
Mining Version Histories to Guide Software Changes

Thomas Zimmermann
tz@acm.org

Peter Weißgerber
weissger@st.cs.uni-sb.de

Stephan Diehl
diehl@acm.org

Andreas Zeller
zeller@acm.org

Saarland University, Saarbrücken, Germany

Abstract

We apply data mining to version histories in order to
guide programmers along related changes: “Programmers
who changed these functions also changed. . . ”. Given a
set of existing changes, such rules (a) suggest and predict
likely further changes, (b) show up item coupling that is in-
detectable by program analysis, and (c) prevent errors due
to incomplete changes. After an initial change, our ROSE
prototype can correctly predict 26% of further files to be
changed—and 15% of the precise functions or variables.
The topmost three suggestions contain a correct location
with a likelihood of 64%.

1. Introduction

Shopping for a book at Amazon.com, you may have come
across a section that reads “Customers who bought this
book also bought. . . ”, listing other books that were typi-
cally included in the same purchase. Such information is
gathered by data mining— the automated extraction of hid-
den predictive information from large data sets. In this pa-
per, we apply data mining to version histories: “Program-
mers who changed these functions also changed. . . ”. Just
like the Amazon.com feature helps the customer browsing
along related items, our ROSE tool guides the programmer
along related changes, with the following aims:

Suggest and predict likely changes. Suppose you are a
programmer and just made a change. What else do
you have to change? Figure 1 on the following page
shows our ROSE tool as a plug-in for the ECLIPSE
programming environment. The programmer is ex-
tending ECLIPSE itself with a new preference, and has
added an element to the fKeys[] array. ROSE now sug-
gests to consider further changes, as inferred from the
ECLIPSE version history. First come the locations with
the highest confidence—that is, the likelihood that fur-
ther changes be applied to the given location.

Prevent errors due to incomplete changes. In Figure 1,
the top location has a confidence of 1.0: In the past,

each time some programmer extended the fKeys[] ar-
ray, she also extended the function that sets the pref-
erence default values. If the programmer now wanted
to commit her changes without altering the suggested
location, ROSE would issue a warning.

Detect coupling indetectable by program analysis. As
ROSE operates uniquely on the version history, it is
able to detect coupling between items that cannot be
detected by program analysis—including coupling
between items that are not even programs. In Figure 1,
position 3 on the list is an ECLIPSE HTML documen-
tation file with a confidence of 0.75—suggesting that
after adding the new preference, the documentation
should be updated, too.

ROSE is not the first tool to leverage version histories. In
earlier work (Section 7), researchers have used history data
to understand programs and their evolution [3], to detect
evolutionary coupling between files [8] or classes [4], or to
support navigation in the source code [6]. In contrast to this
state of the art, the present work

• uses full-fledged data mining techniques to obtain as-
sociation rules from version histories,

• detects coupling between fine-grained program enti-
ties such as functions or variables (rather than, say,
classes), thus increasing precision and integrating with
program analysis,

• thoroughly evaluates the ability to predict future or
missing changes, thus evaluating the actual usefulness
of our techniques.

The remainder of this paper is organized as follows. Sec-
tion 2 shows how to gather changes and their effects; Sec-
tion 3 applies this to CVS. Section 4 describes the basic
approaches to mining these data, followed by examples in
Section 5. In Section 6, we evaluate ROSE’s ability to pre-
dict future changes, based on earlier history: How often can
ROSE suggest further changes, and, if so, how precise is it?
Section 7 discusses related work and Section 8 closes with
conclusion and consequences.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

A) The user inserts a
new preference into
the field fKeys[]

B) ROSE suggests
locations for further
changes, e.g. the
function initDefaults()

Figure 1. After the programmer has made some changes to the ECLIPSE source (above), ROSE
suggests locations (below) where, in similar transactions in the past, further changes were made.

2. Processing Change Data

Figure 2 illustrates the basic data flow through our ROSE
tool.1 The ROSE server reads a version archive (far left),
groups the changes into transactions, mines the transactions
for rules which describe implications between software en-
tities: “If fKeys[] is changed, then initDefaults() is typically
changed, too.” When the user changes some entity (say,
fKeys[]), the ROSE client queries the rule set for applicable
rules and makes appropriate suggestions for further changes
(say, initDefaults()).

We begin by introducing formal definitions for changes,
transactions, and affected entities, generalizing the concepts
as found in existing version archives. Adopting the notation
from [26], a change is a mapping δ : P → P , which, when
applied, transforms a product p ∈ P into a changed product

1ROSE stands for Reengineering Of Software Evolution; it is a non-
Rational tool.

Version
Archive

Transactions Rule Set

Change(s)

Suggestions

Rule
Application

Rose Server Rose Eclipse Client

User

Querying
MiningGrouping

Matching

Figure 2. The data flow through ROSE.

p′ = δ(p) ∈ P . Here, P is the set of all products; the set of
changes is denoted as C = P → P .

Changes can be composed using the composition oper-
ator ◦ : C × C → C. This is useful for denoting transac-
tions consisting of multiple changes to multiple locations.
For instance, the transaction �1,2 between two versions
p1, p2 ∈ P , composed of n individual changes δ1, . . . , δn

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

is expressed as �1,2 = δ1 ◦ δ2 ◦ · · · ◦ δn with �1,2(p1) =
(δ1 ◦ δ2 ◦ · · · ◦ δn)(p1) = δ1

(
δ2

(· · · δn(p1)
)) = p2.

