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ABSTRACT

Security tools could help developers find critical vulnera-
bilities, yet such tools remain underused. We surveyed de-
velopers from 14 companies and 5 mailing lists about their
reasons for using and not using security tools. The resulting
thirty-nine predictors of security tool use provide both ex-
pected and unexpected insights. As we expected, developers
who perceive security to be important are more likely to use
security tools than those who do not. But that was not the
strongest predictor of security tool use, it was instead devel-
opers’ ability to observe their peers using security tools.
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1. INTRODUCTION

In 2014, a buffer overflow vulnerability was discovered in
the X server, part of the widely-used X Window System [48].
Developers found that “a BDF font file containing a longer
than expected string could overflow the buffer on the stack”.
This vulnerability was found with the static analysis tool
cppcheck [12], which warned developers of a call to scanf
without field width limits. This scanf bug could “lead to an
unprivileged user acquiring root privileges in some systems”,
according to the announcement from X.org [1].

This vulnerability was introduced in 1991. We wonder
why it took developers a full 23 years to use tools to find
and repair this vulnerability. Even prior to cppcheck’s intro-
duction in 2009, several security tools could have found this
error. Nonetheless, it seems developers did not use them
when working with X.

We define security tools as analysis tools that help de-
velopers find and fix vulnerabilities. Some security tools,

such as Klokwork [21] and Coverity [6], are designed specifi-
cally to find vulnerabilities. Our definition also encompasses
general-purpose analysis tools for finding programming er-
rors, such as static analysis tools like FindBugs [18] and dy-
namic analysis tools like some Valgrind plugins [31]. Tools
like cppcheck and FindBugs are free to use, yet as demon-
strated by the X vulnerability, the mere existence and avail-
ability of these tools does not make software more secure.
Developers must use them, or will leave many vulnerabilities
in code when they could be quickly found and fixed.

We aim to help practitioners find ways to increase adop-
tion of security tools so developers find more vulnerabilities
early. The use of security tools is an important part of se-
cure software development methodologies, such as the Mi-
crosoft Secure Development Lifecycle [19] and McGraw’s rec-
ommendations for secure development [25]. Thus, our work
focuses on security tools because increasing their adoption
could have great impact on developers and software users,
whose data and computing resources would be more secure.
We also focus on security tools because, unlike most other
software development tools, they are a preventative inno-
vation; this class of innovations is especially challenging to
adopt [35] because the payoff for adopting them tends to be
a non-event, that is, something bad not happening.

The main contribution of this paper is a quantification of
the relative importance of factors that predict security tool
adoption. We collected quantitative data on the factors’
relative importance with an online survey of software devel-
opers working in 14 companies, as well as developers on 5
mailing lists. Surprisingly, we found developers’ perceptions
of the importance of security may not be the most impor-
tant factor in their adoption of security tools. Social and
cultural factors, like the perceived prestige of security tool
users and the frequency of interaction with security experts,
may be a more important influence. Our results can help
practitioners choose areas of focus when attempting to pro-
mote security tool adoption, and help researchers prioritize
areas of study for understanding security tool adoption.

2. RELATED WORK
2.1 Adoption

The theory for our work is drawn from diffusion of inno-
vations (DOI) research [34]. One reason we chose DOI is
because it has proven versatile in its long history. Rogers
originally developed the theory to explain the adoption of
new breeds of corn among farmers, but it has also been used
to analyze adoption of such innovations as dance moves and
personal digital workstations.



DOI is a rich field of adoption study that accounts for
many aspects of adoption. For instance, DOI can account
for temporal aspects of the diffusion of new technologies,
such as the patterns in which innovations spread through
populations, and the processes by which individuals make
decisions about trying and adopting new innovations [34].
In our approach, we focus on factors that foster or inhibit
adoption, so we can recommend particular practices that
promote security tool adoption.

We also chose DOI so we could analyze social aspects of
tool adoption. Our previous work investigated how develop-
ers learn about new tools, and found developers can learn
about tools from their peers [30]. Where some of our other
previous work identifies usability concerns and technical fac-
tors in tool use [20], this research investigates social factors
as well. We aim to create a more comprehensive understand-
ing of security tool adoption.

Our research in security tool adoption is not the first to use
DOI as a theoretical foundation. For instance, Meyerovich
and Rabkin [26] applied DOI to programming language adop-
tion. They found social factors and socially-driven factors,
like the availability of free and open-source libraries, affected
developers’ decisions when choosing to adopt or not adopt
a programming language. DOI theory also helped Singer
develop persuasive interventions to increase the use of Git
among student developers [38]. Our research is novel in that
we are the first to apply DOI to security tool adoption.

2.2 Quantifying Influences on Adoption

Other researchers have quantified influences on adoption
through the use of surveys. In Meyerovich and Rabkin’s
previously-mentioned work [26], they surveyed open-source
developers about what factors influence their choices when
choosing a programming language for a new project. The
survey presented here is largely inspired by surveys outside
computer science research. For example, Tan and Teo [42]
used a survey to develop a regression model describing the
relationship between intent to adopt online banking and
various variables such as experience with the Internet and
perceived risk. Baaren used a survey study [3] to quan-
tify the importance of factors in the Technology Acceptance
Model [13] in HDTV adoption. We apply similar techniques
to quantify security tool adoption.

2.3 Security Tool Adoption

In previous qualitative work, we built on Diffusion of In-
novations theory to qualitatively interview 42 professional
developers [46, 45]. Based on those interviews, we organized
adoption factors into four high-level factor groups:

e Innovation factors describe how the properties of the
innovations themselves — the security tools — affect de-
veloper adoption.

e Social System factors describe how the company or
community in which developers write software can af-
fect their adoption of security tools.

e Communication Channel factors describe how dif-
ferent ways of communicating about security tools,
such as through advertisements, social media, or face-
to-face communication, affect developers’ adoption de-
cisions.

e Potential Adopter factors describe how qualities of
the individual developers themselves affect their adop-
tion decisions.

