
Taking Lessons from History
— Research Abstract —

Thomas Zimmermann
Department of Computer Science

Saarland University, Saarbrücken, Germany

tz@acm.org

ABSTRACT
Mining of software repositories has become an active research area.
However, most past research considered any change to software as
beneficial. This thesis will show how we can benefit from a classi-
fication into good and bad changes. The knowledge of bad changes
will improve defect prediction and localization. Furthermore, we
will describe how to learn project-specific error patterns that will
help reducing future errors.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—corrections, version control, reverse engineering;
D.2.8 [Metrics]: Complexity measures, Process metrics, Product
metrics

General Terms
Management, Measurement, Reliability

1. INTRODUCTION
The only real mistake is the one from which we learn nothing.

—John Powell

Nowadays, software development produces a huge amount of infor-
mation: changes to source code are recorded in version archives,
bugs are reported to problem databases, and development is dis-
cussed in mailing lists and newsgroups. Recently, a new research
area called mining software repositories has emerged. It showed
that historical data is a valuable asset when it comes to understand-
ing change tasks [4], guiding programmers [23, 19], and identifying
logical coupling [7] of huge software systems.

The common theme of research in this area are changes to source
code. A change can be caused by anything: a new feature, refactor-
ing, or a bug fix. Furthermore any change has impact on a system:
it can introduce or correct defects1 or it can cause test cases to fail
or pass. However, most existing research did not take this quality
of changes into account: all changes were considered good.

1We use the term defect to refer to an error in the source code,
and the term failure to refer to an observable error in the program
behavior.

Copyright is held by the author/owner.
ICSE’06, May 20–28, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

CVS

report 
#42

report 
#23

Bug Reports

testA:
testB:
testC:

N1007 N1008 N1009 N1010 Builds

built from built from built from built from

fixed in
fixed in

Test Outcomes

Snapshots

(from problem database)

(from version archive)

Figure 1: Data that is available for projects.

This thesis will leverage the quality aspect of changes. It will first
develop ways to assess changes with respect to defects and test
cases. Next it will show the benefits of this classification into good
and bad changes. For instance, the knowledge of bad changes will
improve defect prediction and localization. Furthermore, it will
describe how to learn project-specific error patterns that will help
reducing future errors.

The underlying research hypothesis is as follows: When mining
software repositories, we can leverage the knowledge of (past) bad
changes for defect localization, defect prediction, and for finding
error patterns—in short, “learning from mistakes”.

2. LEARNING FROM MISTAKES
Figure 1 shows the data sources that are available for most software
projects. We will use version archives to build snapshots and to
record changes between these snapshots. Using the textual descrip-
tion of changes, we automatically assign bug reports to snapshots.
Additionally, we collect builds for the snapshots. Builds will be
used for dynamic program analysis and the execution of test cases.

The proposed strategy for mining this data consists of three steps:

1. Record changes. Before we can learn from changes we need
some way to represent them. We will use tokens to describe
what has been changed within an element (Section 2.1).

2. Classification of changes. Additionally, we distinguish be-
tween good and bad changes (Section 2.2).

3. Learn from changes. We can use changes and their classifi-
cation to predict future failures and to characterize and locate
defects (Section 2.3).

Finally, we will evaluate all techniques developed in this thesis with
the data available from open source projects (Section 2.4).

1001



Token type For what? What is captured?

Modifier modifier public, private, final, . . .
Call method call method name and signature
Name variable usage variable name
Type variable usage variable type
Throws method declaration thrown exception
Throw throw statement thrown exception
Catch catch expression caught exception
Keyword keywords if, for, while, . . .

Extends type declaration extended type
Implements type declaration implemented interface

Import import statement imported class/package

Table 1: Different kinds of tokens

a()

b()

c()

d()

a()

b()

d()

e()

f()
Rev. r1 Rev. r2
void a(){
...}
void b(){
...}
void c(){
...}
void d(){
...}
void e(){
...}

void a(){
...}
void f(){
...}
void b(){
...}
void d(){
...}
void e(){
...}

e()

compare

compare

compare

compare

gone

new

(1) Tokenize 
elements of r1

(2) Tokenize 
elements of r2

(3) Compare token sets of matching elements

M-foo()

M-bar()

Figure 2: Comparing two revisions r1 and r2 of a file

2.1 Recording Changes
Previous research focused on the location of a change—such as
files [2], classes [3, 7], or methods [21]—and on properties of
changes—such as number of lines changed, developers, or whether
a change is a fix [12].