To express all the syntactic components affected by a
change, we define the concept of entities. An entity is a
triple (f, c, i), where f is the name of the affected file, c is
the syntactic category of the affected component such as
method, class, file, . . . , and i is the identifier of the affected
component. The mapping entities retrieves all entities af-
fected by a change or transaction, as in:

entities(�) = entities(δ1) ∪ · · · ∪ entities(δn) =

(Comp.java, method, initDefaults()),
(Comp.java, field, fKeys[]),
(Comp.java, class, ComparePreferencePage),
(Comp.java, file, Comp.java)2, . . .

Entities are the base for later mining: “I changed one entity;
which other entities should I typically change?”

3. Grouping Changes to Transactions

Our ROSE server retrieves changes and transactions as de-
scribed above from existing version archives—typically
from CVS archives, which are frequently used for open-
source systems. While CVS is popular, it has some weak-
nesses that require special data cleaning [28]:

Inferring transactions. Most modern version control sys-
tems have a concept of product versioning—that is,
one is able to access transactions as they alter the entire
product. CVS, though provides only file versioning. To
recover per-product transactions from CVS archives,
we must group the individual per-file changes into in-
dividual transactions. ROSE follows the classical slid-
ing window approach [7]: two subsequent changes δi

and δi+1 by the same author and with the same ratio-
nale are part of one transaction � if they are at most
200 seconds apart.

Branches and merges. The evolution of a product some-
times branches into different evolution strands, which
may later be merged again. In a CVS archive, the
merge of a branch is not reflected explicitly; instead,
the merge becomes a large transaction which includes
all the changes made in the branch. In order to de-
tect coupling within transactions, one must take into
account all branches, but avoid the large merge trans-
actions. ROSE does so by ignoring all changes that
affect more than 30 entities.

Getting entities. CVS has no syntactic knowledge about
the files it stores; it manages only files and line num-

2To save space, we abbreviate all file names from Figure 1 to their first
syllable; Comp.java stands for ComparePreferencePage.java.

1

3

23

25

30

56

58

60

80

99

Cat.COLORS
lines 3-23

Cat.Cat()
lines 25-30

Class Cat
lines 1-56

Dog.COLORS
lines 60-80

Class Dog
lines 58-99

public String[] COLORS = {

public String[] COLORS = {

class Cat {

public Cat() {

 ...
}

 ...
}

 ...
}

class Dog {

 ...
}

 ...
}

Change in Line 8
affects
file animals.java
class Cat, and
field Cat.COLORS

Figure 3. Relating changes to entities.

bers for each change. ROSE thus parses the files, asso-
ciating syntactic entities with line ranges. As sketched
in Figure 3, ROSE can thus relate any change (given by
file and line) to the affected components.

4. From Transactions to Rules

Given the transactions as described in the previous sections,
the aim of the ROSE server is to mine rules from these trans-
actions. What is a rule? Here is an example:

{(Comp.java, field, fKeys[])}
⇒ { (Comp.java, method, initDefaults()),

(plug.properties, file, plug.properties) }
(1)

This rule means that whenever the user changes the
field fKeys[] in Comp.java, then she should also change the
method initDefaults() and the file plug.properties. Here,
“should” means that the rule is based on experience and
does not constitute absolute truth; the character “⇒” is thus
not to be read as a logical implication that always holds.

Formally, an association rule r is a pair (x1, x2) of two
disjoint entity sets x1 and x2. In the notation x1 ⇒ x2, x1 is
called the antecedent and x2 the consequent.

As said before, rules do not tell an absolute truth. They
have a probabilistic interpretation based on the amount of
evidence in the transactions they are derived from. This
amount of evidence is determined by two measures:

Support. The support determines the number of transac-
tions the rule has been derived from. Assume that
the field fKeys[] was changed in 8 transactions. Of
these 8 transactions, 7 also included changes of both
the method initDefaults() and the file plug.properties.
Then, the support for the above rule is 7.

Confidence. The confidence determines the strength of the
consequence, or the relative amount of the given con-
sequences across all alternatives. In the above exam-
ple, the consequence of changing initDefaults() and
plug.properties applies in 7 out of the 8 transactions
involving fKeys[]. Hence, the confidence for the above
rule is 7/8 = 0.875.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

Formally, we define

• the frequency of a set x in a set of transactions T as
frq(T, x) = |{t | t ∈ T, x ⊆ t}|.

• the support of a rule x1 ⇒ x2 by a set of transactions
T as supp(T, x1 ⇒ x2) = frq(T, x1 ∪ x2).

• its confidence as conf(T, x1 ⇒ x2) = frq(T ,x1∪x2)

frq(T ,x1)
.

The shorthand notation r [s; c] denotes a rule r with s =
supp(T, r) and c = conf(T, r) and a set of transactions T .

4.1. Applying Rules

As soon as the programmer begins to make changes, the
ROSE client suggests possible further changes. This is done
by applying matching rules. In general, a rule matches a set
of changed entities if this set is equal to the antecedent.

