within Microsoft, MaX is used for change impact analysis and for
integration testing [46].
For our analysis, we generated a system-wide dependency graph
with MaX on function level. Since binaries are the lowest level of
granularity to which defects can be accurately mapped back to, we
lifted this graph up to binary level in a separate post-processing
step (that is sketched in Figure 4). In this paper, we consider only
the presence of dependencies such as A depends on B, i.e., we
neglect the multiplicity of dependencies such as A depends three
times on B.
For our experiments, we define a dependency graph as a directed
graph G = (V, E) where V is a set of nodes (=binaries) and E ⊆
V×V is a set of edges (=dependencies). Note that we allow self-
edges, i.e., a binary can depend on itself.

4.2 NETWORK MEASURES
On the dependency graph we computed for each node (binary) a
number of network measures by using the Ucinet 6 tool [8]. In this
section, we will describe these measures more in detail, however,
for or a more comprehensive overview, we refer to textbooks on
network analysis [19, 37, 49].

EGO NETWORKS VS. GLOBAL NETWORKS
One important distinction made in network analysis is between
ego networks and global networks.
Every node in a network has a corresponding ego network that
describes how the node is connected to its neighbors. (Nodes are
often referred to as “ego” in network analysis.) Figure 5 explains
how ego networks are constructed. In our case, they contain the
ego binary itself, binaries that depend on the ego (IN), binaries on
which the ego depends (OUT), and the dependencies between
these binaries. The ego network would thus be the subgraph with-
in the INOUT box of Figure 5.

Figure 4. Lifting up dependencies

Figure 5. Different neighborhoods

In contrast, the global network corresponds always to the entire
dependency graph. While ego networks allow us to measure the
local importance of a binary with respect to its neighbors, global
networks reveal the importance of a binary within the entire soft-
ware system. Since we expected local and global importance to
complement each other, we used both in our study.

EGO NETWORKS
An ego network for a binary consists of its neighborhood in the
dependency graph. We distinguish between three kinds of neigh-
borhoods (see also Figure 5):

• In-neighborhood (IN) contains the binaries that depend on the
ego binary.

• Out-neighborhood (OUT) contains the binaries on which the
ego binary depends.

• InOut-neighborhood (INOUT) is the combination of the In-
and Out-neighborhood.

For every binary, we induce its three ego networks (one for each
kind of neighborhood) and compute fairly basic measures that are
listed in Table 1. Additionally, we compute measures for structur-
al holes that are described below.

GLOBAL NETWORK
Within the global network (=dependency graph) we can measure
the importance of binaries for the whole software system and not
only their local neighborhood. For most network measures we use
directed edges; however, some measures can be applied to sym-
metric, undirected networks (Sym) or ingoing (In) and outgoing
(Out) edges respectively. On the global network, we compute
measures for structural holes and centrality. Both concepts are
summarized below.

STRUCTURAL HOLES
The term of structural holes was coined by Ronald Burt [13].
Ideally, the influence of actors is balanced in social networks. The
Figure below shows two networks for three actors A, B, and C.

In the left network all actors are tied to each other and therefore
have the same influence. In the network on the right hand side, the
tie between B and C is missing (“structural hole”), giving A an
advanced position over B and C.
We used the following measures related to structural holes in our
study of dependency graphs:

• Effective size of network (EffSize) is the number of binaries
that are connected to a binary X minus the average number of
ties between these binaries. Suppose X has three neighbors
that are not connected to each other, then the effective size of
X’s ego network is 3–0=3. If each of the three neighbors
would be connected to the other ones, the average number of
ties would be two, and the effective size of X’s ego network
reduces to 3–2=1.

• Efficiency norms the effective size of a network to the total
size of the network.

• Constraint measures how strongly a binary is constrained by
its neighbors. The idea is that neighbors that are connected to
other neighbors can constrain a binary. For more details we
refer to Burt [13].

• Hierarchy measures how the constraint measure is distributed
across neighbors. When most of the constraint comes from a
single neighbor, the value for hierarchy is higher. For more
details we refer to Burt [13].

The values for the above measures are higher for binaries with
neighbors that are closely connected to each other and other bina-
ries. One might expect that such complex dependency structures
result in a higher number of defects.

