
Failure is a Four-Letter Word
– A Parody in Empirical Research –

Andreas Zeller*
Saarland University

Saarbrücken, Germany
zeller@cs.uni-saarland.de

Thomas Zimmermann
Microsoft Research
Washington, USA

tzimmer@microsoft.com

Christian Bird
Microsoft Research
Washington, USA

cbird@microsoft.com

ABSTRACT
Background: The past years have seen a surge of techniques
predicting failure-prone locations based on more or less complex
metrics. Few of these metrics are actionable, though.
Aims: This paper explores a simple, easy-to-implement method
to predict and avoid failures in software systems. The IROP
method links elementary source code features to known software
failures in a lightweight, easy-to-implement fashion.
Method: We sampled the Eclipse data set mapping defects to
files in three Eclipse releases. We used logistic regression to as-
sociate programmer actions with defects, tested the predictive
power of the resulting classifier in terms of precision and recall,
and isolated the most defect-prone actions. We also collected
initial feedback on possible remedies.
Results: In our sample set, IROP correctly predicted up to 74% of
the failure-prone modules, which is on par with the most elaborate
predictors available. We isolated a set of four easy-to-remember
recommendations, telling programmers precisely what to do to
avoid errors. Initial feedback from developers suggests that these
recommendations are straightforward to follow in practice.
Conclusions: With the abundance of software development data,
even the simplest methods can produce “actionable” results.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – process metrics, prod-
uct metrics; K.3.2 [Computers and Education]: Computer and
Information Science Education – computer science education;
K.7.4 [The Computing Profession]: Professional Ethics – codes
of good practice;

General Terms
Measurement, Experimentation

Keywords
Empirical Research, Parody

1. INTRODUCTION
In empirical software engineering, it is a long-standing observa-
tion that failures follow a Pareto distribution: The largest part of
software defects occurs in a small fraction of software compo-
nents. Therefore, research has concentrated on identifying fea-
tures that correlate with the presence of software defects – fea-
tures such as the number of changes, code complexity, or the

number of developers associated with a file. As elaborate as these
approaches may be, they all share the same problem which we call
the cost of consequence: If I know that a module is failure-prone
because it frequently changes, should I stop changing it? If I
know failures are related to complexity, should I rewrite it from
scratch? Any of these measures induces a new risk – a risk which
may be greater than the one originally addressed.

In this paper, we take a different approach. We predict failures
from the most basic actions programmers undertake, focusing on
the actions that introduce defects as they are being made – literal-
ly at the moment the source code is typed in. Our recommenda-
tions are immediately actionable: A simple visual representation
associates actions with the likelihood of introducing defects –
warning programmers before they might hit the wrong key. Our
approach is both effective and efficient: In a case study on the
Eclipse failure set, it correctly identified up to 74% of the failure-
prone modules, which is on par with the most elaborate predictors
available. Specifically, our contributions include:
1) A novel mechanism to associate programmer actions with

software defects;
2) A predictor that is purely text-oriented, thus lightweight,

real-time, easy to implement, and language-agnostic;
3) A set of easy-to-remember recommendations, validated on

the well-known Eclipse dataset.
The remainder of this paper is organized as follows: We start with
motivating our approach (Section 2), linking basic program fea-
tures to failures. Section 3 evaluates our approach on the Eclipse
bug data set, reaching new heights in accuracy. Section 4 dis-
cusses threats to validity, followed by an outline of future work in
this area in Section 5. *

2. THE IROP APPROACH
Empirical research has long focused on finding abstractions that
would correlate with failures – in the hope that addressing these
abstractions would also get rid of the failures. In the end, though,
all these abstractions (just like software as a whole) are nothing
but the product of elementary programmer actions such as open-
ing files, writing tests, or running programs. To change pro-
grammer behavior for the good, we must act at an abstraction
level where such change is actually feasible. (Clearly, we cannot
prohibit programmers from opening files!)
Interestingly enough, it is the lowest abstraction layers where
change becomes actionable. In the end, we can express program-
mer actions as a series of low-level human-computer interactions,
such as moving the mouse, or typing on the keyboard. The latter