Assume the programmer has created a sequence of
changes δ1 ◦ δ2 ◦ · · · ◦ δk . The set of changed entities (called
situation) is � = entities(δ1 ◦ δ2 ◦ · · · ◦ δk). In Figure 1, for
instance, the user has extended the variable fKeys[] in file
ComparePreferencePage.java. The situation is thus

� = {(Comp.java, field, fKeys[])} (2)

How does one compute the suggestions? The set of sug-
gestions for a situation � and a set of rules R is defined as
the union of the consequents of all matching rules:

apply(�, R) =
⋃

(�⇒x2)∈R

x2

In the given situation � from (2) and the rule r from (1),
ROSE thus suggests the consequent of r :

apply(�, {r}) =
{

(Comp.java, method, initDefaults()),
(plug.properties, file, plug.properties)

}

The entire set R of actually mined rules contains further
rules, though. The actual result of apply(�, R) is shown in
Figure 1, ordered by confidence.

Let us assume the user decides to follow the first recom-
mendation for initDefaults() (with a confidence of 1.0); it is
obvious that a new preference should get a default value.
So she changes the method initDefaults(). Again ROSE pro-
poses additional changes, which are in this case the same as
before except that now initDefaults() is missing.

Now, the user examines methods createGeneralPage()
and createTextComparePage() because they are in the same
file as fKeys[] and initDefaults(). Each of these two meth-
ods creates a window where preferences can be set. So she
extends the createGeneralPage() method, resulting in

� =

(Comp.java, field, fKeys[]),
(Comp.java, method, initDefaults()),
(Comp.java, method, createGeneralPage())

Given this situation, a minimum support of 3 and a mini-
mum confidence of 0.5, ROSE computes the following rules:

� ⇒ {(plug.properties, file, plug.properties)} [5; 1.0]
� ⇒ {(Text.java, method, TextMergeViewer())} [3; 0.6]
� ⇒ {(Text.java, method, propertyChange())} [3; 0.6]
� ⇒ {(build.html, file, build.html)} [3; 0.6]

(3)
Applying the above rules yields the union of the conse-
quents of all rules, because they have the same antecedent.
ROSE will rank the entities by their confidence suggesting
the user to change the file plug.properties next.

4.2. Computing Rules

ROSE uses the Apriori Algorithm [1] to compute associa-
tion rules. The Apriori Algorithm takes a minimum support
and minimum confidence and then computes the set of all
association rules in two phases:

1. The algorithm iterates over the set of transactions and
forms entity sets from the entities that occur in the
same transaction. Entity sets that are above the mini-
mal support are called frequent. Since an entity set can
only be frequent when its subsets are frequent, entity
sets are extended in each iteration. This phase finally
yields the set F of frequent entity sets.

2. The algorithm computes rules from the sets in F . More
precisely, from each of the entity sets E ∈ F it cre-
ates those rules E − X ⇒ X where X is a subset of
E . (Note that all these rules have the same support
supp(T, E), but different confidences.) Only rules that
are above the minimum confidence are returned.

The classical use of the Apriori Algorithm is to compute
all rules beforehand, and then search the rule set for a given
situation. However, computing all rules takes time—several
days in our experiments. So we used two optimizations:

Constrained antecedents. In our specific case, the an-
tecedent is equal to the situation; hence, we only mine
rules on the fly which are related to the situation. Min-
ing with such constrained antecedents [24] takes only a
few seconds. An additional advantage of this approach
is that it is incremental in the sense that it allows new
transactions to be added between two situations.

Single consequents. To speed up the mining process even
more, we have modified the approach such that it only
computes rules with a single entity in their conse-
quent. So for a situation � the rules have the form
� ⇒ {e}. For ROSE, such rules are sufficient because
ROSE computes the union of the consequents anyway

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

(Section 4.1).3 (Our previous example in (3) already
used single consequent rules.)

These optimizations make mining very efficient: The aver-
age runtime of a query is about 0.5s for large version histo-
ries like GCC.4

5. Some Rule Examples

Coupling in GCC. GCC has arrays that define the costs of
different assembler operations for INTEL processors.
These have been changed together in 11 transactions.
In 9 of these 11 transactions, this change was triggered
by a change in the type:

{ (i386.h, type, processor cost) }
⇒ { (i386.c, var, i386 cost), (i386.c, var, i486 cost),

(i386.c, var, k6 cost), (i386.c, var, pentium cost),
(i386.c, var, pentiumpro cost) } [9; 0.82]

So, whenever the costs type is changed (e.g. for a new
operation), ROSE suggests to extend the appropriate
cost instances, too.5

PYTHON and C files. Our approach is not restricted to a
specific programming language. In fact, we can de-
tect coupling between program parts written in differ-
ent languages (including natural language). Here is an
example, taken from the PYTHON library:

{ (Qdmodule.c, func, GrafObj getattr()) }
⇒ { (qdsupport.py, func, outputGetattrHook()) }

[10; 0.91]

Whenever the C file Qdmodule.c was changed, so was
the PYTHON file qdsupport.py—a classical coupling
between interface and implementation.

POSTGRESQL documentation. Data mining can reveal
coupling between items that are not even programs, as
in the POSTGRESQL documentation:

{ (createuser.sgml, file, createuser.sgml),
(dropuser.sgml, file, dropuser.sgml) }

⇒ { (createdb.sgml, file, createdb.sgml),
(dropdb.sgml, file, dropdb.sgml) }

[11; 1.0]

Whenever both createuser.sgml and dropuser.sgml
have been changed, the files createdb.sgml and
dropdb.sgml have been changed, too.