CENTRALITY MEASURES
One of the most frequently used concepts in network analysis is
centrality [43]. It is used to identify actors that are in “favored
positions”. Applied on dependency graphs, centrality identifies the
binaries that are specially exposed to dependencies, e.g., by being
the target of many dependents. There are different approaches to
measure centrality:

• Degree centrality. The degree measures the number of depen-
dencies for a binary. The idea for dependency graphs is that
binaries with many dependencies are more defect-prone than
others. No structural hole

A
B

C
Structural hole

between B and C

A
B

C

Table 1. Network measures for ego networks

Measure Description
Size The size of the ego network is the number of nodes.
Ties The number of directed ties corresponds to the number of edges.
Pairs The number of ordered pairs is the maximal number of directed ties, i.e., Size×(Size–1).
Density The percentage of possible ties that are actually present, i.e., Ties/Pairs.
WeakComp The number of weak components (=sets of connected binaries) in neighborhood.
nWeakComp The number of weak components normalized by size, i.e., WeakComp/Size.
TwoStepReach The percentage of nodes that are two steps away.
ReachEfficency The reach efficiency normalizes TwoStepReach by size, i.e., TwoStepReach/Size.

High reach efficiency indicates that ego’s primary contacts are influential in the network.
Brokerage The number of pairs not directly connected.

The higher this number, the more paths go through ego, i.e., ego acts as a “broker” in its network.
nBrokerage The Brokerage normalized by the number of pairs, i.e., Brokerage/Pairs.
EgoBetween The percentage of shortest paths between neighbors that pass through ego.
nEgoBetween The Betweenness normalized by the size of the ego network.

• Closeness centrality. While degree centrality measures only
the immediate dependencies of a binary, closeness centrality
additionally takes the distance to all other binaries into ac-
count. There are different variants to compute closeness:
o Closeness is the sum of the lengths of the shortest (geo-

desic) paths from a binary (or to a binary) from all other
binaries. There exist different variations of closeness in
network analysis. Our definition corresponds to the one
used by Freeman (see [19, 37, 49]).

o dwReach is the number of binaries that can be reached
from a binary (or which can reach a binary). The distance
is weighted by the number of steps with factors 1/1, 1/2,
1/3, etc.

o Eigenvector centrality is similar to Google’s PageRank
value [14]; it assigns relative scores to all binaries in the
dependency graphs. Dependencies to binaries having a
high score contribute more to the score of the binary in
question.

o Information centrality is the harmonic mean of the length
of paths ending at a binary. The value is smaller for bina-
ries that are connected to other binaries through many
short paths.

Again, the hypothesis is that the more central a binary is, the
more defects it will have,

• Betweenness centrality measures for a binary on how many
shortest paths between other binaries it occurs. The hypothesis
is that binaries that are part of many shortest paths are more
likely to contain defects because defects propagate.

4.3 COMPLEXITY METRICS
In order to quantify the contribution of network analysis on de-
pendency graphs, we use code metrics as a control set for provid-
ing a comparison point. For each binary, we computed several
code metrics, described in Table 2. These metrics apply to a bi-
nary B and to a function or method f(), respectively. In order to
have all metrics apply to binaries, we summarized the function
metrics across each binary. For each function metric X, we com-
puted the total and the maximum value per binary (denoted as
TotalX and MaxX, respectively). As an example, consider the

Lines metric, counting the number of executable lines per func-
tion. The MaxLines metric indicates the length of the largest func-
tion in B, while TotalLines, the sum of all Lines, represents the
total number of executable lines in B.

5. EXPERIMENTAL ANALYSIS
In this section, we will support our hypotheses that network analy-
sis of dependency graphs helps to predict the number of defects
for binaries.
We carried out several experiments for Windows Server 2003:
First we show that network analysis can identify critical “escrow”
binaries (Section 5.1). We continue with a correlation analysis of
network measures, metrics, and number of defects (Section 5.2)
and regression models for defects prediction (Section 5.3). Final-
ly, we present threats to validity (Section 5.4).

5.1 ESCROW ANALYSIS
The development teams of Windows Server 2003 maintain a list
of critical binaries that are called escrow binaries. Whenever pro-
grammers change an escrow binary, they must adhere to a special
protocol to ensure the stability of Windows Server. This protocol
involves more extensive testing, fault-inject, code reviews etc. on
the binary and its related dependencies. In other words these es-
crow binaries are the “most important” binaries in Windows. An
example escrow binary is the Windows kernel binary. The devel-
opers manually select the binaries in the escrow based on past
experience with previous builds, changes, and defects.
We used the network measures and complexity metrics (from
Sections 4.2 and 4.3) to predict the list of escrow binaries. For
each measure/metric, we ranked the binaries according to its value
and took the top N binaries as the prediction, with N being the size
of the escrow list. In order to evaluate the predictions, we com-
puted the recall that is the percentage of escrow binaries that we
successfully could retrieve. In order to protect proprietary infor-
mation, i.e., the size of the escrow list, we report only percentages
that are truncated to the next multiple of 5%. For instance, the
percentage of 23% would be reported as 20%.
The results in Table 3 show that complexity metrics fail to predict
escrow binaries. They can retrieve only 30%, while the network
measures for closeness centrality can retrieve twice as much. This

Table 3. Recall for Escrow binaries

Network measures Recall
GlobalInClosenessFreeman 0.60
GlobalIndwReach 0.60
EgoInSize 0.55
EgoInPairs 0.55
EgoInBroker 0.55
EgoInTies 0.50
GlobalInDegree 0.50
GlobalBetweenness 0.50
… …
Complexity metric Recall
TotalParameters 0.30
TotalComplexity 0.30
TotalLines 0.30
TotalFanIn 0.30
TotalFanOut 0.30
… ….