* Andreas Zeller was a visiting researcher with Microsoft Re-

search, Washington, USA while the research leading to this pa-
per was conducted.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PROMISE '11, September 20-21, 2011, Banff, Canada
Copyright 2011 ACM 978-1-4503-0709-3/11/09... $10.00.

style of interaction is especially interesting, as its effect is imme-
diately reflected in the program artifacts being created. Indeed,
we can interpret source code as the product of a long sequence of
keystrokes, immediately visible in the program text.
One may argue at this point that this again is too much of an ab-
straction, as the final product (the source code) would not con-
serve all the editing actions that lead to it. When it comes to ac-
tionable consequences, though, treating source code as a product
of keystrokes has several advantages, as we shall see later in this
paper. Let us thus formulate our research hypotheses:

H1. We can predict defects from programmer actions.
Should H1 hold, we can test the next hypothesis:

H2. We can isolate defect-prone programmer actions.
These failure-correlated actions are what we call IROPs, which is
an airline industry acronym for “irregular operation”. (IROP also
refers to the four most important features to avoid in source code,
as detailed in Section 3.5.)
Good predictive power and actionable results lead to our final
hypothesis, stating the ultimate goal of our research:

H3. We can prevent defects by restricting programmer actions.

3. EVALUATION
3.1 Study Subject
The key challenge for empirical research is to find appropriate
data sets that would allow linking failures to program features. To
encourage replication and public assessment, we selected the pub-
licly available Eclipse bug dataset [1] [2] for our studies. It maps
between 6,729 files (for Eclipse 2.0) and 10,593 files (Eclipse 3.0)
to the number of pre- and post-release defects found and fixed in
each file.

3.2 Independent Variables
For our investigation, we needed to establish a relation between
specific actions and defects. For this purpose, we modeled a pro-
grammer action as one of 256 possible keystrokes, one for each 8-
bit ASCII character. The result of these keystrokes is easily
measured by the number of occurrences in individual source code
files. Figure 1 shows the distribution of characters 1–127 across
all files in Eclipse 2.0; space (ASCII code 32) is the most frequent
character, followed by “e” (101), and “t” (116), which also hap-
pen to be the most frequent letters in the English language. Note
that while there is a clear bias towards printable and blank 7-bit
characters, there is nothing to assume that such a bias would be
specific to Eclipse source code.

3.3 Dependent Variables
Our dependent variable in this setting is whether a file would be
defect-prone or not. We only care for post-release defects, as
these would be the ones impacting actual users. Table 1 provides
descriptive statistics on these features.

Table 1: Features of the Eclipse datasets.

3.4 Predicting Defects by Actions
We start with a standard research question, namely asking wheth-
er programmer actions predict the defect-proneness of files. For
this purpose, we replicated a standard setting, training a model
from a set of features (c, d) for each file f. Here, c would be 256-
tuple denoting the occurrence counts over all 256 characters in f,
and d would be a Boolean value expressing whether f has had a
defect fixed in the past or not. Our null hypothesis would be:

H0. A character distribution is not sufficient to predict defect-
proneness.

In our experiment, we used a logistic regression model, as provid-
ed by the R statistical package. Having trained the model on one
of the Eclipse datasets, we used it to classify files f’ in the other
data sets whether they would contain defects or not. Table 2 lists
the precision we obtained for our experiments. For instance,
training the model on Eclipse 2.0 (first row) and predicting
whether files would be defect-prone in Eclipse 2.1 yields a preci-
sion of 0.39 – that is, 39% of all files predicted to be defect-prone
actually are defect-prone. Note that this is the worst of all preci-
sions observed; on average, more than 50% of all files are correct-
ly classified, bringing them on par with the best defect predictors.