Although we derived factors in these groups in our inter-
views, the results were not very actionable. For example,
should a manager who wants to improve tool adoption focus
on promoting a more usable security tool (a property of the
innovation) or should they focus on implementing company
standards regarding security (a property of the social sys-
tem)? Our aim in the present study is to provide a justifica-
tion for policy-makers and toolsmiths to focus their efforts,
by quantifying adoption factors’ relative importance. To our
knowledge, the present paper is the first to study security
tool adoption quantitatively.

3. METHODOLOGY

As in other adoption research [3, 42], we conducted a sur-
vey'. We first discuss the design and development of the
survey instrument (Section 3.1). We then discuss and com-
pare two iterations of the survey with different participant
selection strategies (Sections 3.2 and 3.3). We close this sec-
tion with a description of the data analysis (Section 3.4) and

respondent characterization (Section 3.5).

3.1 Instrument Development

We began the development of our survey by adapting an
existing survey instrument, originally developed by Moore
and Benbasat [28]. Their survey concerned personal digi-
tal workstations; we altered it to concern security tools in-
stead. We added questions to quantify the findings from our
interviews and to help collaborating managers in industry
evaluate the state of security awareness in their companies.
For instance, since our interviewees indicated that develop-
ers who believe insecure software would cause problems for
customers are more likely to use security tools, we added
questions about these beliefs. We refined the survey based
on piloting and feedback from colleagues, industry partners,
and industry developers.

The initial survey consisted of 74 Likert-scale questions
about factors that influenced respondents’ security tool adop-
tion decisions, 4 questions about respondents’ experience
and role in development, and 14 free-response questions to
elicit factors not present in the survey and general comments
about adoption. For the Likert scale we used Strongly Agree,
Agree, Neither Agree nor Disagree, Disagree, Strongly Dis-
agree, and included a “Don’t Know” option. Each survey
began with a page defining security and security tools in the
same way as for our interview study [45, 46].

We measured security tool usage by asking respondents
what we call the ‘usage question’:

Which of the following statements describes you best?

o [ usually use security tools when I develop software, or
security tools automatically analyze the code I develop
when I check in or build my code.

o [ use security tools only occasionally or when I am per-
forming specific tasks, like looking for vulnerabilities.

e [ never or almost never use security tools.

We chose the 3 points in a way that ensured each scale point
had a concrete meaning [24], avoiding potentially ambiguous
scale points such as ‘fairly often’ and ‘often’.

'An empty survey can be found at
http://go.ncsu.edu/SecurityToolAdoptionSurvey.

To obtain as credible survey responses as possible, we
assured respondents that only summary data would be
publically disclosed; thus, raw survey data is not available.



Table 1: Distributions of Security Tool Use

Frequent Occasional Never

Iteration 1 16 48 130
Iteration 2 46 13 2

3.2 First Survey lteration

We distributed the survey through a convenience sample
of our contacts in software development companies. Such
non-probabilistic sampling reduces our ability to draw gen-
eralizable conclusions about the population of developers as
a whole [17], but is reasonable when no practical way to
randomly sample from the entire population exists.

We distributed the survey in one of two ways, depending
on privacy concerns in the companies surveyed. In the first
way, for nine companies, we distributed the survey directly
to respondents after obtaining their email addresses from
managers. We asked these managers to randomly select a set
of developers at their company, including testers and other
managers, then inform the developers that they would be
contacted for the survey. We then emailed developers with
a link to the online survey. During the following week, we
emailed developers who had not participated to remind them
about the survey. In the second way, for five companies, we
were unable to obtain developers’ email addresses due to
privacy concerns. In these companies, we asked our contact
in the company to again select developers, then send a form
email to these developers containing a link to the survey, as
well as a reminder email in the week following.

To incentivize participation, we offered a drawing for two
$100 Amazon gift cards. The survey was open to each group
of developers for one to two weeks. Of the 257 developers to
whom we directly distributed the survey — those in the nine
companies where we could obtain developers’ emails — 105
completed it. This is a 40.8% completion rate, which is at
the high end of typical response rates for surveys of software
developers [39]. The rest of the respondents were contacted
about the survey by our industry contacts; 14 completed
it. In total, 119 completed the first iteration of the survey.
However, because incomplete surveys contained some usable
data, where possible we analyzed data from such surveys.

To mitigate the negative effects that the survey’s length
would have on participation and completion, we used a split
survey design [33]. All respondents were asked about their
knowledge of secure development practices and their expe-
rience and role in software development. We grouped the
remaining questions by topic, then grouped these topics into
four pages with roughly equal numbers of questions. Each
respondent was presented with two of the four pages. We
used the Qualtrics online survey platform, which randomly
assigned pages of the survey to respondents in a way that
ensured approximately equal numbers of respondents were
presented with each page. As a result, each page of the sur-
vey was presented to the same number of respondents, plus
or minus four respondents.

The distribution of responses to this question for the first
iteration of the survey are shown in the first row of Table 1
(Iteration 1). What stands out about this distribution is
how many non-users of security tools responded, compared
to how few users of security tools did. While the perspective
of non-users is important, to meaningfully draw conclusions

about the differences between users and non-users, we aimed
to collect more responses from security tool users.

3.3 Second Survey lteration

We ran a second iteration of our survey, compensating for
the lack of tool users in the first sample, by using a different
sampling method. Additionally, we reduced the size of the
survey so that every respondent could answer every question.

3.3.1 Sampling Method

To sample developers who were more likely to use security
tools, we distributed this survey to 5 mailing lists for users
of different security tools. The first 50 participants from
each mailing list received a $15 Amazon gift card for partic-
ipating. There was evidence that many surveys were com-
pleted programatically, so we cleaned the data by removing
all participants who took less than 5 minutes to complete
the survey. We chose 5 minutes because there was a clear
discontinuity in the distribution between participants who
took less than 5 minutes and those who took more than
5 minutes. This removed 313 responses and left 61. The
distribution of responses to the question about security tool
use for this iteration are shown in the second row of Table 1,
which shows that this sample of respondents complements
the first sample in terms of frequency of tool use.