Table 2. Metrics used in our Windows study

Metric Description
Module metrics for a binary B:
Function # functions in B
GlobalVariables # global variables in B

Per-function metrics for a function f():
Lines # executable lines in f()
Parameters # parameters in f()
FanIn # functions calling f()
FanOut # functions called by f()
Complexity McCabe’s cyclomatic complexity of f()

OO metrics for a class C
ClassMethods # methods in C
SubClasses # subclasses of C
InheritanceDepth Depth of C in the inheritance tree
ClassCoupling Coupling between classes
CyclicClassCoupling Cyclic coupling between classes

observation supports our first hypothesis that network measures
on dependency graphs can indicate critical binaries that are
missed by complexity metrics (H1). Being complex does not make
a binary critical in software development—it is more likely the
combination of being complex and central to the system.

5.2 CORRELATION ANALYSIS
In order to investigate our hypothesis H2, we determined the Pear-
son and Spearman rank correlation between the number of defects
and each network measure (Section 4.2) as well as each complexi-
ty metric (Section 4.3). The Pearson bivariate correlation requires
data to be distributed normally and the association between ele-
ments to be linear. In contrast, the Spearman rank correlation is a
robust technique that can be applied even when the association
between values is non-linear [16]. For completeness we compute
both correlations coefficients. The closer the value of correlation
is to –1 or +1, the higher two measures are correlated—positively
for +1 and negatively for –1. A value of 0 indicates that two
measures are independent.
The Spearman correlation values for Windows Server 2003 are
shown in Table 4. The table consists of three parts: ego network
measures, global network measures, and complexity metrics. The
columns distinguish between different neighborhoods (IN, OUT,
INOUT) and directions of edges (ingoing, outgoing, symmetric).
Correlations that are significant at 0.99 are indicated with (*). The
values for Pearson correlation are listed in a similar table in the
appendix (Table 5). We can make the following observations.
(1) Some network measures do not correlate with the number of
defects. The correlations for the number of weak components in a
neighborhood (WeakComp), the Hierarchy and the Efficiency are
all close to zero, which means that their values and the number of
defects are independent.
(2) Some network measures have negative correlation coefficients.
The normalized number of weak components in a neighborhood
(nWeakComp) as well as the Reach Efficiency and the Constraint
show a negative correlation between –0.424 and –0.463. This
means that an increase in centrality comes with a decrease in
number of defects. Since the values for the aforementioned meas-
ures are higher for binaries with neighbors that are closely con-
nected to each other and other binaries, this suggests that being in
a closely connected neighborhood does not necessarily result in a
high number of defects. This explanation is also supported by the
negative correlation of –0.320 for Density.
(3) Network measures have higher correlations for OUT and IN-
OUT than for IN neighborhoods. In other words, outgoing depen-
dencies are more related to defects than ingoing dependencies.
Schröter et al. found similar evidence and used the targets of out-
going dependencies to predict defects [44]. The measures with the
highest observed correlations were related to the size of the neigh-
borhoods (Size, Pairs, Broker, EffSize, and Degree) and to cen-
trality (Eigenvector and Information), all of them had correlations
of 0.400 or higher.
(4) Most complexity metrics have slightly higher correlations than
network measures. For non-OO metrics the correlations are above
0.500. In contrast, for OO metrics the correlations are lower
(around 0.300) because not all parts of Windows Server 2003 are
developed with object-oriented programming languages. This
shows that OO metrics are only of limited use for predicting de-
fects in heterogeneous systems.

Table 4. Spearman correlation between the number
of defects and network measures as well as com-
plexity metrics. Correlations significant at 99% are
marked by (**). Correlations above 0.40 are printed
in boldface.

