
How Long will it Take to Fix This Bug?

Cathrin Weiß

Saarland University

weiss@st.cs.uni-sb.de

Rahul Premraj

Saarland University

premraj@cs.uni-sb.de

Thomas Zimmermann

Saarland University

tz@acm.org

Andreas Zeller

Saarland University

zeller@acm.org

Abstract

Predicting the time and effort for a software problem has
long been a difficult task. We present an approach that au-
tomatically predicts the fixing effort, i.e., the person-hours
spent on fixing an issue. Our technique leverages existing
issue tracking systems: given a new issue report, we use
the Lucene framework to search for similar, earlier reports
and use their average time as a prediction. Our approach
thus allows for early effort estimation, helping in assign-
ing issues and scheduling stable releases. We evaluated our
approach using effort data from the JBoss project. Given
a sufficient number of issues reports, our automatic predic-
tions are close to the actual effort; for issues that are bugs,
we are off by only one hour, beating naı̈ve predictions by a
factor of four.

1. Introduction

Predicting when a particular software development task

will be completed has always been difficult. The time it

takes to fix a defect is particularly challenging to predict.

Why is that so? In contrast to programming, which is a con-
struction process, debugging is a search process—a search

which can involve all of the program’s code, its runs, its

states, or even its history. Debugging is particularly nasty

because the original assumptions of the program’s authors

cannot be trusted. Once the defect is identified, fixing it is

again a programming activity, but the earlier effort to search

typically far outweighs the correction effort.

In this paper, we address the problem of estimating the

time it takes to fix an issue1 from a novel perspective. Our

approach is based on leveraging the experience from earlier

issues—or, more prosaic, to extract issues reports from bug

databases and to use their features to make predictions for

new, similar problems. We have used this approach to pre-

dict the fixing effort—that is, the effort (in person-hours) it

takes to fix a particular issue. These estimates are central to

1An issue is either a bug, feature request, or task. We refer to the

database that collects issues as bug database or issue tracking system.

project managers, because they allow to plan the cost and

time of future releases.

Our approach is illustrated in Figure 1. As a new issue

report r is entered into the bug database (1), we search for

the existing issue reports which have a description that is

most similar to r (2). We then combine their reported effort

as a prediction for our issue report r (3).

In contrast to previous work (see Section 8), the present

paper makes the following original contributions:

1. We leverage existing bug databases to automatically

estimate effort for new problems.

2. We use text similarity techniques to identify those issue

reports which are most closely related.

3. Given a sufficient number of issue reports to learn

from, our predictions are close to the actual effort, es-

pecially for issues that are bugs.

The remainder of the paper is organized as follows: In Sec-

tion 2, we give background information on the role of issue

reports in the software process. Section 3 briefly describes

how we accessed the data. Section 4 describes our statistical

approach, which is then evaluated in a case study (Section 5

and 6) involving JBoss and four of its subprojects. After

discussing threats to validity (Section 7) and related work

(Section 8), we close with consequences (Section 9).

Most similar reports

with recorded effort

Bug database

New problem report
Predicted effort

as weighted average

(1) (3)

(2)

Figure 1. Predicting effort for an issue report

Description

Effort Data

Title

Details

Figure 2. JBoss issue JBAS-3054 in the Jira Web interface.

2. A Bug’s Life

Most development teams organize their work around a

bug database. Essentially, a bug database acts as a big list

of issues—keeping track of all the bugs, feature requests,

and tasks that have to be addressed during the project. Bug

databases scale up to a large number of developers, users—

and issues.

An individual record in a bug database is called a issue
report; it is also known as problem report or ticket. An is-

sue report provides fields for the description (what causes

the issue, and how can one reproduce it), a title or summary
(a one-line abstract of the description), as well as a sever-
ity (how strongly is the user affected by the issue?). The

severity can range from “enhancement” (i.e. a feature re-

quest) over “normal” and “critical” to “blocker” (an issue

that halts further development). These fields are normally

provided by the original submitter.

At the moment an issue report is submitted, it gets a

unique identifier by which it can be referred to in further

communication. Figure 2 shows the JBoss issue report

JBAS-3054 from the JBAS subproject in the Jira Web in-

terface.2 At the top, we see the title “Use of isUserInRole

from jsp does not work for JACC”; at the bottom, the de-

tailed description.

Let us assume that someone has just entered this very

issue report into the bug database. While the issue is being

processed, the report runs through a life cycle (Figure 3).