3.3.2 Survey Sze Reduction

Another disadvantage of the first iteration of the survey
was that, due to our split survey design, most adoption fac-
tor questions were answered by only about half of respon-
dents. This reduces statistical power [10]. For this iteration,
we compensated by reducing the number of questions so that
every participant could answer every question.

We shortened the survey by including only the questions
that significantly correlated with usage in the first iteration.
We analyzed 70 of the questions, which asked about factors
that encourage or discourage adoption, by finding Spear-
man’s rank correlation between responses to the questions
and respondents’ self-reported security tool use frequency.
When we computed Spearman’s correlation using SAS sta-
tistical software, we treated the usage question as an ordinal
response with three levels.

Using R [43], our initial analysis found 41 out of 70 ques-
tions correlated significantly (o = .05) with respondents’
self-reported security tool use. When conducting so many
independent statistical tests, there is a high probability of
false discovery. We accounted for this chance of false discov-
ery using a Benjamini-Hochberg adjustment [4]. On the ba-
sis of this adjustment, correlations with p-values above .0276
were treated as insignificant. At this level, responses to 39 of
70 questions correlated significantly with respondents’ self-
reported security tool use. We used these 39 questions on
the second iteration of the survey.

3.4 Data Analysis

We analyzed the results by combining the responses of
both survey iterations, analyzing just the questions that the
two iterations had in common. This has two advantages.
First, combining results enables increased statistical power,
compared to analyzing each iteration separately. Second,
combining results compensates for the usage skew (fewer se-
curity tool users in the first iteration and more in the second)
that would make it difficult to detect effects when analyz-



ing the iterations separately. From a sampling standpoint,
combining results is reasonable in two aspects. First, both
samples are drawn from the same population of interest:
software developers as a whole. Second, our survey should
capture any differences between the two populations to the
extent that our prior interviews rigorously exposed all the
factors that contribute to tool adoption. Nonetheless, we
cannot rule out the possibility of such differences. Like all
empirical study designs, ours entail tradeoffs, and we judge
that the benefits are worth the potential risks. We discuss
these tradeoffs further in Section 5.

3.4.1 Individual Logistic Regression Models

The aim of our first analysis is to determine which fac-
tors predict security tool usage. We first coded security
tool adoption dichotomously, by converting the three-point
scale used in the usage question by mapping the ‘never’ re-
sponse to ‘no adoption’ and ‘occasionally’ and ‘frequently’
to ‘adoption’. For each question, we performed a logistic
regression analysis using R [43] to determine the extent to
which each factor predicted the adoption of security tools.
We again used a Benjamini-Hochberg correction to control
the false discovery rate; the adjusted p-value for significance
was .03. Additionally, we calculated odds-ratios to estimate
effect size [41] using SPSS [2].

In the first iteration, four questions concerned developers’
trust of different sources of information about security tools.
These were qualitatively different from the other questions,
and are not meant to predict tool use. Thus, we compare
them to one another as described in Section 4.4.

For both individual and combined regression models, we
assume that if a respondent did not know the answer to
a question, their lack of knowledge did not affect the re-
spondent’s adoption decisions. This assumption was sup-
ported by Fisher-Exact value tests, which found no signif-
icant differences in security tool adoption between the re-
sponses with missing and the responses without missing val-
ues in the first survey iteration. Thus, we treated all “Don’t
Know” responses to Likert-scale questions as though they
were missing at random (MAR). Treating such responses as
MAR is considered a reasonable treatment of “Don’t Know”
responses, where models replacing them may not help char-
acterize respondents any better [36].

3.4.2 Combined Logistic Regression Model

One limitation of presenting a series of single-variable mod-
els is that their effects might be cross-correlated, which re-
duces our ability to isolate independent phenomena. To
show that the factors in this study have independent ef-
fects, we built a combined logistic regression model using all
39 factors in R [43]. The combined model also included the
role and experience of participants. To reduce the number of
factors, we used stepwise regression, which deletes variables
that improve the model the most by being deleted (accord-
ing to the Akaike Information Criterion [37]) and repeats
this process until no further improvement is possible.

3.5 Respondent Characteristics

Here we characterize the self-reported background of re-
spondents across both iterations. About 73% of respondents
were developers, 13% testers, 10% managers, and 4% other.
About 2% had less than 1 year of professional software de-
velopment experience, 10% 1-2 years, 16% 3-5 years, 28%

6-10 years, 27% 11-20 years, and 17% more than 20 years.
The common software domains participants worked in were
web, mobile, desktop, enterprise, client, and tiered applica-
tions; software as a service and cloud; analytics and statis-
tics; developer tools and application lifecycle management;
computer aided design; graphics; ecommerce; and databases.

4. RESULTS & IMPLICATIONS

Interpreting the Results Table: Table 2 summarizes
our results. Each row of the table describes one statement
for which survey respondents rated their agreement, as well
as the results of our analysis for each question. For example,
130 respondents answered [S8], with a Cox and Snell regres-
sion 72 coefficient of 0.24. Our regression model for [S§]
showed a significant relationship (p < .001) between par-
ticipants’ levels of agreement with the statement and their
adoption. Finally, the last column Ezp(B) indicates an odds
ratio of 3.18. If the value of an odds ratio is greater than 1,
this means that respondents are more likely to adopt secu-
rity tools with increases in the Likert scores, i.e., when they
agree with a statement more. For example, for [S8], the odd
ratio is 3.18, which means that for every one point Likert
scale increase (more agreement, e.g., Neutral to Agree, or
Agree to Strongly Agree), the odds that participants adopt
security tools increase by a factor of 3.18. For two points
of increase, e.g, from Neutral to Strongly Agree, the odds
would increase by a factor of 3.18 x 3.18 = 10.1124. Con-
versely, if the value is less than 1, individuals are less likely
to adopt security tools. For every one point Likert scale
increase, the odds decrease by a factor of Exp(B). For ex-
ample, for [S39] with Exp(B) = .57, participants are less
likely to adopt security tools; for every one Likert scale unit
increase the odds drop by 1.75 times (-2=). And in the case
of [S39], an odds-ratio less than one is expected, given the
statement’s framing. In Table 2, statements are labeled S1
to S39; the order and number is based on highest odds ratio
([S1]) to lowest odds ratio ([S39]). The results show security
tool usage is a significant predictor for all 39 statements.