 Spearman Correlation
Ego Network In Out InOut
Size .283(**) .440(**) .462(**)
Ties .245(**) .434(**) .455(**)
Pairs .276(**) .440(**) .462(**)
Density .253(**) -.273(**) -.320(**)
WeakComp .274(**) .035 .082(**)
nWeakComp .227(**) -.438(**) -.453(**)
TwoStepReach .287(**) .326(**) .333(**)
ReachEfficency .230(**) -.402(**) -.424(**)
Brokerage .271(**) .438(**) .461(**)
nBrokerage .283(**) .275(**) .321(**)
EgoBetween .263(**) .292(**) .320(**)
nEgoBetween .279(**) .294(**) .285(**)
EffSize .466(**)
Efficiency .262(**)
Constraint -.463(**)
Hierarchy .064(**)

Global Network
Eigenvector .428(**)
Fragmentation .276(**)
Betweenness .319(**)
Information .446(**)
Power .397(**)
EffSize .455(**)
Efficiency .021
Constraint -.454(**)
Hierarchy .176(**)

 Ingoing Outgoing Symmetric
Closeness -.057(**) .284(**) .372(**)
Degree .283(**) .440(**) .462(**)
dwReach .285(**) .394(**) .379(**)

Complexity Metrics Max Total
Functions .507(**)
GlobalVariables .436(**)
Lines .317(**) .516(**)
Parameters .386(**) .521(**)
FanIn .452(**) .502(**)
FanOut .360(**) .493(**)
Complexity .310(**) .509(**)

OO Metrics Max Total
ClassMethods .315(**) .336(**)
SubClasses .296(**) .295(**)
InheritanceDepth .286(**) .308(**)
ClassCoupling .318(**) .327(**)
CyclicClassCoupling .331(**)

To summarize, we could observe significant correlations for most
network measures, and most of them were positive and moderate.
However, since we observed several negative correlations, we
need to remove the “positively” from our initial hypothesis (H2).
The revised hypothesis that network measures on dependency
graphs correlate with the number of post-release defects (H2*) is
confirmed by our observations. At a first glance complexity me-
trics might outperform network measures, but we show in Section
5.3 that network measures improve prediction models for defects.

5.3 REGRESSION ANALYSIS
Since network measures on dependency graphs correlate with
post-release defects, can we use them to predict defects? To an-
swer this question, we build multiple linear regression (MLR)
models where the number of post-release defects forms the de-
pendant variable. We build separate models for three different sets
of input variables:
SNA. This set of variables consists of the network measures that

were introduced in Section 4.2.
METRICS. This set consists of all non-OO complexity metrics

listed in Table TAB. We decided to ignore OO-metrics for
the regression analysis because they were only applicable to
a part of Windows Server 2003 because most of Windows
is comprised of non-OO code.

SNA+METRICS. This set is the combination of the two previous
sets (SNA, METRICS) and allows us to quantify the value
added by network measures.

We carried out six experiments: one for each combination out of
two kinds of regression models (linear, logistic) and three sets of
input variables (SNA, METRICS, SNA+METRICS).

PRINCIPAL COMPONENT ANALYSIS
One difficulty associated with MLR is multicollinearity among
the independent variables. Multicollinearity comes from inter-
correlations amongst metrics such as between the aforementioned
Multi_Edges and Multi_Complexity. Inter-correlations can lead to
an inflated variance in the estimation of the dependant variable.
To overcome this problem, we use a standard statistical approach
called Principal Component Analysis (PCA) [23].
With PCA, a small number of uncorrelated linear combinations of
variables are selected for use in regression (linear or logistic).
These combinations are independent and thus do not suffer from
multicollinearity, while at the same time they account for as much
sample variance as possible—for our experiments we selected
principal components that account for a cumulative sample va-
riance greater than 95%.
We ended up with 15 principal components for SNA, 6 for ME-
TRICS, and 20 for the SNA+METRICS set of measures. The
principal components were then used as the independent variables
in the linear and logistic regression models.

TRAINING REGRESSION MODELS
To evaluate the predictive power of graph complexities we use a
standard evaluation technique: data splitting [31]. That is, we
randomly pick two-thirds of all binaries to build a prediction mod-
el and use the remaining one-third to measure the efficacy of the
built model (see Figure 6). For every experiment, we performed
50 random splits to ensure the stability and repeatability of our
results—in total we trained 300 models. Whenever possible, we
reused the random splits to facilitate comparison of results.

We measured the quality of trained models with:

• The R2 value is the ratio of the regression sum of squares to
the total sum of squares. It takes values between 0 and 1, with
larger values indicating more variability explained by the
model and less unexplained variation—a high R2 value indi-
cates good explanative power, but not predictive power. For
logistic regression models, a specialized R2 value introduced
by Nagelkerke [36] is typically used.

• The adjusted R2 measure also can be used to evaluate how
well a model fits a given data set [1]. It explains for any bias
in the R2 measure by taking into account the degrees of free-
dom of the independent variables and the sample population.
The adjusted R2 tends to remain constant as the R2 measure
for large population samples.