Table 2: Precision for various training/testing combinations.
One feature we found striking was how well the model performed
when used within one release of Eclipse only. This setting is par-
ticularly important when applying the prediction during develop-
ment of a release – in a way, “training on the job”. When applied
within Eclipse 2.0 only, the precision is 74%, which makes this a
highly useful prediction tool.

Table 3: Recall for various training/testing combinations.
In terms of recall, our approach fares less well (Table 3), but this
is a feature (or problem) shared with most defect predictors. Still,
applied within Eclipse 2.0, our approach correctly identifies 32%

Release	 Total	 chars	 Total	 files	
Files	 with	
defects	

Eclipse	 2.0	 44,914,520	 6,728	 975	 (14%)	

Eclipse	 2.1	 56,068,650	 7,887	 854	 (11%)	

Eclipse	 3.0	 76,193,482	 10,593	 1,568	 (15%)	

Training	 Set	 Eclipse	 2.0	 Eclipse	 2.1	 Eclipse	 3.0	 Average	

Eclipse	 2.0	 0.74	 0.39	 0.49	 0.54	

Eclipse	 2.1	 0.55	 0.64	 0.56	 0.58	

Eclipse	 3.0	 0.57	 0.40	 0.64	 0.54	

Average	 0.62	 0.47	 0.56	 0.55	

Training	 Set	 Eclipse	 2.0	 Eclipse	 2.1	 Eclipse	 3.0	 Average	

Eclipse	 2.0	 0.32	 0.27	 0.27	 0.28	

Eclipse	 2.1	 0.03	 0.18	 0.14	 0.11	

Eclipse	 3.0	 0.19	 0.16	 0.20	 0.18	

Average	 0.18	 0.20	 0.20	 0.19	

Figure 1: Character occurrences in Eclipse 2.0

of the actually defective files; the average is close to 20%. Again,
this rejects the null hypothesis and supports our hypothesis H1:

3.5 Programmer Actions and Defects
Now that we know how to predict defects, can we actually prevent
them? Of course, we could focus quality assurance on those files
predicted as most defect-prone. But are there also constructive
ways to avoid these defects? Is there a general rule to learn?

For this purpose, let us now focus on H2: Is there a correlation
between individual actions (= keystrokes) and defects? For this
purpose, we would search for correlations between the count of
the 256 characters and the overall post-defect count per file; our
null hypothesis would be:

H0. There is no correlation between character distribution and
defect-proneness.

After a number of preliminary experiments, we focused on the
Eclipse 3.0 dataset. It is well known that most metrics of software
do not follow a normal distribution and our measures of key-
strokes are no exception. The distributions of characters appear to
have an exponential rather than a power-law character. Nonethe-
less, due to the heavily skewed distribution, we used a standard
non-parametric approach with the Spearman rank correlation. Of
course, with so many metrics (one for each character), we run the
risk of identifying spurious correlations, and we thus employed p-
value adjustment using Benjamini-Hochberg p-value correction
[3] to deal with this multiple hypothesis testing. In order to be
conservative in our findings and avoid Type I errors, we used a p-
value cutoff of 𝛼 = 0.01 for statistical significance [4]. Even
after taking these rigorous steps, all letters and digits showed a
statistically significant positive correlation with failures.

For the non-printable characters, this correlation is strongest for
the newline character (0.34). The correlation with newline char-
acters is not surprising: given a constant defect density, a file with
more lines would be assumed to also have more defects. For the
printable characters, though, we observed the highest correlation
for the lower-case letters “i” (0.34), “r” (0.34), “o” (0.34), and “p”
(0.35) – in other words, the more of these letters one would have
in a file, the higher the defect count. This is the more interesting
as these letters do not rank in the most frequently used English
letters; this is also in sharp contrast to characters such as “%”
(0.06) or the uppercase “Z” (0.19). Figure 3 lists the correlations
for the individual lower-case letters.

This high correlation for the specific letters “i” (0.34), “r” (0.34),
“o” (0.34), and “p” (0.35) came as a huge surprise to us; it is these
specific letters that named our approach IROP. All reported cor-
relations are statistically significant (p = 0.01), refuting H0 and
confirming our hypothesis H2.