To give an overview of the strength of the effects for each
factor group, we use small bar charts. In these charts, the
number of bars represents the number of statements that
significantly predict tool adoption, the height of each bar
represents an odds ratio, and the bars are ordered by de-
scending height. For example, the header of Section 4.2.2
shows Hllmm, which indicates of the four Likert scale state-
ments that significantly predicted tool adoption, one was rel-
atively strong (4.37x), one medium (2.97x), and two weak
(1.84x and 1.78x).

Questions with large values for N ([S23], [S26], [S30],
[S33], [S34]) were presented to all respondents of each it-
eration. Additional variation in N is due to non-response
for some questions and “Don’t Know” responses.

Discussing Implications: Throughout, we will also dis-
cuss the implications our findings have for those who want
to spread security tools in organizations. We do this here,
rather than discussing implications in their own section, to
make clear the connections between our findings and the
course of action they imply. To differentiate the findings
of our survey from their implications, the latter will be in
paragraphs beginning with Implications, in bold. As we
mentioned in Section 3.4, while our methodology precludes
strong claims of generalizability, in our implications we take
some liberties in assuming that our results apply in wider



contexts beyond the participants surveyed for this study.

As is typical for surveys, statistically significant relations
alone do not imply causality. For some relationships, how-
ever, we have evidence of causation from our interview stud-
ies. Where appropriate, we will discuss possible causal links
and their implications. We do so to provide questions for
other researchers to answer in the future, and to show these
results’ potential impact.

4.1 Summary of Results

Next we discuss the factors in terms of the four factor
groups: the innovation factors, the social system factors, the
communication channel factors, and the potential adopter
factors. We contextualize survey respondents’ answers in
qualitative data provided by our prior interviewees.

4.2 Social System Factors
421 Security Concernmmm & AwarenesSammmm

Security concern is the perceived importance of security
in a social system. In our interviews, higher security concern
led to the adoption of tools. For example, some developers
reported that the software they developed was only used by
authenticated, trusted users, so they thought security was
not important. As a result, these developers did not use
security tools [46].

In the survey, security concern predicted security tool use,
but the three security concern statements ([S36],[S37],[S38])
had among the weakest effects of all. For instance, a 1-point
increase in agreement with the statement “I work on software
for which security is very important” [S37] only accounted
for a 1.49% increased odds of using security tools.

Likewise, the five security awareness statements ([S23],
[S26], [S30], [S33], and [S34],) predicted tool use, but also
had smaller effects than most other factors. Combined with
our interview study, where some developers did use secu-
rity tools because of this attitude [46], these results imply a
causal link between security concern and security tool use,
though a relatively weak one.

Implications: While importance of security is influen-
tial, our results on the whole indicate that the perceived im-
portance of security does not influence adoption as much as
other factors. Our results comport with Xie and colleagues’
findings that security concerns influence secure coding prac-
tices [47], but our results suggest it is not the most impor-
tant factor. Surprisingly, based on our results’ relative effect
sizes, making developers more security-conscious may not be
as effective as other interventions for promoting tool use.

422 Policies& Sandardsilam

In our interviews, the policies and standards relating to
security tools affected their adoption as well. For instance,
all interviewees required to use security tools did so [46].

Different policies and standards in the companies that de-
velopers worked in also predicted tool use. Organizations’
application of explicit standards [S31] for software security
predicted security tool use. Adoption is also predicted by
the application of secure development processes, like those
from OWASP [32] and the Microsoft Secure Development
Lifecycle [27] [S23].

The second strongest effect in the survey was that adopters
were more likely to report their superiors expect them to use
security tools [S2]. Though not as strong an effect, respon-
dents who used security tools were more likely to say that

their superiors reward them for writing secure software [S29].

Implications: Sociological research has found that work-
ers in security-critical fields often circumvent security poli-
cies. Even in hospitals, where the cost of mistakes can be
fatal, workers often circumvent policies requiring the use of
barcodes to identify patients and drugs [22].

Our findings, in contrast, indicate that developers who are
required to use security tools actually do so. As mentioned in
Section 4.3.1, this may be because developers generally be-
lieve security tools help them do their jobs better and faster.
These findings suggest that organizations should firstly pre-
scribe tool use as part of a secure development methodology
and secondly explicitly reward developers for the security of
their software.

While our findings show some respondents were rewarded
for writing secure code, we do not know how they were re-
warded or what rewards are most effective. Future research
could help companies determine the best ways to reward
developers and make them feel valued for their secure de-
velopment efforts. Many companies, such as Mozilla [29],
GitHub [16], Facebook [15], and Twitter [44], use bug boun-
ties, or rewards for outsiders who discover vulnerabilities.

4.2.3 Sructure mmm

The structure of a company or other social system in
which developers write software, with respect to how secu-
rity experts and security auditing teams interact with other
developers, affects adoption as well. For instance, we found
in our interview study that developers who interact with se-
curity experts feel more personally responsible for security.
Thus, we asked a number of questions about the structure
of the environment in which developers worked — about how
respondents interact with security and testing teams, for
example. We also asked about respondents’ perceptions of
their responsibility for security, as Xie and colleagues [47]
found these perceptions led some developers to not adopt
security practices.

Respondents who used security tools were more likely to
report they felt personally responsible for the security of the
software they develop [S27], and that they interacted fre-
quently with others in their organization who help improve
the security of their software [S22]. Respondents were also
more likely to say their peers thoroughly reviewed their soft-
ware for security [S35]. While structural relationships were
significant, the effects were weaker than most other factors’.

Implications: These results strengthen the findings from
our interviews that interviewees who interacted frequently
with security teams were more likely to use security tools,
out of a greater sense of personal responsibility for security.
The strongest structure effect in the survey was with the
frequency with which developers interact with others who
work in security. Thus, we suggest that policy should en-
courage security experts to conduct audits alongside other
developers, rather than simply running analyses and send-
ing reports. Security experts and other developers could
also conduct pair programming sessions; pair programming
can effectively transfer knowledge between programmers [9],
and thus also might be used to transfer knowledge about
security tools.