The position in the life cycle is determined by the state of

the issue report. Initially, every single issue report has a

state of UNCONFIRMED. It is then checked for validity and

uniqueness; if it passes these checks, it becomes NEW. At

2http://www.atlassian.com/software/jira/

UNCONFIRMED NEW ASSIGNED

REOPENED

VERIFIED CLOSED

INVALID

DUPLICATE

INVALID

DUPLICATE

FIXED

WORKSFORME

WONTFIX

NEW

FIXED

Status

Resulting
Resolution

RESOLVED

if resolution is FIXED

Figure 3. The life cycle of an issue report [14].

this point, the issue report is also assigned a priority—the

higher the priority, the sooner it is going to be addressed.

Typically, the priority reflects the risk and/or damage of the

issue/bug. In Figure 2, priority and state are shown in the

details column on the left.

At the time of the initial assessment, the staff may also

include an estimate of the time it will take to fix the issue.

For JBAS-3054, this original estimate was 4 hours; it is also

shown in the Web interface (Figure 2). Both priority and

estimate are crucial in scheduling fixes—and in estimating

when a stable state will be reached.

Eventually, the issue report is assigned to an individ-

ual developer—its state is then changed to ASSIGNED.

The developer now works on the issue, sometimes resulting

in additional comments, questions, and re-assignments, all

stored in the bug database. Eventually, the developer comes

up with a resolution. This resolution can be FIXED, mean-

ing that the problem is solved, but also WONTFIX (meaning

the problem is not considered as such) or WORKSFORME
(meaning that the problem could not be reproduced). With

this resolution, the state becomes RESOLVED.

At this stage, the lead developer may record the effort it

took to resolve the report. In the case of JBAS-3054, the

effort is 10 person-hours (the web interface reports 8 hours

as 1 day), which is considerably off the original estimate.3

As the problem is now fixed, two more steps remain:

the testers must confirm the success of the fix (resulting in

VERIFIED state), and finally, the fix must be deployed as a

patch or a new release, closing the issue report (CLOSED)—

and thus ending the issue’s life, unless one day, it gets

REOPENED.

The bug database thus is at the center of the development

process. Developers query bug databases to find out their

tasks, as well as to learn about the project history. Man-

agers use bug databases to query, schedule, and assign the

project’s tasks. If the bug database is publicly accessible,

users check it to see the progress on the bugs they submit-

ted. As the bug database grows, it becomes a project mem-
ory of the group—listing all the problems as they occurred

in the past, and how they were addressed. As we show in

this paper, this memory can be a valuable resource when it

comes to assess the project’s future.

3. Mining Bug Databases

As mentioned above, the JBoss project uses the Jira issue

tracking system to organize issue reports. Jira is one of the

few issue tracking systems that support effort data. Since

Jira provides free licensing for non-profit organizations, it

recently became very popular in open source development,

slowly supplanting Bugzilla. The most prominent projects

using Jira include Hibernate, Apache, and JBoss.

However, only few open source projects collect effort

data because measuring effort seems to be tedious and use-

less. The JBoss project is one exception. Although not all

subprojects collect effort data and some do only sporadi-

cally, the JBoss issue tracking system has a vast amount of

effort data available.

We developed a tool that crawls through the web inter-

face of a Jira database and stores the issues. In this paper,

we use Jira’s the title, the description, and effort data of

an issue (time spent). Furthermore, we only consider issue

reports whose resolution is FIXED, ignoring duplicates, in-

valid issues (because of “overbilling”, i.e., more time spent

than the issue’s lifetime, which may be a result of devel-

opers stating the effort), and all other “non-resolutions”. In

Table 1, we list the prerequisites for issues to qualify for our

study. In total, 567 issues met these conditions and finally

became the input to our statistical models.

3The web interface also reports the remaining estimate—the effort

still needed to resolve the bug. It is constantly updated (reduced)

while a developer is spending time on a bug: remaining-estimate =
max(0, original-estimate − effort) When a bug is closed, this estimate can

be non-zero (i.e., the issue needed less effort) or zero (the issue needed the

estimated effort or more).

Table 1. Prerequisites for issues.

Count

Issues reported until 2006-05-05 11,185

Issues with

– effort data (timespent sec is available) 786

– valid effort data (timespent sec≤lifetime sec) 676

– type in (’Bug’, ’Feature Request’, ’Task’, ’Sub-task’) 666

– status in (’Closed, ’Resolved’) 601

– resolution is ’Done’ 575

– priority is not ’Trivial’ 574

Issues indexable by Lucene 567

4. Predicting Effort for Issue Reports

In order to predict the effort for a new issue report, we

use the nearest neighbor approach (Section 4.1) to query

the database of resolved issues for textually similar reports

(Section 4.2). We also increase the reliability of our predic-

tions by extending the nearest neighbor approach to explic-

itly state when there are no similar issues (Section 4.3).