Additionally, we performed F-tests on the regression models.
Such tests measure the statistical significance of a model based on
the null hypothesis that its regression coefficients are zero. In our
case, every model was significant at 99%.

LINEAR REGRESSION
In order to test how well linear regression models predict defects,
we computed the Pearson and Spearman correlation coefficients
(see Section 5.2) between the predicted number of defects and the
actual number of defects. As before, the closer a value to –1 or +1,
the higher two measures are correlated—in our case values close
to 1 are desirable. In Figures 7 and 8, we report only correlations
that were significant at 99%.
Figure 7 shows the results of the three experiments (SNA, ME-
TRICS, and SNA+METRICS) for linear regression modeling,
each of them consisting of 50 random splits. For all three experi-
ments, we observe consistent R2 and adjusted R2 values. This
indicates the efficacy of the models built using the random split
technique. The values for Pearson are less consistent; still we can
observe high correlations (above 0.60).
The values for Spearman correlation values indicate the sensitivity
of the predications to estimate defects—i.e., an increase/decrease
in the estimated values is accompanied by a corresponding in-
crease/decrease in the actual number of defects. In all three expe-
riments (SNA, METRICS, SNA+METRICS), the values for
Spearman correlation are consistent across the 50 random splits.
For SNA and METRICS separately the correlations are close to
0.50. This means that models built from network measures can
predict defects as well as models built from complexity metrics.
Building combined models increases the quality of the predic-
tions, which is expressed by the correlations close to 0.60 in the
SNA+METRICS experiment. The increase in the correlations
values is significant at 99% (Wilcoxon signed-rank test).

50x

Figure 6: Random split experiments

BINARY LOGISTIC REGRESSION
We repeated our experiments using binary logistic regression
model. In contrast to linear regression, logistic regression predicts
likelihoods between 0 and 1. In our case, they can be interpreted
as defect-proneness, i.e., the likelihood that a binary contains at
least one defect. For training, we used the sign(number of defects)
as dependent variable. signሺnumber of defectsሻ ൌ ൜ 1, if number of defects00, if number of defectsൌ0

For prediction, we used a threshold of 0.50, i.e., all binaries with a
defect-proneness of less than 0.50 were predicted as defect-free,
while binaries with a defect-proneness of at least 0.50 were pre-
dicted as defect-prone.
In order to test the logistic regression models, we computed preci-
sion and recall. To explain these two measures, we use the follow-
ing contingency table.

 Observed
 Defect-prone Defect-free

Predicted Defect-prone (≥0.5) A B
 Defect-free (<0.5) C D

The recall A/(A+C) measures the percentage of binaries observed
as defect-prone that were classified correctly. The fewer false
negatives (missed binaries), the closer the recall is to 1.
The precision A/(A+B) measures the percentage of binaries per-
centage of binaries predicted as defect-prone that were classified
correctly. The fewer false positives (incorrectly predicted as de-
fect-prone), the closer the precision is to 1.
Both precision and recall should be as close to the value 1 as poss-
ible (=no false negatives and no false positives). However, such
values are difficult to realize since precision and recall counteract
each other.
Figure 8 shows the precision and recall values of the three expe-
riments (SNA, METRICS, and SNA+METRICS) for logistic re-
gression modeling. For each experiment, the values were consis-
tent across the 50 random splits. The precision was around 0.70 in
all three experiments. The recall was close to 0.60 for complexity
metrics (METRICS), and close to 0.70 for the model built from
network measures (SNA) and the combined model that used both
complexity metrics and network measures (SNA+METRICS).
These numbers show that network measures increase the recall of
defect prediction by 0.10. Again, this increase is significant at
99% as measured by a Wilcoxon signed-rank test.

SUMMARY
The results for both linear and logistic regression support our
hypothesis, that network measures on dependency graphs, can
predict the number of post-release defects (H3).

5.4 THREATS TO VALIDITY
In this section we discuss the threats to validity of our work. We
assumed that fixes occur in the same location as the corresponding
defect. Although this is not always true, this assumption is fre-
quently used in research [15, 30, 35, 41]. As stated by Basili et al.,
drawing general conclusions from empirical studies in software
engineering is difficult because any process depends on a poten-
tially large number of relevant context variables [3]. For this rea-
son, we cannot assume a priori that the results of a study general-
ize beyond the specific environment in which it was conducted.
We could not compare network measures against the “best exist-
ing prediction technique”, simply because no technique has been
emerge as the best so far. We chose complexity metrics as a
benchmark, because they predicted defects in many past studies
[2, 9, 35] and are readily available for most software projects.
Since this study was performed on the Windows operating system
and the size of the code base and development organization is at a
much larger scale than many commercial products, it is likely that
the specific models built for Windows would not apply to other
products, even those built by Microsoft.
This previous threat is often misunderstood as a criticism on em-
pirical studies. Another misinterpretation is that nothing new is
learnt from the result of empirical studies or more commonly “I
already knew this result”. Unfortunately, some readers miss the
fact that this wisdom has rarely been shown to be true and is often
quoted without scientific evidence. Further, defect data is rare and
replication is a common empirical research practice.