4.2.4 Education & Training ilm

We found in our previous interviews that different com-
panies provide different resources for education and training



Table 2: Individual Regression Models Predicting Security Tool Use

ID Factor Group Statement N 2 p Exp(B)

S1 I have seen what others do using security tools. Observability 141 0.35 <.001 4.46

S2 My superiors expect me to use security tools. Policies 134 0.36 <.001 4.37

S3 Using security tools {is/would be} cost-effective. Advantages 130 0.20 <.001 3.95

S4 I actively seek out information about security tools. Inquisitiveness 146 0.29 <.001 3.70

S5 Using security tools {make/would make} it easier to do my job. Advantages 136 0.25 <.001 3.62

S6 It is easy for me to observe others using security tools in my Observability 138 0.25 <.001 3.36
organization.

S7 Using security tools {helps/would help} me do my work more quickly. Advantages 137 0.22 <.001 3.21

S8 I know how I can satisfactorily try out various uses of security tools. Trial Ease 130 0.24 <.001 3.18

S9 People in my organization who use security tools have more prestige Culture 128 0.17 <.001 3.16
than those who do not.

S10 The software I develop is analyzed by security tools when it is built or Policies 132 0.27 <.001 2.97
tested.

S11 T frequently learn about security tools from blogs and technical websites. Exposure 148 0.25 <.001 2.84

S12 1 was permitted to use security tools on a trial basis long enough to see Trial Ease 116 0.17 <.001 2.77
what it could do.

S13 My organization holds frequent trainings on security tools. Education 142 0.19 <.001 2.65

S14 My organization holds frequent trainings on software security. Education 142 0.21 <.001 2.64

S15 Using security tools {improves/would improve} my job performance. Advantages 135 0.17 <.001 2.60

S16 Using security tools {is/would be} a good use of my time. Advantages 140 0.11 <.001 2.51

S17 I frequently learn about security tools from other developers. Exposure 147 0.18 <.001 2.44

S18 I frequently learn about security tools from managers in my Exposure 147 0.19 <.001 2.41
organization.

S19 Using security tools {improves/would improve} my image within my Culture 129 0.09 .001 2.23
organization.

S20 Given multiple security tools I can easily choose which to use for a given Advantages 132 0.12 <.001 2.15
task.

S21 Security tools are available to me to adequately try out. Trial Ease 118 0.10 <.001 2.13

S22 I interact frequently with others in my organization who help improve Structure 147 0.15 <.001 2.12

the security of the software I develop.

S23 1 apply secure development standards such as those from OWASP or the Security Awareness | 234 0.15 <.001 2.12
Microsoft Secure Development Lifecycle.

S24 I learned about security tools in university courses. Education 149 0.15 <.001 2.08

S25 Security tools present their analyses in understandable ways. Complexity 109 0.05 .024 1.96

S26 I could explain software security design to a new developer on my Security Awareness | 242 0.12 <.001 1.93
project.

S27 I am personally responsible for the security of the software I develop. Structure 144 0.10 <.001 1.91

S28 The internal workings of security tools are complex. Complexity 110 0.05 .025 1.88

S29 My superiors reward me for writing secure software. Policies 130 0.08 .001 1.84

S30 I am aware of secure development standards such as those from OWASP Security Awareness | 241 0.12 <.001 1.83
or the Microsoft Secure Development Lifecycle.

S31 In my organization there are explicit standards for the security of the Policies 127 0.10 <.001 1.78
software I develop.

S32 If the software I develop were insecure I would be embarrassed. Culture 139 0.05 .008 1.68

S33 Security is best emphasized primarily in end-stage testing. Security Awareness | 238 0.08 <.001 1.67

S34  Adding security functionality is important to the developers I work with. Security Awareness | 230 0.06 <.001 1.61

S35 My peers thoroughly review the software I develop to ensure it is secure. Structure 144 0.07 .002 1.61

S36 If the software I work on were insecure it would put important resources Security Concern 150 0.05 .009 1.53
at risk.

S37 I work on software for which security is very important. Security Concern 151 0.05 .008 1.49

S38 If the software I work on were insecure it would cause problems for Security Concern 150 0.04 .021 1.46

customers and users.

S39 Security tools are not very visible in my organization. Observability 138 0.06 .005 0.57



about security and security tools. Some companies hold oc-
casional security seminars, while in other companies, knowl-
edge of security is part of the interview process and is gen-
erally assumed of all developers [46]. We conducted these
survey studies partly to study the effects these differences
may have on security tool adoption.

Security tool adopters were more likely to report they were
educated or had opportunities to continue their education in
security; use was predicted by having learned about security
tools in university courses [S24] and working in an organi-
zation that holds frequent trainings on security tools [S13]
and on software security [S14]. Respondents who reported
having access to organizational trainings were more likely
to report using security tools (2.64x and 2.65x) than those
taught about security tools in university courses (2.08x).

Implications: Hiring developers who have been trained
in software security may be an effective means of spreading
security tools in an organization. Even if they do not cur-
rently use the tool the organization wants to diffuse, they
may be more likely to adopt the tool. These findings also
suggest that organizations should hold trainings on not just
security, but on security tools as well.

425 Culture lnm

The culture of a social system, with respect to security tool
adoption, consists of the beliefs and social norms concern-
ing security and security tool use in that social system. We
found in our previous interview study that, in some compa-
nies, developers considered using new security tools “cool”,
while others had cultures, shaped by policies, that encour-
aged just using tools that were already approved for use in
the company [46].

We asked several questions on our survey to determine
the effects that such cultural attitudes had on adoption. Re-
spondents who used security tools were more likely to report
that the company they worked in had a culture that encour-
aged secure development and the use of security tools. They
reported developers who use security tools were more pres-
tigious than those who do not [S9], to relatively large effect
(3.16x), and that using security tools improved their image
within their organizations [S19]. Adopters were also more
likely to report that making software secure is important
to the developers they worked with [S34]. Adopters were
more likely than non-adopters to report they would be em-
barrassed if software they developed were not secure [S32].