In this thesis, we will additionally investigate changes at the level of
tokens. A token represents some syntactic content of an element.
As Table 1 shows, we distinguish between different kinds of to-
kens: For methods, we capture method calls, variable usages, and
exception handling; for classes, we capture inheritance relations;
for compilation units, we capture imported classes.

Using tokens, it is straightforward to compute fine-grained changes
between two revisions r1 and r2 (see Figure 2). First, we repre-
sent each element of revision r1 as a multiset of tokens; we do the
same for the elements of revision r2. Finally, we compare the mul-
tisets of matchings elements. As a result we get differences such
as in method b() one call to method foo() was deleted and one call
to method bar() was inserted. Other possible changes that we can
detect are “two usages of String variables were deleted” and “one
throw statement for EmptyStackException was added”.

The usage of tokens is motivated by the research of Li and Zhou
who inferred implicit programming rules based on method call and
variable type tokens. They identified several violations of these
rules which turned out to be defects [9].

2.2 Classification of Changes
In addition tokens that represent changes, this thesis will leverage
the nature of a change, i.e., the reason of a change and its impact on
the software system. There are several, orthogonal ways to classify
changes:

Adaptive, corrective, and perfective changes. Mockus
and Votta proposed a classification into three categories [11]:

• changes that add new features (adaptive),

• changes that correct defects (corrective), and

• changes that restructure code to accommodate future
changes which also includes refactoring (perfective).

Mockus and Votta also presented an algorithm to catego-
rize changes based on their textual description. However,
since the quality of these descriptions differs widely among
projects, their algorithm is not always applicable.

Recent research concentrated on inferring links to problem
databases such as BUGZILLA [4, 6] to gather additional in-
formation about corrective changes.

Fix-inducing changes. In our previous work we defined the con-
cept of fix-inducing changes [18]. A change δb induces a fix
δf , if one of the lines introduced by δb is corrected later on
by δf . Fix-inducing changes need not to correspond with the
introduction of a defect, rather, they should be understood as
an indicator for the stability of a change.

Test fail/pass-inducing changes. Many software projects use re-
gression tests in their build process. We classify changes
with respect to their impact on such tests:

• Changes that flip a test case from pass (✔) to fail (✘)
are called test fail-inducing. In Figure 1 such a change
occurs between builds N1008 and N1009 for test testA.

• Changes that flip a test case from fail (✘) to pass (✔)
are called test pass-inducing. In Figure 1 such a change
occurs between builds N1009 and N1010 for test testC.

A change can be both test fail- and pass-inducing at the same
time, but only for different test cases.

In practice most projects perform regression tests on a daily
or weekly basis. Since many changes occur between the in-
dividual test runs, we need an additional analysis such as
change impact analysis [16] or delta debugging [20] to iden-
tify those changes that actually affected the outcome of a test
case. In the presence of continuous testing [17] we can do
without such an analysis and identify test fail/pass-inducing
changes directly from test outcomes.

2.3 Possible Applications
There are several possible applications that use tokenized changes
and their classification.

Prediction. When a change is fix-inducing, this indicates that is
has been unstable. Therefore, we used the percentage of fix-
inducing changes for a location to define the risk of change.
The higher this risk for a location, the more likely a change
in that location has to be fixed later on. Future risk of change
can be either predicted from past risk, metrics, or a combina-
tion of source code tokens [22].

Post-release failures are failures that are observed within the
first six months after a release. Such failures are of particu-
lar interest for any commercial software project because they
may harm the consumers’ trust in a product. This thesis will
investigate whether tokenized changes predict post-release
failures.

1002



Project LOC Developers

ARGOUML (UML editor) 128,915 24
ASPECTJ (compiler) 558,145 12
AZUREUS (file-sharing client) 242,614 14
COLUMBA (mail client) 103,424 26
ECLIPSE (development environment) 1,766,528 139
JEDIT (editor) 562,984 122

Table 2: Projects that will be used for the evaluation. LOC
were generated using David A. Wheeler’s “SLOCCount”.