3.6 Preventing Defects
Correlations like the above give way to immediate action. Our
first idea was to encode the defect likelihood as colors into the
keyboard (Figure 2), such that programmers would be aware of
the risk immediately when undertaking the specific action.
However, such an encoding on the keyboard would not impact
professional programmers, in particular touch typists. Therefore,
we constructed a special keyboard that would make it harder for
programmers to undertake defect-prone actions (Figure 4). Note
how the four letters of failure are conveniently removed, which
forces programmers to rethink their actions and to search for al-
ternatives.1

We deployed this keyboard to three Microsoft interns in our group
to carefully monitor its effect on defect reduction. It quickly

1 We also explored removing the “Enter” key, but experienced

that this led to a sharp increase in the number of defects per line
as well as a drop in productivity (measured as LOC/day). These
effects will be explored in future research.

Programmer actions (keystrokes used to create source code)
serve as excellent defect predictors, with a precision of

 up to 74% and a recall of up to 32%.

Our results show a strong correlation between specific pro-
grammer actions (keystrokes I, R, O, and P) and defects.

Figure 2: Color-coding keys by their defect correlation; (red = strong). The five strongest correlations are highlighted.

Figure 3: Defect correlation for the 26 lower-case letters.

turned out that getting rid of the four letters of failure would not
be an easy task. While our test subjects could easily avoid “i”,
“r”, “o”, and “p” in their identifiers, the largest problem would be
keywords in programming languages. Our interns quickly came
up with appropriate replacements, though. C# code such as

if	 (p	 !=	 null)	
	 	 {	 int	 i;	 while	 (p[i]	 <	 0)	 i++;	 return	 i;	 }	

becomes
when	 (q	 !=	 null)	
	 	 	 {	 num	 n;	 as	 (q[n]	 <	 0)	 n++;	 handback	 n;	 }	

which is just as readable as before. Such transformations can
easily be performed automatically even on million-line programs;
furthermore, they are 100% semantics-preserving, thus ensuring
no unintended consequences.

Getting rid of “i”, “r”, “o”, and “p” is now part of programming
culture, as one of our interns remarks:

We can shun these set majuscules, and the text stays just as swell
as antecedently. Let us just ban them!

Note how our test subject already avoids the four letters of failure
in his statement; of course, it was typed on the IROP keyboard.

4. THREATS TO VALIDITY
The results of our experiment are subject to the following threats
to validity:

Threats to external validity concern our ability to generalize the
results of our study. Our findings are based on more than 177
million of individual characters (see Figure 1) and thousands of
individual defects, making this one of the largest empirical studies
on defect prediction ever conducted. However, we would not
advise to generalize the results beyond the C/C++/C#/Java family
of languages, due to different keywords. Likewise, source code
using non-English identifiers or comments needs a separate inves-
tigation, as detailed in this paper.
Threats to internal validity concern our ability to draw conclu-
sions between our independent and dependent variables. Due to
the high number of instances, we could test all correlations to be

significant. We used well-established tools and techniques to
produce all results, using only a few lines of own code which
were trivial to validate.

Threats to construct validity concern the appropriateness of our
measures for capturing our dependent variables. By definition,
source code is always produced by humans, and all of it is input as
characters; indeed, characters as we find them in the source code
are the very source of all defects. In this work, the deliberate ab-
sence of abstractions not only completely eliminates threats to
construct validity – it is also the reason why the IROP approach is
so effective.

5. FUTURE WORK
With the abundance of software development data, even the sim-
plest methods can produce actionable results. IROP is not only
straight-forward to implement; it also produces recommendations
that are easy to understand and easy to follow. Besides general
refinement and improvement of the technique, our future work
will focus on the following issues:

Automation. As discussed in Section 3.6, we must not only pre-
vent new errors, but also refactor existing code to avoid defect
sources. We are currently working on IDE plug-ins that will con-
duct thesaurus-based renamings automatically at the moment the
code is loaded, providing synonyms without the four letters of
failure; where this is not possible, the letters shall simply be re-
moved. First betas for the Eclse and Seeable Study IDEs shall be
made available through the web page of ENGAGEMENT 2011
(formerly known as PROMISE 2011).