Implications: Naturally, affecting the culture of a social
system is a hard problem. However, Singer’s work [38] indi-
cates that gamification and other means of externally influ-
encing the prestige of using software development practices
can increase their adoption. Building on that work, future
research might apply social gamification to the security tool
adoption problem.

4.3 Innovation Factors
43.1 Relative Advantage lllnnn

We asked several questions to determine how well proper-
ties of the security tool itself, or relative advantage, predicts
tool adoption. If a developer thinks using a tool is superior
to not using it, or to using a different tool, it has a high
relative advantage. Relative advantage includes developers’
perceptions of technical aspects like soundness and false pos-
itive rates. Another aspect of relative advantage is expense;
prior interviewees thought that security tools were too ex-

pensive, in financial or time costs, to be worth using [45].
Such tools had a low perceived relative advantage.

In our surveys, adopters tended to believe that security
tools helped respondents do their jobs faster [S7] and at
a higher level of performance [S15]. Respondents who use
security tools are more likely than non-adopters to believe
that security tools are cost-effective [S3], were a good use of
their time [S16], and feel confident choosing between differ-
ent security tools [S20]. The relative advantage factors had
relatively strong effects on adoption.

Implications: In our previous study, all interviewees who
were required to use security tools did so [46]. One interpre-
tation of those results is that developers only use security
tools because of these requirements. Findings in manage-
rial psychology indicate that fear of punishment for break-
ing workplace rules can influence employee behavior [14].
This could imply that developers only use security tools to
avoid breaking workplace policies. Circumvention of policy
is common in other workplaces, such as hospitals [22].

In contrast, our results indicate that developers have their
own reasons for using security tools: in general, adopters
think security tools have a positive impact on their work. In
this sense, the workplace requirement to use security tools
is different from other requirements in that developers think
it actually helps them do better work.

4.3.2 Observability ll_

We also asked developers questions about the observability
of security tools. According to diffusion of innovations (DOI)
theory, a technology is more observable if others can easy to
tell that an adopter is using it. For example, cell phones are
more observable than desktop computers, since an adopter
of a cell phone will use it in public, while an adopter of a
desktop will typically only use it in private. DOI theory
states that more observable innovations are more likely to
be adopted [34].

Survey responses to three questions show a significant re-
lationship between security tool use and aspects of their ob-
servability [S1,6,39]. In fact, the strongest of all the re-
lationships we found was with the statement “I have seen
what others do using security tools” [S1].

Implications: Toolsmiths and policymakers may be able
to impact tool adoption by increasing observability. For in-
stance, pair programming or developer-led demonstrations
is one way to improve observability in an organization.

4.3.3 Complexity mm

DOI theory states that innovations perceived to be com-
plex are less likely to be adopted, than simpler ones. For
instance, Black and colleagues found that less experienced
people with computers were less likely to adopt online bank-
ing technologies, partly because of the perceived complexity
of the system [7]. Our previous interviews suggested de-
velopers are equally effected: one developer reported they
did not use a security tool because the tool’s interface was
so complex that it made performing simple tasks “a night-
mare” [45].

The survey did confirm that complexity was a signifi-
cant factor in tool adoption, but not particularly strongly.
Adopters were more likely than non-adopters to report that
security tools presented their analyses in understandable
ways [S25]. In addition, adopters were more likely to believe
that security tools are internally complex than non-adopters



were [S28]. Both factors’ effects were weaker than those from
most other factors.

Implications: To some degree, complexity is linked to
the power of a security tool, yet toolsmiths may be able to
increase adoption through reduced complexity by, for exam-
ple, building tools that communicate with developers using
familiar terminology.

4.3.4 Trialability Hm

In DOI theory, innovations have higher trialability if they
are easier to use on a trial basis, without significant invest-
ment in the as-yet-untested technology. More trialable in-
novations are more likely to be adopted than less trialable
ones. In our previous interview study, some developers re-
ported not using security tools because it was not worth the
time it took to install and configure a tool [45].

Adopters were more likely to say they knew how to satis-
factorily try out security tools [S8]. Security tool adopters
also were more likely to say they had access to security tools
[S15] and were permitted to try security tools to adequately
see what they do [S12].

Implications: These relationships suggest that compa-
nies trying to foster security tool adoption should make poli-
cies to make it easy for employees to try new tools. These
findings also indicate that policies that prevent developers
from easily trying new tools make them less likely to adopt
them. Offering resources to show developers how to install
and try out tools may encourage adoption by making de-
velopers feel they are able to evaluate their functionality.
Toolsmiths may be able to increase adoption of their tools by
reducing barriers to demonstrating and trying the function-
ality of security tools. For instance, future research could
find ways for companies to host flexible analysis platforms
to help developers, with minimal effort, try different security
tools on their code.

4.4 Communication Channel Factors
441 Trust

Developers trust different sources of information about se-
curity tools different amounts. In our previous interviews,
participants trusted prominent developers they know of on
the internet more than managers in their organization [46].
DOI theory indicates that individuals are more likely to
adopt innovations they learn about from trusted parties.

On the first iteration of the survey (but not the second
iteration), we asked four questions about channels partic-
ipants trusted for information about security tools. Each
question was in the form “If I learned about a security tool

from {Source}, I would trust that information”, where {Source}

was “a manager in my organization”, “another developer”,
“a blog or technical website”, or “an advertisement, online
or otherwise”. A 85 respondents answered at least one trust
question, of which 4 respondents did not answer between one
and three trust questions. We ignored such missing data in
this analysis.

The median trust in the manager and the developer was
“Agree”, while blog or technical website was “Neither Agree
nor Disagree”, and advertisement was “Disagree”. Using a
pairwise Wilcoxon signed-ranks test, these differences were
statistically significant from one another at p < .05. We did
not find a significant difference between trust for managers
and developers. No trust differences emerged between re-
spondents at different levels of tool usage (Kruskal-Wallis

test, p > .05).