Characterization of Changes. This thesis will explore whether
we can leverage tokenized changes for change classifica-
tion. We expect to improve on the classical change classi-
fication algorithm proposed by Mockus and Votta [11], since
our token-based approach looks on the change itself rather
than on its textual description.

Using machine learning techniques such as frequent pattern
mining [1], we will identify patterns that are characteristic
for the classes of changes defined in Section 2.2. For in-
stance, we will learn project-specific corrective (or error)
patterns that help us to understand errors that are common
within a particular project.

Defect Localization. Method calls that are added simultaneously
to source code form a pattern. We leveraged this observa-
tion to mine project-specific usage patterns and searched for
their violations dynamically [10]. With several new kinds
of tokens and several classes of changes, we expect to get
different and more specific patterns that locate defects more
precisely.

Furthermore, we will train classifiers for test fail/pass-induc-
ing changes and apply them to changes that are yet untested.
We are confident that this will help to identify changes that
are likely to cause failures.

2.4 Planned Evaluation
We will use open source projects for our evaluation, such as the
ones listed in Table 2. These projects provide all necessary data,
such as version archives, problem databases, test suites, and builds.
Furthermore, they are of considerable size and developed by many
programmers. For the evaluation we will split the project histories
into a training and a testing phase and use standard measures, such
as precision, recall, and correlation, to assess the accuracy of our
approach.

For the prediction part, we will additionally use the NASA Metrics
Data Program [13] to cross-check our results where possible. The
NASA Metrics Data Program contains software metrics and asso-
ciated defect data at the method level for closed source projects.

3. EXPECTED CONTRIBUTIONS
The contributions of this thesis will likely be the following:

A classification into good and bad changes.

“The addition of a call to the method handler() in line 42
caused a test case to fail and is bad.”

This classication will be with respect to defects and test cases
and improve on existing ones [11] by focusing on the impact
of a change rather than on its purpose.

A technique to mine project-specific error patterns.

“Constructing a BankTransaction object and calling begin()
on this object without calling commit() leads to errors.”

This technique will be more general than existing static anal-
ysis approaches and statistical techniques [5] as it is not a-
priori limited to a particular set of pattern templates. Further-
more, it will focus on project-specific rather than on applica-
tion-specific error patterns. Previous research addressed er-
rors in J2EE applications [15] and operating system code [8].

An improved prediction and localization of defects.

“The package com.foo.bar will cause most of the program’s
post-release failures.”

Although software repository information has been used for
defect prediction [14], no one leveraged the notion of bad
changes so far. Our research will focus on how well the
knowledge of bad changes enhances or performs against
competing techniques.

“The class Broker contains a defect because a call to method
commit() is missing.”

Additionally, we can use error patterns or classifiers to locate
existing defects and to warn developers when they are likely
introducing a new defect.

4. ACKNOWLEDGMENTS
My research is funded by the DFG-Graduiertenkolleg “Leistungs-
garantien für Rechnersysteme”. I would like to thank my advisor
Andreas Zeller, my PhD soulmate Stefanie Scherzinger, and the
reviewers of the ICSE Doctoral Symposium committee for their
comments on this research abstract.

5. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. In Proceedings of the 20th Very Large Data
Bases Conference (VLDB), pages 487–499. Morgan
Kaufmann, 1994.

[2] J. Bevan and J. Whitehead. Identification of software
instabilities. In Proc. 10th Working Conference on Reverse
Engineering (WCRE 2003), pages 134–143, Victoria, British
Columbia, Canada, Nov. 2003. IEEE.

[3] J. M. Bieman, A. A. Andrews, and H. J. Yang. Understanding
change-proneness in OO software through visualization. In
Proc. 11th International Workshop on Program
Comprehension, pages 44–53, Portland, Oregon, May 2003.

[4] D. Čubranić and G. C. Murphy. Hipikat: Recommending
pertinent software development artifacts. In Proc. 25th
International Conference on Software Engineering (ICSE),
pages 408–418, Portland, Oregon, May 2003.

[5] D. R. Engler, D. Y. Chen, and A. Chou. Bugs as deviant
behavior: A general approach to inferring errors in systems
code. In Symposium on Operating Systems Principles, pages
57–72, 2001.