Figure 7. Results for linear regression

Figure 8. Results for logistic regression

We are confident that dependency data has predictive power for
other projects—we will repeat our experiments for other Micro-
soft products and invite everyone to do the same for other soft-
ware projects. Researchers interested in working with the Micro-
soft datasets are requested to get in touch with the authors to re-
quest access.

6. CONCLUSION AND CONSESQUENCES
We showed that network measures on dependency graphs predict
defects for binaries of Windows Server 2003. This supports man-
agers in the task of allocating resources such as time and cost for
quality assurance. Ideally, the parts with most defects would be
tested most.
The results of this empirical study are as follows.

– Complexity metrics fail to predict binaries that developers
consider as critical (only 30% are predicted; Section 5.1).

– Network measures can predict 60% of these critical binaries
(Section 5.1).

– Network measures on dependency graphs can indicate and
predict the number of defects (Sections 5.2 and 5.3).

– When used for classification, network measures have a recall
that is 0.10 higher than for complexity metrics with a compa-
rable precision (Section 5.3).

We do not claim that dependency data is the sole predictor of
defects—however, our results are another piece in the puzzle of
why software fails. Other effective predictors include code
complexity metrics [35] and process metrics like code churn [32].
In future work, we will build on the work by Briand et al. [10, 11]
and identify more predictors and work on assembling the pieces of
the puzzle. One of the missing pieces is the human factor [24]
since humans are the ones who introduce defects. To reveal why
programmers fail and build tools to prevent human failure is one
of the big challenges for software engineering.

7. ACKNOWLEDGMENTS
We would like to thank Thirumalesh Bhat for his support on the
MaX tool and Tom Ball, Marc Eaddy, Audris Mockus, Madan
Musuvathi, and Andreas Zeller for discussions on the relationship
between dependencies and defects. We would also like to thank
the anonymous ICSE reviewers for their helpful comments.

8. REFERENCES
[1] F. B. e. Abreu and W. Melo, "Evaluating the Impact of OO Design

on Software Quality," in International Software Metrics Symposium,
Berlin, 1996.

[2] V. R. Basili, L. C. Briand, and W. L. Melo, "A Validation of Object
Orient Design Metrics as Quality Indicators," IEEE Transactions on
Software Engineering, vol. 22, pp. 751-761, 1996.

[3] V. R. Basili, F. Shull, and F. Lanubile, "Building Knowledge
Through Families of Experiments," IEEE Transactions on Software
Engineering, vol. 25, pp. 456 - 473, 1999.

[4] J. Bevan, "Software Instability Analysis: Co-Change Analysis
Across Configuration-Based Dependence Relationships." PhD The-
sis: University of California, Santa Cruz, 2006.

[5] J. Bevan and J. E. James Whitehead, "Identification of Software
Instabilities," in Working Conference on Reverse Engineering, 2003,
pp. 134-145.

[6] A. B. Binkley and S. Schach, "Validation of the coupling dependen-
cy metric as a predictor of run-time failures and maintenance meas-
ures," in International Conference on Software Engineering, 1998,
pp. 452 - 455

[7] D. Binkley and M. Harman, "An empirical study of predicate depen-
dence levels and trends," in International Conference on Software
Engineering 2003, pp. 330-339.

[8] S. P. Borgatti, M. G. Everett, and L. C. Freeman, "Ucinet for Win-
dows: Software for Social Network Analysis," Analytic Technolo-
gies, Harvard, MA, 2002.

[9] L. Briand, P. Devanbu, and W. Melo, "An investigation into coupl-
ing measures for C++," in International Conference on Software En-
gineering Boston, Massachusetts, United States: ACM Press, 1997.

[10] L. C. Briand, J. W. Daly, and J. Wüst, "A Unified Framework for
Coupling Measurement in Object-Oriented Systems," IEEE Transac-
tions on Software Engineering, vol. 25, pp. 91-121, 1999.

[11] L. C. Briand, W. L. Melo, and J. Wüst, "Assessing the Applicability
of Fault-Proneness Models Across Object-Oriented Software
Projects," IEEE Transactions on Software Engineering, vol. 28, pp.
706-720, 2002.