Implications: These findings indicate that advertise-
ments are not effective ways to inform developers about se-
curity tools, as developers do not trust them. Developers’
trust in peers helps explain previous findings that peer rec-
ommendation is a particularly effective way developers find
out about new tools [30].

We were surprised to find that respondents trust managers
as much as other developers. Our interviews and other pre-
vious work [30] indicate that developers do not trust their
managers as much as other sources for information about
tools. One explanation might be our sampling methodol-
ogy; respondents who heard about the survey through their
manager might be more inclined to answer it in a manager-
friendly way. We expand on this threat further in Section 5.

442 Exposurclinm

The extent to which developers are exposed to security
tools through different channels also affects their likelihood
to adopt them. Our previous findings, in our interview stud-
ies on security tool adoption [46] and peer interaction [30]
indicate that learning about tools from other developers is
infrequent, but an effective vector for tool adoption.

Respondents who were exposed to tools were more likely
to use them. We found that adopters were more likely than
non-adopters to report learning about security tools from
managers in their organization [S18] and technical blogs and
websites [S11]. Additionally, respondents who used secu-
rity tools were more likely to report they frequently learned
about security tools from other developers [S17]. The ef-
fects of each exposure factor was larger than for most other
factors.

Implications: We were surprised that the effect of learn-
ing about security tools through managers (2.41x) was about
the same as that of learning security tools through peers
(2.44x). This is surprising, given our previous findings that
indicate developers do not trust their managers for informa-
tion about tools [30]. However, our previous findings also
indicate that developers learn about tools from their peers
only infrequently; these findings may actually reflect how,
in general, few developers learn about security tools from
their peers. Our findings suggest that companies can use
managers as agents of diffusion for security tools — devel-
opers who frequently hear about security tools from their
managers are more likely to use security tools than those
who do not, and developers may trust managers as much as
other developers.

4.5 Potential Adopter Factorsll

Qualities of the potential adopter, the developer who must
choose whether or not to adopt a security tool, affect devel-
opers’ adoption decisions, according to our qualitative inter-
views. In particular, our interviews identified two relevant
factors: developers’ experience, in programming and soft-
ware security, and their inquisitiveness about security tools.
In our interviews, we found, for example, that all developers
who did not seek out information about new security tools
also did not use security tools [45].

We found security tool adopters were more likely than
non-adopters to say they actively sought out information
about security tools [S4], a relatively strong effect (3.70x),
indicating that adopters are more inquisitive about security



Table 3: A Combined Model of Security Tool Adoption

Variable Factor Group Statement B p-value sig. FExp(B)
(Intercept) NA Intercept -11.865 <.001  REE 0.000
S1  Observability I have seen what others do using security tools. 1.306 001 *x* 3.691
S5  Advantages Using security tools {make/would make} it easier to do my 1.069 .003  ** 2.913
job.
S10  Policies The software I develop is analyzed by security tools when 0.983 .002  ** 2.673
it is built or tested.
S4  Inquisitiveness I actively seek out information about security tools. 0.863 .003  ** 2.371
S14  Education My organization holds frequent trainings on software secu- 0.643 021 * 1.902
rity.
S18  Exposure I frequently learn about security tools from managers in 0.619 .030 * 1.857
my organization.
S12  Trial Ease I was permitted to use security tools on a trial basis long 0.563 .104 1.756
enough to see what it could do.
S11  Ezposure I frequently learn about security tools from blogs and tech- 0.504 .064 1.655
nical websites.
S27  Structure I am personally responsible for the security of the software -0.427 .087 0.652
I develop.
S15  Advantages Using security tools {improves/would improve} my job -0.464 .094 0.629
performance.
S29  Policies My superiors reward me for writing secure software. -0.563 122 0.570
roleDeveloper  Demographics Participant is a developer. 1.487 124 4.423
roleManager  Demographics Participant is a manager. 0.923 .405 2.517
roleTester  Demographics Participant is a tester. -0.154 .890 0.857
S6  Observability It is easy for me to observe others using security tools in -1.068 .019 * 0.344

my organization.

tools. Surprisingly, however, we did not find a statistically
significant relationship between respondents’ years of expe-
rience in software development and adoption.
Implications: Prior research on technology adoption in-
dicates that experience and inquisitiveness have an impact
on adoption. For instance, Chau and Hui found that novelty-
seeking behavior and length of experience using computers
were strongly related to early adoption of Windows 95 [8].
However, our results here indicate that inexperienced devel-
opers may be just as likely to use security tools as more
experienced ones. Some of our prior results explain this; in
an unrelated set of interviews, interviewees indicated that
experienced developers can learn about software develop-
ment tools from interns because interns have more time for
experimenting with new tools [30]. These results suggest
that organizations should consider employing inexperienced
developers as knowledge sources about security tools.

4.6 A Combined Security Tool Adoption Model

We built a combined logistic regression model using all 39
factors. For this model, and only for this model, we used
imputation [23] to deal with missing values. Missing val-
ues occurred when participants were not asked a question
because of the split survey design, did not to respond to a
question, or selected “Don’t Know”. We substituted miss-
ing values with the median Likert score of the completed
responses [23] for that question.

After the stepwise regression, the factors for 12 questions
and the role demographics survived; all other factors were
eliminated. Among the surviving factors, only 7 were stat-
ically significant. The resulting model is shown in Table 3.
Since the range of variables related to survey questions is
the same (1 for strongly disagree, ..., 5 strongly agree), the
coefficients for the variables can be directly compared. A
higher coefficient means a stronger influence.

As with the individual models, in the combined model,

the strongest influence remains “I have seen what others do
using security tools” [S1] with an odd ratio of 3.69x. The
statistically significant factors with positive influence on se-
curity tool adoption come from different categories: Observ-
ability [S1], Advantages [S5], Policies [S10], Inquisitiveness
[S4], Education [S14], and Exposure [S18]. The demograph-
ics did not matter in the combined model: experience was
eliminated in the stepwise regression and role was not sta-
tistically significant.