4.1. Nearest Neighbor Approach (kNN)

The nearest neighbor approach (kNN) has been widely

used for effort and cost estimation for software projects

early in their life-cycle [12]. The advantage of using the

nearest neighbor approach lies in its ease and flexibility of

use, ability to deal with limited data that may even belong

to different data types. Moreover, kNN has been shown to

outperform other traditional cost estimation models such as

linear regression and COCOMO [12]. Since we borrow our

reasoning for this research from software cost estimation

(i.e., similar issues are likely to require similar fixing times),

we chose to use the nearest neighbor approach for predict-

ing effort for issue reports.

More formally, we use kNN as follows: a target issue

(i.e., the one that needs to be predicted) is compared to pre-
viously solved issues that exist in a repository. In order to

identify similar issues, we define a distance function that

combines the distances between individual features of two

issues reports into a single distance. Then, the k most sim-

ilar issues (= the ones with the closest distance), referred to

as candidates, are selected to derive a prediction for the tar-

get. In addition to the prediction, we report the candidates

to the developer which supports him to comprehend how

our prediction came to be.

To apply kNN, we first need to identify the features that

can be used to measure similarity between issues. At the

time of reporting an issue, two crucial fields of informa-

tion pertaining to the issue are available to us: the title (a

one-line summary) and the description—both of them are

known a priori and we use them to compute the similarity

between two issues reports. Since these two features are

in the form of free text, they require a rather sophisticated

mechanism to measure similarity, which we describes in the

following section.

4.2. Text Similarity

Most information pertaining to an issue is entered in

the title and description fields of the issue report. Hence,

their inclusion when measuring similarity between issues is

crucial for making estimations based on previously fixed,

similar issues. For this purpose, we applied a text similar-
ity measuring engine—Lucene, developed by the Apache

Foundation [7]. Our choice was motivated by Lucene’s

competence demonstrated by its deployment in systems at

high profile places including FedEx, New Scientist Maga-

zine, MIT, and many more for text comparisons.

We use Lucene, which measures similarity between two

texts with a vector-based approach, for indexing existing is-

sue reports in a repository. Before indexing, we filter all

common English stop words such as a, an, and the; and

symbols such as +, −, and (). When we query a new issue

report, we compare it to all other issue reports to generate

a similarity score. Scores closer to 1 indicate issues with

very similar titles and descriptions, while scores close to 0
indicate marginal similarity. More technically, we use the

multi field query feature of Lucene: the titles and descrip-

tions of issues are compared separately and combined into

a single score by using a boost factor. For our experiments

we used 1:1 as the boost factor such that similarity for titles

and descriptions are weighted the same.

4.3. Nearest Neighbor with Thresholds (α-kNN)

Let us demonstrate the nearest neighbor approach with

a small example for k = 3. Table 2 lists the three issues

that are most similar to JBAS-3054, the issue presented in

Section 2. All three issues needed the same amount of ef-

fort, namely 1 day. To predict the effort for JBAS-3054, the

nearest neighbor approach takes the average of these efforts,

which is again 1 day. This prediction is only two hours off

the actual effort for JBOSS-3054 (1 day, 2 hours)—this dif-

ference is also called residual.
However, the appropriateness of the prediction for

JBAS-3054 is questionable since the most similar issue

shows only a similarity of 0.04800. Therefore speaking

of similar issues is not always justified. In order to avoid

making unjustified predictions, we introduce the concept of

thresholds to kNN. The nearest neighbors with thresholds

approach (α-kNN), considers only issues with a similar-

ity of at least α and takes at most k issues. When there

are no issues with enough similarity, our approach returns

Unknown; for JBAS-3054, already a threshold of α = 0.1

Table 2. Issues similar to JBAS-3054 “Use
of isUserInRole from jsp does not work for
JACC” (Effort: 1 day, 2 hours).

Issue Title Effort Similarity

JBAS-1449 Update the ServerInfo

memory ops to use the jdk

5 mbeans

1 day 0.04800

JBAS-2814 Use retroweaved jsr166

tests to validate backport-

concurrent integration

1 day 0.04251

JBAS-1448 Update the ServerInfo list-

ThreadDump to use the jdk

5 stack traces

1 day 0.04221

would have yielded Unknown. In our opinion, explicit ig-

norance is preferable over random predictions that might

mislead the developer.

In this paper, we evaluate both nearest neighbor ap-

proaches, with and without thresholds. The measures we

used for this, are described in the next section.