3For each entity e ∈ x2 in a consequent of a rule � ⇒ x2[s; c] there ex-
ists a single consequent rule � ⇒ {e}[se; ce] with higher or equal support
and confidence values se ≥ s and ce ≥ c.

4Measured on a PC with Intel 2.0 GHz Pentium 4 and 1 GB RAM.
5This rule also holds for the other direction, with the same support and

(incidentally) the same confidence.

6. Evaluation

After these rule examples, let us now give empirical evi-
dence for the following objectives:

Navigation through source code. Given a single changed
entity, can ROSE point programmers to entities that
should typically be changed, too?

Error prevention. Can ROSE prevent errors? Say, the pro-
grammer has changed many entities but has missed to
change one entity. Does ROSE find the missing one?

Closure. Suppose a transaction is finished—the program-
mer made all necessary changes. How often does
ROSE erroneously suggest that a change is missing?

Granularity. By default, ROSE suggests changes to func-
tions and other fine-grained entities. What are the re-
sults if ROSE suggests changes to files instead?

6.1. Evaluation Setup

For our evaluation, we analyzed the archives of eight large
open-source projects (Table 1 on the next page). For each
archive, we chose a number of full months containing the
last 1,000 transactions, but not more than 50% of all trans-
actions as our evaluation period. In this period, we check
for each transaction � whether its entities can be predicted
from earlier history:

1. We create a test case q = (Q, E) consisting of a
query Q ⊂ entities(�) and an expected outcome E =
entities(�) − Q.

2. We take all transactions �i that have been completed
before time(�) as a training set and mine a set of
rules R from these transactions.

3. To avoid having the user work through endless lists
of suggestions, ROSE only shows the top ten single-
consequent rules R10 ⊂ R ranked by confidence. In
our evaluation, we apply R10 to get the result of the
query Aq = apply(Q, R10). So, the size of Aq is al-
ways less or equal than ten.

4. The result Aq of a test case q consists of two parts:

• Aq∩Eq are the entities that matched the expected
outcome and are considered correct.

• Aq − Eq are unexpected recommendations which
are wrong.

For the assessment of a result Aq , we use two measures
from information retrieval [20]: The precision Pq describes
which fraction of the returned entities was actually expected

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

History (Training) Evaluation
Project, Description in CVS since # Txns # Txns/Day # Etys/Txn Period # Txns
ECLIPSE, integrated environment 2001-04-28 46,843 56.0 3.17 2003-03-01 to 03-31 2,965
GCC, compiler collection 1997-08-11 47,424 22.4 3.90 2003-04-01 to 04-30 1,083
GIMP, image manipulation tool 1997-01-01 9,796 4.1 4.54 2003-02-01 to 07-31 1,305
JBOSS, application server 2000-04-22 10,843 9.0 3.49 2003-04-01 to 07-31 1,320
JEDIT, text editor 2001-09-02 2,024 2.9 4.54 2003-02-01 to 07-31 577
KOFFICE, office suite 1998-04-18 20,903 11.2 4.25 2003-02-01 to 05-31 1,385
POSTGRESQL, database system 1996-07-09 13,477 5.4 3.27 2003-01-01 to 05-31 925
PYTHON, language + library 1990-08-09 29,588 6.2 2.62 2003-05-01 to 07-31 1,201

Table 1. Analyzed projects (Txn = Transaction; Ety = Entity)

by the user. The recall Rq indicates the percentage of ex-
pected entities that were returned.

Pq = |Aq ∩ Eq |
|Aq | Rq = |Aq ∩ Eq |

|Eq |
In case no entities are returned (Aq is empty), we define the
precision as Pq = 1, and in case no entities are expected,
we define the recall as Rq = 1.

Our goal is to achieve high precision and high recall val-
ues (near 1)—that is to recommend all (recall of 1) and only
expected entities (precision of 1).

For each query qi , we get a precision-recall pair
(Pqi , Rqi). To get an overall measure for the entire history,
we summarize these pairs into a single pair using two dif-
ferent averaging techniques from information retrieval:

Macro-evaluation simply takes the mean value of the
precision-recall pairs:

PM = 1

N

N∑
i=1

Pqi RM = 1

N

N∑
i=1

Rqi

This approach uses the precision and recall which have
been computed for each query. As users usually think
in queries macro-evaluation is sometimes referred to as
a user-oriented approach—it determines the predictive
strength of individual queries.

Micro-evaluation in contrast builds an average precision-
recall pair based on entities. It does not use the preci-
sion and recall values of single queries, but the sums of
returned, matching and expected entities of all queries.

Pµ =
∑N

i=1 |Aqi ∩ Eqi |∑N
i=1 |Aqi |

Rµ =
∑N

i=1 |Aqi ∩ Eqi |∑N
i=1 |Eqi |

One can think of micro-evaluation as summarizing all
queries into one large query and then computing preci-
sion and recall for this large query. It therefore allows
statements summarizing all queries like “every nth

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

P
re

ci
si

on

Recall

Eclipse (Navigation, Micro-evaluation)

0.1

0.1

0.1

0.6

0.8

0.9

1.0

1.0

1.0

Minimum Support 5
Minimum Support 3
Minimum Support 1

Figure 4. Varying support and confidence

suggestion is wrong/correct”. For example, the pre-
cision Pµ for PYTHON is 0.50: Every second sugges-
tion is correct, which means that the recommended en-
tity was actually changed later on. Micro-evaluation is
sometimes referred to as a system-oriented approach,
because it focuses on the overall performance of the
system and not on the average query performance.