Abstraction. As with any concrete symptom, we must carefully
check whether there would be a common abstraction that could
explain these effects. One hypothesis is that programmers would
subconsciously associate these four letters with negative terms:
“Failure”, “mistake”, “error”, “problem”, “bug report” all contain
“i”, “r”, “o”, and “p”; whereas “success” and “fame” do not. We
plan to run controlled studies to validate these “a priori” hypothe-
ses.
Generalization. As detailed in Section 4, our findings are based
on English code and comments only so far. We are currently
exploring Russian source code and whether a high abundance of
the IROP equivalent characters ИРОП would also correlate with a
high number of defects; we are very, very confident they will.

Programmers can easily memorize the IROP principles and
adapt their work habits to proactively prevent failures.

Figure 4: Avoiding risky actions with the IROP keyboard

6. WHY ALL THIS IS WRONG
While reading through this paper, you may (and actually should)
now have come to the conclusion that all of this is nonsense: Of
course, none of us wants to eradicate individual letters from pro-
grams. But where does the nonsense actually begin? And is it
confined to this paper alone? Unfortunately, it is not. The wide-
spread availability of empirical data in software engineering has
brought an explosion of findings – many of them substantial, but
some of them banal at best, and misleading at worst.

With this paper, we have tried to replicate a number of blunders
that we have found in papers of researchers; some such papers
actually are submitted to respected venues. The numbers and
correlations reported are all true findings from the Eclipse dataset,
and correct to the best of our knowledge. However, it is the inter-
pretation of the results that is plain wrong. Before we start dis-
cussing our deliberate blunders, maybe you’d like to go back to
the previous sections and search for them yourself.

6.1 High-level Issues
Let us start with a number of high-level issues demonstrated in
this paper. In contrast to our study, there is a wealth of high quali-
ty work coming out of our community. We highlight a few ex-
amples of good empirical research along the way.
Correlations do not imply causations. Our paper implies that a
high correlation is an important discovery. But any sufficiently
large data set will contain lots of correlated data, and it is easy to
find them. There are additional requirements, however (see [5],
pages 80-81 for details). To show causation, one also needs to
show that changing the cause also changes the effect (which of
course we did not), and one needs a substantial theory to explain
causation (for which our “abstraction” hypothesis in Section 5 is
only a ridiculous surrogate). For such a theory, one needs domain
knowledge. And such knowledge cannot come from data alone;
you must investigate and understand the stories behind the data.
(For a detailed discussion on the importance of theories in Soft-
ware Engineering, see [6]).

We invite the reader to examine an empirical study that goes far
beyond mere correlation. In their paper on “Developer Fluency”,
Zhou and Mockus [7] carefully constructed a theory of developer
knowledge acquisition based on prior literature and refined it by
gathering qualitative data from interviews. Based on this theory
they developed, validated, and triangulated measures such as time
and task difficulty that showed a relationship with productivity.
They also showed how differences between projects (yes, they
looked at more than one!) accounted for differences in findings.
Do not confuse causes and symptoms. Our paper argues that it
may be worth looking at low-level features rather than abstrac-
tions. While this may be true for initial exploratory studies, it is
crucial to reason whether there would be a common abstraction
that would explain the effects observed. In a file, it is pretty much
obvious that any occurrence of letters would correlate with its
size; and it is not very surprising that given a constant defect den-
sity, the larger the file, the more defects it will have. This would
be the abstraction to look at and the lowest baseline to compare
against.
Focusing on individual letters is actually an issue of construct
validity: The construct we chose for modeling programmer actions
is plain inadequate. We recommend the book by Shadish et al. on
experimental design and causal inference for a detailed discussion
[8].