[12] C. Bron and J. Kerbosch, "Algorithm 457: finding all cliques of an
undirected graph " Communications of the ACM, vol. 16, pp. 575-
577, 1973.

[13] R. Burt, Structural Holes: The Social Structure of Competition.
Cambridge, MA: Harvard University Press, 1995.

[14] J. Cho, H. Garcia-Molina, and L. Page, "Efficient crawling through
URL ordering," in International Conference on World Wide Web
Brisbane, Australia: Elsevier Science Publishers B. V., 1998.

[15] N. Fenton and N. Ohlsson, "Quantitative analysis of faults and fail-
ures in a complex software system," IEEE Transactions on Software
Engineering, vol. 26, pp. 797 - 814 2000.

[16] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach: Brooks/Cole, 1998.

[17] J. Ferrante, K. J. Ottenstein, and J. D. Warren, "The program depen-
dence graph and its use in optimization," ACM Transactions on Pro-
gramming Languages and Systems, vol. 9, pp. 319 - 349 1987.

[18] R. A. Ghosh, "Clustering and dependencies in free/open source
software development: Methodology and tools," First Monday, vol.
8, 2003.

[19] R. A. Hanneman and M. Riddle, Introduction to social network
methods. Riverside, CA: University of California, Riverside 2005.

[20] A. E. Hassan and R. C. Holt, "The Small World of Software Reverse
Engineering," in Working Conference on Reverse Engineering: IEEE
Computer Society, 2004.

[21] S. M. Henry and D. Kafura, "Software Structure Metrics based on
Information Flow," IEEE Transactions on Software Engineering,
vol. 7, pp. 510-518, 1981.

[22] S.-K. Huang and K.-m. Liu, "Mining version histories to verify the
learning process of Legitimate Peripheral Participants," in Interna-
tional Workshop on Mining Software Repositories, 2005.

[23] E. J. Jackson, A Users Guide to Principal Components. Hoboken,
NJ: John Wiley & Sons Inc., 2003.

[24] A. J. Ko and B. A. Myers, "A framework and methodology for stud-
ying the causes of software errors in programming systems," Journal
of Visual Languages & Computing, vol. 16, pp. 41-84, 2005.

[25] B. Korel, "The program dependence graph in static program testing,"
Information Processing Letters, vol. 24, pp. 103-108, 1987.

[26] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai, "Have things
changed now? An empirical study of bug characteristics in modern
open source software," in Workshop on Architectural and System
Support for Improving Software Dependability San Jose, California:
ACM Press, 2006.

[27] L. Lopez-Fernandez, G. Robles, and J. M. Gonzalez-Barahona, "Ap-
plying Social Network Analysis to the Information in CVS Reposito-
ries," in International Workshop on Mining Software Repositories,
Edinburgh, Scotland, UK, 2004, pp. 101-105.

[28] G. Madey, V. Freeh, and R. Tynan, "The open source software de-
velopment phenomenon: An analysis based on social network
theory," Americas Conference on Information Systems, 2002.

[29] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U.
Alon, "Network Motifs: Simple Building Blocks of Complex Net-
works," Science, vol. 298, pp. 824-827, October 25, 2002 2002.

[30] K.-H. Möller and D. J. Paulish, "An empirical investigation of soft-
ware fault distribution," in International Software Metrics Sympo-
sium, 1993, pp. 82-90.

[31] J. Munson and T. Khoshgoftaar, "The Detection of Fault-Prone
Programs," IEEE Transactions on Software Engineering, vol. 18, pp.
423-433, 1992.

[32] N. Nagappan and T. Ball, "Use of Relative Code Churn Measures to
Predict System Defect Density," in International Conference on
Software Engineering, St. Louis, MO, 2005, pp. 284-292.

[33] N. Nagappan and T. Ball, "Using Software Dependencies and Churn
Metrics to Predict Field Failures: An Empirical Case Study," in In-
ternational Symposium on Empirical Software Engineering and
Measurement, 2007, pp. 364-373.

[34] N. Nagappan, T. Ball, and B. Murphy, "Using Historical In-Process
and Product Metrics for Early Estimation of Software Failures.," in
International Symposium on Software Reliability Engineering, 2006,
pp. 62-74.

[35] N. Nagappan, T. Ball, and A. Zeller, "Mining metrics to predict
component failures," in International Conference on Software Engi-
neering, 2006, pp. 452-461.

[36] N. J. D. Nagelkerke, "A note on a general definition of the coeffi-
cient of determination," Biometrika, vol. 78, pp. 691-692, 1991.

[37] M. E. J. Newman, "The structure and function of complex net-
works," SIAM Review, vol. 45, pp. 167-456, 2003.