One significant factor has negative influence (0.34x) on
security tool adoption: “It is easy for me to observe others
using security tools in my organization” [S6]. Yet, in isola-
tion this factor had positive influence on adoption (3.36x,
Table 2). One explanation is that there is an interaction
between [S6] and [S1] (“I have seen what others do using
security tools”, 3.69% in the combined model). The effect of
adoption is strongest for people who observed others using
security tools and for whom it was not easy (high scores for
[S1] and low scores for [S6]). If observing others was easy
(high scores for both [S1] and [S6]), the effect on adoption is
still positive (3.69*%0.34=1.25%) but not as strong. In other
words, having to go through obstacles to discover a security
tool may increase the odds of adoption. Another explana-
tion is that the negative effect is a result of data imputation.
We tested this explanation by re-running our combined lo-
gistic regression model with only [S1] and [S6] and without
imputation; we achieved this by only using data from re-
spondents that got the page that contained the Observabil-
ity factor group. In that model [S1] retained a significant
positive influence, and [S6]’s negative effect was reduced and
was no longer significant. This suggests that we cannot rule
out imputation as the cause of [S6]’s negative effect in the
combined, imputed model.

To further validate the model we used ten-fold cross vali-
dation. We split the dataset into 10 random folds. Each fold
was then used to validate a logistic regression model based



on the factors in Table 3 constructed using the other nine
training folds. The mean precision is 79.4% and mean re-
call is 73.4%, which suggests that the model can successfully
predict security tool adoption.

As with the individual regression models, toolsmiths and
policy makers can use the combined regression model to
identify significant factors as potential avenues for facilitat-
ing tool adoption. Additionally, if such stakeholders want
to address multiple factors, choosing several positive, signif-
icant ones from the combined model may be a way to in-
fluence adoption from different perspectives. For example,
as we suggested in Section 4.2.3, the importance of “seeing
what others do using security tools” suggests that encourag-
ing practices like pair programming can spread knowledge
of security tools. Finally, because the significant positive
predictors of adoption were also significant in the individual
models, the reader can have increased confidence that these
trends are not simply artifacts of our analysis techniques.

5. THREATS TO VALIDITY

Threats to Construct Validity: We cannot guarantee
that we have described and measured each factor exactly as
it affects adoption. For instance, we wanted to measure re-
spondents’ inquisitiveness, but could not directly ask “how
inquisitive are you?”, since we cannot expect participants
to accurately describe such subjective properties of them-
selves [5]. Instead, we asked questions such as [S4], asking if
they sought out information about security tools, to measure
the effects of their inquisitiveness. There are many ways to
measure inquisitiveness, and for practical reasons, we mea-
sured just one of them.

One threat to construct validity is our combining of data
from each iteration of the survey, as discussed in Section 3.4.
If the samples are systematically different in a way that the
second iteration of the survey does not capture, our results
will not reflect those differences. For instance, the questions
that existed on the first iteration of the survey but not the
second may have been sensitive to such differences, but the
data we gathered can neither confirm nor deny it. Another
threat is the lower statistical power of analyzing questions
that appeared on the first survey but not the second, be-
cause such questions necessarily had fewer total responses.
Consequently, users and non-users of security tools may ac-
tually answer these questions differently.

To derive the combined model we use imputation to han-
dle missing values. Different imputation strategies may lead
to different models. Thus, the reader should exercise caution
when interpreting the combined model.

Threats to Internal Validity: The present study is
a retrospective survey, not an experimental study, and so
our ability to make predictive claims is limited. As we
noted earlier, many cases have evidence for causality, based
on our interview study, but in other cases, especially for
those questions designed based on Moore and Benbasat’s
work [28], we cannot. Fortunately, this paper provides the
necessary foundation for conducting future experimental or
action research-based studies [40]; we would recommend such
studies focus on the largest significant effects that we have
uncovered here.

Since we worked with managers to distribute the survey
on the first iteration, we did not have control over the sam-
pling methodology within companies. In addition, distri-
bution with the help of managers could introduce bias. For

instance, developers who know the manager who distributed
the survey may tend to respond more positively to questions
about management than if we were able to distribute the sur-
vey directly to developers. However, with the exception of
the questions on trust, if we assume that both frequent and
infrequent tool users are equally affected by this bias, then
the bias would have little effect on our analyses. A similar
response bias threat is that respondents may have had more
experience or held a more positive attitude towards security
tools than non-respondents.

As in most survey studies, the wording of the survey may
have biased participants. To address this threat, we tried
to word questions in a value-neutral way. Nonetheless, our
survey did have section headings like “Inquisitiveness,” which
may have positive connotations and may have biased respon-
dents towards agreeing with these statements. As with the
potential bias introduced by distribution by management, if
we assume equal bias on frequent and infrequent tool users,
then this bias has little effect on our results.

Threats to External Validity: In our first iteration,
most responses came from a small subset of the companies
sampled; in most of the companies, we surveyed fewer than
10 developers. Thus, while this sample covers a variety of
industry developers, respondents hail from a small number
of companies. Similarly, respondents across both iterations
may not be representative of all developers.

Some questions we asked during our first iteration did not
appear significantly related to adoption based on our initial
analysis. It may be that some relationship does indeed exist,
but that our study lacked the statistical power to detect it.

As mentioned in Section 3, we omitted responses from par-
ticipants who took less than 5 minutes to complete the sur-
vey in an effort to combat ballot stuffing [11]. However, we
may have still included invalid responses from ballot stuffers
who took more than 5 minutes, and also may have omitted
data from real respondents who took the survey quickly.

6. CONCLUSION

Security tools are an important part of secure software de-
velopment, but many developers do not use them, even when
they believe security is important. This leaves software less
secure than it could be. In this paper, we describe a quantifi-
cation of factors that influence security tool adoption. Our
results, the product of a long-term, mixed-methods research
project, provide toolsmiths and policy-makers greater un-
derstanding of why tools are or are not adopted. Although
toolsmiths and policy-makers have more control over some
factors, our results provide a holistic lens through which
these stakeholders can better understand adoption. We hope
future applications of our findings will result in more devel-
opers using security tools, helping increase the security of
the software we increasingly depend upon.
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