Few findings generalize. Even if you could empirically show
that there is a strong correlation in a single data set (a correlation
of 0.35 is not strong), it is unlikely that you will find the same
correlation in another project, or even another release of the same
project. Note that while we pretend to look at multiple releases of
the Eclipse project, our “IROP” finding is based on the 3.0 release
alone. In Eclipse 2.0, the “IROP” principle becomes the “Namp”
principle; in Eclipse 2.1, it becomes the “Nogl” principle.

As an example of a research that provides value without generali-
zation, in 2007 Hindle et al. [9] undertook an investigation to
understand the rationale behind large commits and determine if
anything could be learned from studying them. They studied
large commits from nine software projects, and while they identi-
fied a number of reasons behind large commits, they found that
the reasons varied dramatically across projects. Rather than try to
force a generalized conclusion, they reported their findings and
project-specific, but still valuable, insights.
Beware of cherry-picking. So, why did we name our “principle”
IROP and not “Namp” or “Nogl”? This is hinted at with the
words “After a number of preliminary experiments, we focused on
the Eclipse 3.0 dataset.” What we actually did was that we looked
at all three releases and picked the one that fit us best, convenient-
ly suppressing the differing results. Such suppression is a no-go:
All relevant findings must be reported; and if you have findings
that contradict your theory, well – there goes your theory.

Beware of fraud. Of course, one can always suppress inconven-
ient findings without even hinting at them. This is why any
choice or influence from the researchers must be carefully justi-
fied and questioned – a simple “We selected five bugs to illustrate
our approach” will not yield any averages, sums, or generaliza-
tion; it is a mere proof that the technique can work. But whether
this reflects a property of the technique or a property of the exam-
ple must be carefully evaluated by the authors in the first place.
The good news is that the most striking results will eventually be
replicated and possibly refuted.

Threats should help understanding. All empirical research
should point out threats to validity. No empirical study is perfect
and reviewers shouldn’t expect such. These threats highlight pos-
sible issues such as contexts that are not represented and in which
the results are unlikely to hold and reasons that measurement may
have error. They aid the reader by creating a lens through which
the results can be viewed and interpreted. Note the tone of Sec-
tion 5. Somehow we are able to overcome all threats by arguing
ways that we did everything perfectly. There is no mention that
our study is of only one software project, some characters are
simply unavoidable, or causation may flow in the opposite direc-
tion. It is tempting to use this section as a way to refute any pos-
sible criticisms, but such an approach should be used judiciously
and not to mask informative limitations.

 Machine learning works. The past six years of mining software
archives have impressively demonstrated that one can train a ma-
chine learner on tuples of features and failures, and use these very
learners to successfully predict future failures. The problem for
researchers is that the actionable features – that is, features that
suggest direct corrective action such as changes, complexity, or
test coverage – have all been studied already. The good news is
that any feature that characterizes a component may be sufficient
for not-too-bad results – even if it is just a distribution of charac-
ters in the source code. Again, a comparison with the state of the
art (not just a simple straw man) is required to demonstrate im-
provement.

In their paper on defect predictors, Menzies et al. [10] showed that
by carefully considering both the set of features used for predic-
tion and the type of learner, better prediction performance could
be achieved than prior approaches (which did not evaluate differ-
ent learners). Their study is a comprehensive comparison of Na-
ive Bayes to other learners that had been in vogue at that time and
we refer the reader to this work as an example of careful use of
machine learning.

Make findings actionable. As (correctly) stated in the introduc-
tion, an empirical finding is the more valuable the more actiona-
ble it is. What is the consequence of this result? Should I change
things? How? What is the risk of this change? Your empirical
finding need not provide answers to all these questions. But it
should convey an idea of its potential implications.

As an example of actionable empirical results, see the work of
Ramasubbu and Balan on process choice [11]. They evaluated the
results of software process choice in 112 software projects and
found a link with a number of measures of performance. They
were able to identify five attributes of a software project, such as
team size, estimated effort, and extent of client involvement, that
can be used at the beginning of a project to decide if a standard
“plan-driven” approach should be supplanted by a non-standard
agile process. Such results are immediately useful to software
practitioners.