[38] M. Ohira, N. Ohsugi, T. Ohoka, and K.-i. Matsumoto, "Accelerating
cross-project knowledge collaboration using collaborative filtering
and social networks," in International Workshop on Mining Software
Repositories St. Louis, Missouri: ACM Press, 2005.

[39] N. Ohlsson and H. Alberg, "Predicting fault-prone software modules
in telephone switches," IEEE Transactions on Software Engineering,
vol. 22, pp. 886 - 894 1996.

[40] A. Orso, S. Sinha, and M. J. Harrold, "Classifying data dependences
in the presence of pointers for program comprehension, testing, and
debugging," ACM Transactions on Software Engineering and Me-
thodology, vol. 13, pp. 199 - 239 2004.

[41] T. Ostrand, E. Weyuker, and R. M. Bell, "Predicting the location and
number of faults in large software systems," IEEE Transactions on
Software Engineering, vol. 31, pp. 340 - 355 2005.

[42] A. Pogdurski and L. A. Clarke, "A Formal Model of Program De-
pendences and its Implications for Software Testing, Debugging, and
Maintenance," IEEE Transactions on Software Engineering, vol. 16,
pp. 965-979, 1990.

[43] G. Sabidussi, "The centrality index of a graph," Psychometrika, vol.
31, pp. 581-603, 1966.

[44] A. Schröter, T. Zimmermann, and A. Zeller, "Predicting Component
Failures at Design Time," in International Symposium on Empirical
Software Engineering Rio de Janeiro, Brazil, 2006.

[45] S. Sinha, M. J. Harrold, and G. Rothermel, "Interprocedural control
dependence," ACM Transactions on Software Engineering and Me-
thodology, vol. 10, pp. 209 - 254 2001.

[46] A. Srivastava, T. J., and C. Schertz, "Efficient Integration Testing
using Dependency Analysis," Microsoft Research-Technical Report,
MSR-TR-2005-94, 2005.

[47] R. Subramanyam and M. S. Krishnan, "Empirical Analysis of CK
Metrics for Object-Oriented Design Complexity: Implications for
Software Defects.," IEEE Transactions on Software Engineering,
vol. 29, pp. 297-310, 2003.

[48] G. Tassey, "The Economic Impacts of Inadequate Infrastructure for
Software Testing," National Institute of Standards and Technology
2002.

[49] S. Wasserman and K. Faust, Social Network Analysis: Methods and
Applications. Cambridge: Cambridge University Press, 1984.

[50] T. Zimmermann and N. Nagappan, "Predicting Subsystem Defects
using Dependency Graph Complexities," in International Symposium
on Software Reliability Engineering Trollhättan, Sweden, 2007.

APPENDIX

Table 5. Pearson correlation values between the num-
ber of defects and centrality measures as well as com-
plexity metrics. Correlations significant at 99% are
marked by (**) and correlations significant at 95% are
marked by (*). Correlations above 0.40 are printed in
boldface.

 Pearson Correlation
Ego Network In Out InOut
Size .208(**) .419(**) .234(**)
Ties .190(**) .421(**) .242(**)
Pairs .152(**) .424(**) .154(**)
Density .110(**) -.266(**) -.336(**)
WeakComp .187(**) .051(*) .178(**)
nWeakComp .130(**) -.201(**) -.215(**)
TwoStepReach .288(**) .041 .051(*)
ReachEfficency .155(**) -.200(**) -.226(**)
Brokerage .152(**) .413(**) .153(**)
nBrokerge .270(**) .269(**) .338(**)
EgoBetween .156(**) .265(**) .164(**)
nEgoBetween .198(**) .329(**) .290(**)
EffSize .221(**)
Efficiency .308(**)
Constraint -.346(**)
Hierarchy .208(**)

Global Network
Eigenvector .311(**)
Fragmentation .261(**)
Betweenness .265(**)
Information .286(**)
Power .367(**)
EffSize .223(**)
Efficiency .070(**)
Constraint -.232(**)
Hierarchy -.041

 Ingoing Outgoing Symmetric
Closeness .005 .285(**) .133(**)
Degree .208(**) .419(**) .234(**)
dwReach .302(**) .252(**) .133(**)

Complexity metrics Max Total
Functions .416(**)
GlobalVariables .466(**)
Lines .243(**) .557(**)
Parameters .391(**) .533(**)
FanIn .345(**) .461(**)
FanOut .166(**) .480(**)
Complexity .049(*) .523(**)

OO metrics Max Total
ClassMethods .231(**) .288(**)
SubClasses .157(**) .189(**)
InheritanceDepth .218(**) .185(**)
ClassCoupling .224(**) .210(**)
CyclicClassCoupling .223(**)