5. Evaluation Method

In order to evaluate the predictions by kNN and α-kNN

we replay the history of the issue tracking system. For each

issue we make predictions by using all previously submitted

issues as training set in which we search for nearest neigh-

bors. In particular, this means that for the first submitted

issue, we cannot make any predictions as the training set is

empty. Over time, the training set is increasing as sketched

in Figure 4: for the newer issue Y the training set is larger

than for issue X . We use the following measures in our

evaluation:

Average absolute residual. The difference between the

predicted effort pi and actual effort ei reported for an

issue i is referred to as the residual ri.

ri = |ei − pi| = |Actual effort − Estimated effort|
Of course, the lower the residual, the more precise is

the estimate. We use the average absolute residual
AAR to measure the prediction quality of our model.

AAR =
∑n

i=1 ri

n

This measure is closely related to the sum of absolute

residuals which is regarded as an unbiased statistic [8].

It is noteworthy that we assume the direction of error

to be immaterial, i.e., both over and under estimation

are equally undesirable, although this may not be the

case in all situations.

X Y

Training set for X

Training set for Y
time

Figure 4. The training set for newer issue Y is
larger than for issue X.

Percentage of predictions within ±x%. The value of the

Pred(x) measure gives the percentage of predictions
that lie within ±x% of the actual effort values ei.

Pred(x) =
|{i | ri/ei < x/100}|

n

Again, both over and under estimation are equally un-

desirable. For our experiments we used Pred(25) and

Pred(50).

Feedback. In case there are no similar issues, α-kNN re-

ports Unknown and does not make a prediction. With

Feedback, we measure the percentage of issues for

which α-kNN makes predictions. Note that for kNN

and α-kNN with α = 0, the value of Feedback is 1.

The interpretation of AAR is fairly straightforward. A large

number of good estimates would result in a low value of

AAR, while many poor estimates would increase its value.

One can infer that models delivering lower values of AAR
fair better when compared to those that deliver larger er-

rors. The problem with AAR is that it is greatly influenced

by outliers, i.e., extremely large residuals might lead to mis-

interpretations. In order to appropriately describe the dis-

tribution of residuals, we additionally report the values for

Pred(25) and Pred(50). The larger the values for Pred(x),
the better the quality of predictions.

6. Experiments

We evaluated our approach on 567 issues from the JBoss

data set. For our experiments we used the entire set of is-

sues (referred to as JBOSS) and additional subsets based on

type (bugs, feature requests, tasks) and project (Application

Server, Labs project, Portal project, QA project). Table 3

lists the short names of these subsets, their issue counts, and

average effort in hours (including standard deviation). Note

that we only included projects with the four highest number

of data points.

Initially, we planned to benchmark our predictions

against estimates of experts (timeoriginalestimate sec);

however, there were not enough issue reports with these es-

timates to allow significant comparisons. Instead, we com-

pared our results against a naı̈ve approach that predicts the

Table 3. Datasets (average effort in hours).

Name Description Count Avg. Effort

JBOSS issues for JBoss (see Table 1) 567 15.9±32.0

BUGS bugs for JBoss 125 4.8± 6.3

FEATURES feature requests for JBoss 149 21.0±44.7

TASKS tasks and sub-tasks for JBoss 293 18.2±29.9

JBAS issues for Application Server 51 12.5±22.8

JBLAB issues for Labs project 125 11.7±25.5

JBPORTAL issues for Portal project 82 14.0±23.7

JBQA issues for QA project 71 16.1±17.5

Projects

High similarity

Figure 5. Similarity between issue reports.

average effort of past issues without using text similarity,

since this would be the simplest method to estimate effort.

In our experimental setup, this approach corresponds to α-

kNN with α = 0.0 and k = ∞.

In this section, we first present experiments for text sim-

ilarity (Section 6.1), kNN vs. α-kNN (Section 6.2) and for

the breakdown to project and issue type (Section 6.3).

6.1. Similarity of Issues

Our approach relies on text similarity to identify nearest

neighbors. Therefore, we first visualize how similar the is-

sues are to each other. In Figure 5, each pixel represents the

similarity between two issue reports of the JBOSS dataset;

white indicates no similarity, light colors indicate weaker

similarity, and dark colors indicate stronger similarity.

The issues are sorted by key (e.g., JBAS-3054) such that

issues of the same project are grouped together. Since Jira

includes the key (and thus the project) in the title of an issue

worse

30h

25h

20h

15h

10h

5h

better

0h
k=1 k=3 k=5 k=7 k=9

kNN

JBOSS: AAR 100%
better

80%

60%

40%

20%

0%
k=1 k=3 k=5 k=7 k=9

kNN

JBOSS: Pred(25)
JBOSS: Pred(50)

Figure 6. Accuracy values for kNN.

report, issues that are within the same project have a guar-

anteed non-zero similarity (because of the shared project

identifier). As a consequence, projects can be spotted in

Figure 5 as the gray blocks around the diagonal.