Unless otherwise noted, all averages are given by micro-
evaluation.

6.2. Precision vs. Recall

A major application for ROSE is to guide users through
source code: The user changes some entity and ROSE au-
tomatically recommends possible future changes in a view
(Figure 1). We wanted to evaluate the predictive power of
ROSE in this situation. For each transaction �, and each
entity e ∈ entities(�), we queried Q = {e}, and checked
whether ROSE would predict E = entities(�) − {e}. For
each transaction, we thus tested

∣∣entities(�)
∣∣ queries, each

with one element.
Figure 4 shows a so-called precision-recall graph with

the results for the ECLIPSE project. For each combina-
tion of minimum support and minimum confidence the re-
sulting precision-recall pair is plotted. Additionally, sub-

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

sequent confidence thresholds having the same support are
connected with lines. As a result we get three precision-
recall curves, one for each investigated support. (The con-
necting lines between measured values are for sake of clar-
ity and not for interpolation.)

In Figure 4, ROSE achieves for a support of 1 and a con-
fidence of 0.1 a recall of 0.15 and a precision of 0.26:

• The recall of 0.15 states that ROSE’s suggestion cor-
rectly included 15% of all changes that were actually
carried out in the given transaction.

• The precision of 0.26 means that 26% of all rec-
ommendations were correct—every fourth suggested
change was actually carried out (and thus predicted
correctly by ROSE). The programmer has to check
about four suggestions in order to find a correct one.

Figure 4 also shows that increasing the support threshold
also increases the precision, but decreases the recall as
ROSE gets more cautious. However, using the highest pos-
sible thresholds does not always yield the best precision
and recall values: If we increase the confidence thresh-
old above 0.80, both precision and recall decrease. Fur-
thermore, Figure 4 shows that high support and confidence
thresholds are required for a high precision. Still, such val-
ues result in a very low recall—indicating a trade-off be-
tween precision and recall.

In practice, a graph such as the one in Figure 4 is thus
necessary to select the “best” support and confidence values
for a specific project. In the remainder of this paper, though,
we have chosen values that are common across all projects,
in order to facilitate comparison.

One can either have precise suggestions or many sugges-
tions, but not both.

6.3. Likelihood

While a precision like 26% sounds low, keep in mind that
this is the likelihood of each single recommendation pre-
dicting a specific location. If some change in A results in ei-
ther B, C or D being changed, ROSE suggests B, C , and D,
but each suggestion has an average precision of only 33%.

To assess the actual usefulness for the programmer, we
checked the likelihood whether the expected location would
be included in ROSE’s top three navigation suggestions (as-
suming that a programmer won’t have too much trouble
judging the first three suggestions). Formally, L3 is the like-
lihood that for a query q = (Q, E), at least one of the first
three recommendations is correct:

L3 = L(|apply(Q, R3) ∩ E | > 0)

where L(p) stands for the probability of the predicate p.
If, in the example above, ROSE always suggested B,

C , and D as topmost suggestions, L3 = 100% would hold.

6.4. Results: Navigation through Source Code

We repeated the experiment from Section 6.2 for all eight
projects with a support threshold of 1 and a confidence
threshold of 0.1—such that for navigation, the user gets sev-
eral recommendations. The results are shown in Table 2 on
the next page (column Navigation). For these settings the
average recall is 15%, the average precision is 26%; these
values are also found for ECLIPSE (Section 6.2). The aver-
age likelihood L3 of the three topmost suggestions predict-
ing a correct location is 64%.

While KOFFICE and JEDIT have lower recall, precision,
and likelihood values, GCC strikes by overall high values.
The reason is that KOFFICE and JEDIT are projects where
continuously many new features are inserted (which can-
not be predicted from history) while GCC is a stable system
where the focus is on maintaining existing features.

When given one initial changed entity, ROSE can predict
15% of all entities changed later in the same transaction.
In 64% of all transactions, ROSE’s topmost three sugges-
tions contain a correct location.

6.5. Results: Error Prevention

Besides supporting navigation, ROSE should also prevent
errors. The scenario is that when a user decides to commit
all her changes to the version archive, ROSE checks if there
are related changes that have not been changed. If there are,
it issues a pop-up window with a warning; it also suggests
one or more “missing” entities that should be considered.

We wanted to determine in how many cases ROSE can
predict such a missing entity. For this purpose, we took each
transaction, left out one entity and checked if ROSE could
predict the missing entity. In other words, the query was
the complete transaction without the missing entity. So, for
each single transaction �, and each entity e ∈ entities(�),
we queried Q = entities(�) − {e}, and checked whether
ROSE would predict E = {e}. For each transaction, we thus
again ran

∣∣entities(�)
∣∣ tests.

As too many false warnings might undermine ROSE’s
credibility, ROSE is set up to issue warnings only if the high
confidence threshold of 0.9 is exceeded. Still, we wanted
to get as many missing entities as possible, resulting in a
support threshold of 3. The results are shown in Table 2
(column Prevention):

• The average recall is about 4%. This means that in
only one out of 25 queries (in GCC: every 5th query),
ROSE correctly predicted the missing entity.