Fix causes, not symptoms. Being non-actionable may still be
better than suggesting the wrong actions. Complexity metrics, for
instance, stipulate that specific parts of the code may be problem-
atic. But then, it is trivial to rearrange the code (in a “100% se-
mantics-preserving” way) to satisfy all the metrics. This helps as
much as removing “i”, “r”, “o”, and “p” from your program. In
most cases, what you need instead is project-specific actions,
including empirical investigations on the features that correlate
with failure, and a careful search for the actionable causes and
abstractions behind these features. Every project is different, and
the project-specific issues far outweigh general “textbook” issues.

Get real. The new abundance of ground truth has had several
beneficial effects on software engineering research: Automated
tools are routinely validated on real code; hypotheses can be
backed by real process data. Far too frequently though (and the
authors plead guilty as charged) do we rely on data results alone
and declare improvements on benchmarks as “successes”. What
is missing is grounding in practice: What do developers think
about your result? Is it applicable in their context? How much
would it help them in their daily work?

To get a starting point on what developers actually need, let us
recommend the study by Ko et al. [12]; we leave it to you to as-
sess which of the current research matches these needs.

6.2 Issues in Detail
Throughout this paper, we undertook our best efforts to sell our
results. This is common practice; indeed, good writing is abso-
lutely necessary to get papers accepted at the best publication
venues. However, good writing is a double-edged sword. You
can use it to make your presentation clear, precise, and easy to
follow. But you can also use it to manipulate the reader to gloss
over findings that would not withstand careful scrutiny. For in-
stance, did you notice how

• We deliberately used “programmer actions” as a high-level
substitute for the much more banal “characters in a file”?

• Tables 2 and 3 (precision and recall) also contain entries in
which the same releases are being used both to train and to

test? Any such predictor, of course, would fare well; these en-
tries conveniently beef up the average.

• We justified our choice of Eclipse “to encourage replication”.
This paper does nothing to encourage replication, as it does
not provide any new data or artifact; the choice of Eclipse re-
mains unjustified.

• We consistently came up with an immediate interpretation for
each and every number, such as the “high” correlations for in-
dividual letters?

• We compared correlations against each other, without further
testing the resulting hypotheses?

• The Y axis in Figure 2 is conveniently set up to suggest large
differences, which actually are very minor?

• We (at best) have anecdotal support for hypothesis H3?
• We conveniently avoided any comparison against a baseline?

Or any related work?
• Figure 2 actually shows that “n” has a higher correlation than

“o”, making this the INRP principle?2
• Our threats to validity carefully avoid all these central prob-

lems? (And what would the “real” threats to validity look
like?)

Many more of such manipulations can be found in the classic
“How to lie with statistics” [13]. Although mainly aimed at false
advertising, many of the discussed advertising patterns can equal-
ly be applied to scientific papers.

6.3 What was Right
Like most parodies, this paper is grounded in real facts. The mo-
tivation on making findings actionable (Section 1) has a grain of
truth in it. All numbers as reported are correct, and it is indeed
possible to predict the defect-proneness of files using character
counts as prediction features. (Note how little this demands in
terms of implementation.) The correlations listed are also all true
to the best of our knowledge; only Figure 4 and the “intern”
statements are pure fabrications. In terms of results, this paper
satisfies all the principles of serious research; it is the construct,
the interpretation and the consequences that are way over the top.

6.4 Consequences
Any of these issues listed in this section could easily be picked up
by an experienced reviewer. Unfortunately, real blunders are not
always as obvious as in this paper; and in many cases, even the
authors themselves do not know about their blunders. This is why
both authors and reviewers need to be aware about such issues.

As it comes to writing, we as readers and reviewers must be aware
of possible manipulations. We must carefully check the numbers
and question the author’s interpretations – and authors must pre-
sent their findings in a way that eases and allows independent
interpretation of the results. As a community, we have come a
long way over the past 30 years (consider that other empirical
fields such as sociology and economics have had centuries to
mature!) but our empirical standards have room to improve, and
we must favor inconvenient honesty over slick storylines.