[6] M. Fischer, M. Pinzger, and H. Gall. Populating a release
history database from version control and bug tracking
systems. In Proc. International Conference on Software
Maintenance (ICSM), Amsterdam, Netherlands, Sept. 2003.
IEEE.

1003



[7] H. Gall, M. Jazayeri, and J. Krajewski. CVS release history
data for detecting logical couplings. In Proc. International
Workshop on Principles of Software Evolution (IWPSE
2003), pages 13–23, Helsinki, Finland, Sept. 2003.

[8] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and
language for building system-specific, static analyses. In
Proceedings of the Conference on Programming Language
Design and Implementation, pages 69–82, Berlin, Germany,
2002.

[9] Z. Li and Y. Zhou. PR-Miner: Automatically extracting
implicit programming rules and detecting violations in large
software code. In Proceedings of European Software
Engineering Conference/ACM SIGSOFT International
Symposium on the Foundations of Software Engineering
(ESEC/FSE), pages 306–315, New York, NY, USA, 2005.
ACM Press.

[10] V. B. Livshits and T. Zimmermann. Dynamine: Finding
common error patterns by mining software revision histories.
In Proc. Joint European Software Engineering Conference
(ESEC) and ACM SIGSOFT Symposium on the Foundations
of Software Engineering (FSE), pages 296–305, Lisbon,
Portugal, Sept. 2005.

[11] A. Mockus and L. G. Votta. Identifying reasons for software
changes using historic databases. In Proc. International
Conference on Software Maintenance (ICSM), pages
120–130, San Jose, California, USA, Oct. 2000. IEEE.

[12] A. Mockus and D. M. Weiss. Predicting risk of software
changes. Bell Labs Technical Journal, 5(2):169–180,
April–June 2000.

[13] NASA. Metrics Data Program.
http://mdp.ivv.nasa.gov/index.html.

[14] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Predicting the
location and number of faults in large software systems.
IEEE Transactions on Software Engineering, 31(4):340–355,
2005.

[15] D. Reimer, E. Schonberg, K. Srinivas, H. Srinivasan,
B. Alpern, R. D. Johnson, A. Kershenbaum, and L. Koved.
SABER: Smart Analysis Based Error Reduction. In
Proceedings of the International Symposium on Software
Testing and Analysis, pages 243–251, Boston, MA, July
2004.

[16] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley.
Chianti: A tool for change impact analysis of Java programs.
In J. M. Vlissides and D. C. Schmidt, editors, OOPSLA,
pages 432–448. ACM, 2004.

[17] D. Saff and M. D. Ernst. Reducing wasted development time
via continuous testing. In International Symposium on
Software Reliability Engineering (ISSRE), pages 281–292.
IEEE Computer Society, 2003.

[18] J. Śliwerski, T. Zimmermann, and A. Zeller. When do
changes induce fixes? On Fridays. In Proc. International
Workshop on Mining Software Repositories (MSR), St.
Louis, Missouri, USA, May 2005.

[19] A. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll.
Predicting source code changes by mining change history.
IEEE Transactions on Software Engineering, 30(9):574–586,
Sept. 2004.

[20] A. Zeller. Yesterday, my program worked. Today, it does not.
Why? In Proc. of Joint European Software Engineering
Conference (ESEC) and ACM SIGSOFT International
Symposium on the Foundations of Software Engineering
(FSE), pages 253–267. Springer Verlag, 1999.

[21] T. Zimmermann, S. Diehl, and A. Zeller. How history
justifies system architecture (or not). In Proc. International
Workshop on Principles of Software Evolution (IWPSE
2003), pages 73–83, Helsinki, Finland, Sept. 2003.

[22] T. Zimmermann, J. Śliwerski, and A. Zeller. Locating the
risk of change. Technical report, Saarland University, 2006.

[23] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller.
Mining version histories to guide software changes. IEEE
Transactions on Software Engineering, 31(6):429–445, June
2005.

1004

http://mdp.ivv.nasa.gov/index.html

	Introduction
	Learning from Mistakes
	Recording Changes
	Classification of Changes
	Possible Applications
	Planned Evaluation

	Expected Contributions
	Acknowledgments
	References 