• The average precision is above 50%. This means that
every second recommendation of ROSE is correct, or:
If a warning occurs, and ROSE recommends further en-
tities, the user on average has to check only one false
recommendation before getting to the correct one.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

Navigation Prevention Closure
Support 1 3 3
Confidence 0.1 0.9 0.9
Project Rµ Pµ L3 Rµ Pµ RM PM
ECLIPSE 0.15 0.26 0.53 0.02 0.48 1.0 0.979
GCC 0.28 0.39 0.89 0.20 0.81 1.0 0.953
GIMP 0.12 0.25 0.91 0.03 0.71 1.0 0.978
JBOSS 0.16 0.38 0.69 0.01 0.24 1.0 0.981
JEDIT 0.07 0.16 0.52 0.004 0.59 1.0 0.986
KOFFICE 0.08 0.17 0.46 0.003 0.24 1.0 0.990
POSTGRES 0.13 0.23 0.59 0.03 0.66 1.0 0.989
PYTHON 0.14 0.24 0.51 0.01 0.50 1.0 0.986
Average 0.15 0.26 0.64 0.04 0.50 1.0 0.980

Table 2. Results for fine granularity
(R = recall; P = precision; L = likelihood)

Given a transaction where one change is missing, ROSE
can predict 4% of the entities that need to be changed. On
average, every second recommended entity is correct.

6.6. Results: Closure

The final question in the “Error Prevention” scenario is how
many false alarms ROSE would produce in case no entity
is missing. We simulated this by testing complete transac-
tions. For each transaction �, we queried Q = entities(�),
and checked whether ROSE would predict E = ∅; we thus
had one test per transaction.

As the expected outcome is the empty set, the recall is
always 1. To measure the number of false warnings we
cannot use micro-evaluation anymore, as one single false
alarm results in a summarized precision of 0. We thus turn
to macro-evaluation precision: The precision for a single
query in this setting is either 0 if at least one entity is rec-
ommended, or 1 if no entities are recommended; PM is the
percentage of commits where ROSE has not issued a warn-
ing, and 1 − PM is the percentage of false alarms.

The results are shown in Table 2 (column Closure). One
can see that the precision is very high for all projects, usu-
ally around 0.98. This means that ROSE issues a false alarm
in only every 50th transaction.

ROSE’s warnings about missing changes should be taken
seriously: Only 2% of all transactions cause a false
alarm. In other words: ROSE does not stand in the way.

6.7. Results: Granularity

By default, ROSE recommends entities at a fine granularity
level, e.g. variables or functions. This results in a low cov-
erage of the rules for a project as most functions are rarely
changed. Our hypothesis was that if we applied mining to
files rather than to variables or functions, we would get a
higher support (and thus a higher recall).

Navigation Prevention Closure
Support 1 3 3
Confidence 0.1 0.9 0.9
Project Rµ Pµ L3 Rµ Pµ RM PM
ECLIPSE 0.17 0.26 0.54 0.03 0.48 1.0 0.980
GCC 0.44 0.42 0.87 0.29 0.82 1.0 0.946
GIMP 0.27 0.26 0.90 0.08 0.74 1.0 0.963
JBOSS 0.25 0.37 0.64 0.05 0.44 1.0 0.980
JEDIT 0.25 0.22 0.68 0.01 0.44 1.0 0.984
KOFFICE 0.24 0.26 0.67 0.04 0.61 1.0 0.971
POSTGRES 0.23 0.24 0.68 0.05 0.59 1.0 0.978
PYTHON 0.24 0.36 0.60 0.03 0.67 1.0 0.991
Average 0.26 0.30 0.70 0.07 0.66 1.0 0.973

Table 3. Results for coarse granularity
(R = recall; P = precision; L = likelihood)

Therefore, we repeated the experiments from Sections
6.4 to 6.6 with a coarse granularity—e.g. mining and ap-
plying rules between files rather than between entities. The
results are shown in Table 3. It turns out that the coarser
granularity increases recall in all cases (sometimes even
dramatically, as the factors 3–8 in KOFFICE show). The
precision stays comparable or is increased as well.

If ROSE thus suggests only a file rather than an entity,
the suggestions become more frequent and more precise.
However, each single suggestion becomes less useful, as it
suggests a less specific location—namely only a file rather
than a precise entity.6

A possible consequence of this result is to have ROSE
start with rather vague suggestions (say, regarding files or
packages), which become more and more specific as the
user progresses. We plan to apply and extend generalized
association rules [23] such that ROSE can suggest the finest
granularity wherever possible.

When given one changed file, ROSE can predict 26% of
the files actually changed in the same transaction. In 70%
of all transactions, ROSE’s topmost three suggestions con-
tain a correct location.

6.8. Threats to Validity

We have studied 10,761 transactions of eight open-source
programs. Although the programs themselves are very dif-
ferent, we cannot claim that their version histories would be
representative for all kinds of software projects. In partic-
ular, our evaluation does not allow any conclusions about
the predictive power for closed-source projects. However,
a stricter software process would result in higher precision
and higher recall—and hence, a better predictability.

6This is a general trade-off: If all entities were contained within one
file, then any suggestion regarding this one file would yield a precision of
100% and a recall of 100%—and be totally useless at the same time.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

Transactions do not record the order of the individual
changes involved. Hence, our evaluation cannot take the
order into account the changes were made—and treats all
changes equal. In practice, we expect specific orderings of
changes to be more frequent than others, which may affect
results for navigation and prevention.