7. CONCLUSION
The aim of this paper is different from what one would find in
“regular” scientific publications – rather than adding new findings

2 Given that all these letters have roughly the same correlation,

any combination of INROP would have been fine; IROP simply
made the best meme. We leave it to the imagination of the
reader what the paper would look like, had we settled on PORN.

to the body of knowledge, it uses trivial “findings” to demonstrate
a number of blunders in research that may be undetected by the
casual reader or reviewer. With this paper, we hope to have raised
awareness for these blunders.

The target audience of this paper is not so much established re-
searchers but rather students confronted with empirical research.
To facilitate classroom usage, we make available all the scripts
and data for this “research” at

http://www.st.cs.uni-saarland.de/softevo/irop/
 This also includes the original Word file for this paper, such that
instructors may use the material (stripped of all hints and solu-
tions) as a student exercise for critical assessment.3 In the end, it
is our hope that IROP will catch as a short meme for bad research
to avoid.
Acknowledgments. This work was inspired by the xkcd comic
“Significant” [14]. Thomas Ball, Prem Devanbu, Clemens Ham-
macher, Kim Herzig, Nikolai Knopp, and Jeremias Rößler as well
as the anonymous PROMISE reviewers provided useful com-
ments on earlier revisions of this paper.

8. REFERENCES
[1] Zeller, A., Zimmermann, T., Premraj, R., Just, S., and

Schröter, A. Eclipse bug data 2.0a. 2007.

[2] Zimmermann, T., Premraj, R., and Zeller, A. Predicting
Defects for Eclipse [Revised for Dataset Version 2.0a]. In
Proceedings of the Third International Workshop on
Predictor Models in Software Engineering (Minneapolis,
MN, USA, 2007), ACM.

[3] Benjamini, Y. and Hochberg, Y. Controlling the False
Discovery Rate: A Practical and Powerful Approach to
Multiple Testing. Journal of the Royal Statistical Society.
Series B (Methodological), 57 (1995), 289--300.

[4] Dowdy, S., Wearden, S., and Chilko, D. Statistics for
research. John Wiley \& Sons, 2004.

[5] Kan, S.H. Metrics and Models in Software Quality
Engineering. Addison-Wesley, 2003.

[6] Hannay, J.E., Sjoberg, D.I.K., and Dyba, T. A Systematic
Review of Theory Use in Software Engineering Experiments.
IEEE Transactions on Software Engineering, 33, 2 (February
2007), 87-107.

[7] Zhou, M. and Mockus, A. Developer fluency: Achieving true
mastery in software projects. In Proceedings of the
eighteenth ACM SIGSOFT international symposium on
Foundations of software engineering (2010), 137--146.

[8] Shadish, W., Cook, T., and Campbell, D. Experimental &
Quasi-Experimental Designs for Generalized Causal
Inference. Houghon Mifflin, Boston, 2002.

[9] Hindle, A., Germán, D.M., and Holt, R.C. What do large
commits tell us? A taxonomical study of large commits. In
Mining Software Repositories (2008).

[10] Menzies, T., Greenwald, J., and Frank, A. Data Mining Static
Code Attributes to Learn Defect Predictors. IEEE

3 This “exercise” variant also has the authors stripped.

Transactions on Software Engineering (2007).

[11] Ramasubbu, N. and Balan, R.K. The impact of process
choice in high maturity environments: An empirical analysis.
In International Conference on Software Engineering (2009).

[12] Ko, A.J., DeLine, R., and Venolia, G. Information Needs in
Collocated Software Development Teams. In International
Conference on Software Engineering (ICSE) (Minneapolis,
MN, 2007), 344-353.

[13] Huff, D. How to lie with statistics. Norton, New York, 1954.

[14] Munroe, R. Significant. xkcd, http://xkcd.com/882/
(Accessed May 1, 2011).