We have made no attempt to assess the quality of
transactions—ROSE learned from past transactions, regard-
less of whether they may be desired or not. Consequently,
the rules learned and evaluated may reflect good practices
as well as bad practices. However, we believe that com-
petent programmers make more “good” transactions than
“bad” transactions; and thus, there is more good than bad to
learn from history.

We have examined the predictive power of ROSE and as-
sumed that suggesting a change, narrowed down to a single
file or even a single entity, would be useful. However, it may
well be that missing related changes could be detected dur-
ing compilation or tests (in which case ROSE’s suggestions
would not harm), or may be known by trained programmers
anyway (who may find ROSE’s suggestions correct, but dis-
tracting). Eventually, usefulness for the programmer can
only be determined by studies with real users, which we
intend to accomplish in the future.

7. Related Work

Independently from us, Annie Ying developed an approach
that also uses association rule mining on CVS version
archives [25]. She especially evaluated the usefulness of
the results, considering a recommendation most valuable
or “surprising” if it could not be determined by program
analysis, and found several such recommendations in the
MOZILLA and ECLIPSE projects. In contrast to ROSE,
though, Ying’s tool can only suggest files, not finer-grained
entities, and does not support mining-on-the-fly.

Change data has been used by various researchers for
quantitative analyses. Word frequency analysis and key-
word classification of log messages can identify the purpose
of changes and relate it to change size and time between
changes [18]. Various researchers computed metrics on the
module or file level [3, 9, 11, 12] or orthogonal to these per
feature [19] and investigated the change of these metrics
over time, i.e. for different releases or versions of a system.

Gall et al. were the first to use release data to de-
tect logical coupling between modules [8]. The CVS his-
tory allows to detect more fine-grained logical coupling
between classes [10], files and functions [27]. None of
these works on logical coupling did address its predictive
power. Sayyad-Shirabad et al. use inductive learning to
learn different concepts of relevance between logically cou-
pled files [21, 22]. A concept is a set of attributes like file
name, extension and simple metrics like number of routines

defined. If two files have these attributes, then they are rel-
evant to each other. Sayyad-Shirabad thoroughly evaluated
the predictive power of the concepts found, but none of the
papers gives a convincing example of such a concept.

Amir Michail used data mining on the source code of
programming libraries to detect reuse patterns in form of
association [16] or generalized association rules [17]. The
latter take inheritance relations into account. The items in
these rules are (re-)use relationships like method invocation,
inheritance, instantiation, or overriding. Both papers lack
an evaluation of the quality of the patterns found. How-
ever, Michail mines a single version, while ROSE uses the
changes between different versions.

To guide programmers, a number of tools have exploited
textual similarity of log messages [5] or program code [2].
HIPIKAT [6] improves on this by taking also other sources
like mail archives and online documentation into account.
In contrast to ROSE, all these tools focus on high recall
rather than on high precision, and on relationships between
files or classes rather than between fine-grained entities.

8. Conclusion and Consequences

ROSE can be a helpful tool in suggesting further changes
to be made, and in warning about missing changes. But
the more there is to learn from history, the more and better
suggestions can be made:

• For stable systems like GCC, ROSE gives many and
precise suggestions: 44% of related files and 28% of
related entities can be predicted, with a precision of
about 40% for each single suggestion, and a likelihood
of over 90% for the three topmost suggestions.

• For rapidly evolving systems like KOFFICE or JEDIT,
ROSE’s most useful suggestions are at the file level.
Overall, this is not surprising, as ROSE would have to
predict new functions—which is probably out of reach
for any approach.

• In about 4–7% of all erroneous transactions, ROSE cor-
rectly detects the missing change. If such a warning
occurs, it should be taken seriously, as only 2% of all
transactions cause false alarms.

What have we learned from history, and what are our sug-
gestions? Here are our plans for future work:

Taxonomies. Every change in a method implies a change
in the enclosing class, which again implies changes
in the enclosing files or packages. We want to ex-
ploit such taxonomies to identify patterns such as “this
change implies a change in this package” (rather than
“in this method”) that may be less precise in the loca-
tion, but provide higher confidence.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

Sequence rules. Right now, we are only relating changes
that occur in the same transaction. In the future, we
also want to detect rules across multiple transactions:
“The system is always tested before being released”
(as indicated by appropriate changes).

Further data sources. Archived changes contain more
than just author, date, and location. One could scan log
messages (including the one of the change to be com-
mitted) to determine the concern the change is more
likely to be related to (say, “Fix” vs. “New feature”).

Program analysis. Another yet unused data source is pro-
gram analysis; although our approach can detect cou-
pling between items that are not even programs, know-
ing about the semantics of programs could help sepa-
rating related changes into likely and non-likely. Fur-
thermore, coupling that can be found via analysis [25]
need not be repeated in ROSE’s suggestions.

Rule presentation. The rules as detected by ROSE de-
scribe the factual software process—which may or
may not be the intended process. Consequently, these
rules can and should be made explicit. In previous
work [27], we used visual mining to detect regulari-
ties and irregularities of logically coupled items. Such
visualizations could further explain the recommenda-
tions to programmers and managers.

We are currently making ROSE available as a plug-in for
ECLIPSE. For information on download and installation, see

http://www.st.cs.uni-sb.de/softevo/

Acknowledgments. This project is funded by the Deutsche
Forschungsgemeinschaft, grant Ze 509/1-1. Holger Cleve,
Carsten Görg, Christian Lindig, Stefan Siersdorfer, and the
anonymous ICSE reviewers gave helpful comments on ear-
lier revisions of this paper.

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association
rules. In Proceedings of the 20th Very Large Data Bases Conference
(VLDB), pages 487–499. Morgan Kaufmann, 1994.

[2] D. L. Atkins. Version sensitive editing: Change history as a pro-
gramming tool. In B. Magnusson, editor, Proceedings of System
Configuration Management SCM’98, volume 1439 of LNCS, pages
146–157. Springer-Verlag, 1998.

[3] T. Ball, J.-M. Kim, A. A. Porter, and H. P. Siy. If your version con-
trol system could talk. . . . In ICSE Workshop on Process Modelling
and Empirical Studies of Software Engineering, 1997.

[4] J. M. Bieman, A. A. Andrews, and H. J. Yang. Understanding
change-proneness in OO software through visualization. In Proc.
11th International Workshop on Program Comprehension, pages
44–53, Portland, Oregon, May 2003.

[5] A. Chen, E. Chou, J. Wong, A. Y. Yao, Q. Zhang, S. Zhang, and
A. Michail. CVSSearch: searching through source code using CVS
comments. In ICSM 2001 [14], pages 364–374.

[6] D. Čubranić and G. C. Murphy. Hipikat: Recommending pertinent
software development artifacts. In ICSE 2003 [13], pages 408–418.

[7] K. Fogel and M. O’Neill. cvs2cl.pl: CVS-log-message-to-
ChangeLog conversion script, Sept. 2002. http://www.red-
bean.com/cvs2cl/.

[8] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling
based on product release history. In Proc. International Conference
on Software Maintenance (ICSM ’98), pages 190–198, Washington
D.C., USA, Nov. 1998. IEEE.

[9] H. Gall, M. Jazayeri, R. Klösch, and G. Trausmuth. Software Evolu-
tion Observations based on Product Release History. In Proceedings
of International Conference on Software Maintenance (ICSM ’97),
pages 160–196, 1997.

[10] H. Gall, M. Jazayeri, and J. Krajewski. CVS release history data for
detecting logical couplings. In IWPSE 2003 [15], pages 13–23.

[11] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting fault in-
cidence using software change history. IEEE Transactions on Soft-
ware Engineering, 26(7), 2000.

[12] A. E. Hassan and R. Holt. The chaos of software development. In
IWPSE 2003 [15].

[13] Proc. 25th International Conference on Software Engineering
(ICSE), Portland, Oregon, May 2003.

[14] Proc. International Conference on Software Maintenance (ICSM
2001), Florence, Italy, Nov. 2001. IEEE.

[15] Proc. International Workshop on Principles of Software Evolution
(IWPSE 2003), Helsinki, Finland, Sept. 2003. IEEE Press.

[16] A. Michail. Data mining library reuse patterns in user-selected
applications. In Proc. 14th International Conference on Auto-
mated Software Engineering (ASE’99), pages 24–33, Cocoa Beach,
Florida, USA, Oct. 1999. IEEE Press.

[17] A. Michail. Data mining library reuse patterns using generalized
association rules. In International Conference on Software Engi-
neering, pages 167–176, 2000.

[18] A. Mockus and L. G. Votta. Identifying reasons for software
changes using historic databases. In Proc. International Confer-
ence on Software Maintenance (ICSM 2000), pages 120–130, San
Jose, California, USA, Oct. 2000. IEEE.

[19] A. Mockus, D. M. Weiss, and P. Zhang. Understanding and predict-
ing effort in software projects. In ICSE 2003 [13], pages 274–284.

[20] C. J. V. Rijsbergen. Information Retrieval, 2nd edition. Butter-
worths, London, 1979.

[21] J. Sayyad-Shirabad, T. C. Lethbridge, and S. Matwin. Supporting
maintainance of legacy software with data mining techniques. In
ICSM 2001 [14], pages 22–31.

[22] J. Sayyad-Shirabad, T. C. Lethbridge, and S. Matwin. Mining the
maintenance history of a legacy software system. In Proc. Interna-
tional Conference on Software Maintenance (ICSM 2003), Amster-
dam, Netherlands, Sept. 2003. IEEE.

[23] R. Srikant and R. Agrawal. Mining generalized association rules. In
Proceedings of the 21th Very Large Data Bases Conference (VLDB),
pages 407–419, 1995.

[24] R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with
item constraints. In Proceedings of the 3rd International Conference
on KDD and Data Mining (KDD ’97), Newport Beach, California,
USA, Aug. 1997.

[25] A. T. T. Ying. Predicting source code changes by mining revision
history. Master’s thesis, University of British Columbia, Canada,
Oct. 2003.

[26] A. Zeller and R. Hildebrandt. Simplifying and isolating failure-
inducing input. IEEE Transactions on Software Engineering,
28(2):183–200, Feb. 2002.

[27] T. Zimmermann, S. Diehl, and A. Zeller. How history justifies sys-
tem architecture (or not). In IWPSE 2003 [15], pages 73–83.

[28] T. Zimmermann and P. Weißgerber. Preprocessing CVS data for
fine-grained analysis. Technical report, Saarland University, Mar.
2004. Submitted for publication.

Proceedings of the 26th International Conference on Software Engineering (ICSE’04)

0270-5257/04 $20.00 © 2004 IEEE