Overall, the similarity values are low (indicated by the

rareness of dark pixels), only few issues have high similarity

values. This observation supported our decision to evaluate

α-kNN in addition to kNN.

6.2. Nearest Neighbor without/with Thresholds

Figure 6 shows the AAR, Pred(25) and Pred(50) values

for when varying the k parameter from 1 to 10. The AAR
values improve with higher k values, i.e., the average error

decreases. Since, the Pred(25) and Pred(50) values worsen

(i.e., decrease), there is no optimal k in our case. Overall the

accuracy for kNN is poor. On average, the predictions are

off by 20 hours; only 30% of predictions lie within a ±50%

range of the actual effort. We explain this poor performance

by the diversity of issue reports (see Section 6.1).

The α-kNN approach takes only similar nearest neigh-

bors into account and therefore should not suffer as much

from diversity as kNN. In Figure 7, we shows the accuracy

values for α-kNN when varying the α parameter from 0 to

1 in 0.1 steps. We used k = ∞ for this experiment to elim-

inate any effects from the restriction to k neighbors.

The combination of k = ∞ and α = 0 uses all previous
issues to predict effort for a new issue (naı̈ve approach with-

out text similarity). It comes as no surprise that accuracy is

at its lowest, being off by nearly 35 hours on average.

However, for higher α values, the accuracy improves: for

α = 0.9, the average prediction is off by only 7 hours and

almost every second prediction lies with ±50% of the actual

effort value. Keep in mind that higher α values increase

the accuracy at the cost of applicability; for α = 0.9, our

approach makes only predictions for 13% of all issues. Our

future work will focus on increasing the Feedback values by

using additional data, such as discussions on issues.

worse

30h

25h

20h

15h

10h

5h

better

0h
=1=0.5=0

kNN with k=

JBOSS: AAR 100%
better

80%

60%

40%

20%

0%
=1=0.5=0

kNN with k=

JBOSS: Pred(25)
JBOSS: Pred(50)

JBOSS: Feedback

Figure 7. Accuracy for α-kNN with k=∞.

6.3. Breakdown to Project and Issue Type

In Figure 8, we compare the accuracy for different

projects (upper row) and different types of issues (lower

row). The plots show the values for AAR (left column),

Pred(50) (middle column), and Feedback (right column)

when varying the α parameter from 0 to 1 in 0.1 steps. In all

cases, textual similarity beats the naı̈ve approach (α = 0.0).

For JBAS we face a high diversity: no two issues in this

project have a similarity of more than 0.5; as a consequence

α-kNN stops making predictions for α parameters ≥0.5.

The results for JBLAB and JBQA are comparable to the re-

sults for JBOSS in Figure 7. For JBPORTAL, we achieve a

relatively high accuracy: for α = 0.8, the α-kNN approach

is off by only two hours on average, and more than 60% of

all predictions lie within ±50% of the observed effort.

Surprisingly, the accuracy values vary greatly for differ-

ent types of issues such as bugs, feature requests, and tasks

(lower row of Figure 8). For BUGS, the average error AAR is

constantly below 4 hours (for α ≥ 0.4 even below 1 hour).

Since also the Pred(50) values are promising (above 50% in

most cases), we believe that α-kNN is an appropriate tool

to provide developers with early estimates on effort once a

new bug report is submitted.

7. Threats to Validity

As any empirical study, this study has limitations that

must be considered when interpreting its results.

Threats to external validity. These threats concern our

ability to generalize from this work to industrial practice.

In our study, we have examined a total of 567 issue reports

and four JBoss subprojects. All reports researched are real

reports that occurred in a large industrial framework, and

which were mostly addressed and fixed by paid developers.

For training and evaluation, we only examined those is-

sue reports for which effort data was available. These issue

reports may not necessarily be representative for all issue

reports, and therefore cannot be used to generalize for the

entire JBoss framework.

worse

30h

25h

20h

15h

10h

5h

better

0h

=0 =0.2 =0.4 =0.6 =0.8 =1

kNN with k=

JBAS: AAR

JBLAB: AAR

JBPORTAL: AAR

JBQA: AAR

100%
better

80%

60%

40%

20%

0%
=0 =0.2 =0.4 =0.6 =0.8 =1

kNN with k=

JBAS: Pred(50)
JBLAB: Pred(50)

JBPORTAL: Pred(50)
JBQA: Pred(50)

100%

better

80%

60%

40%

20%

0%

=0 =0.2 =0.4 =0.6 =0.8 =1

kNN with k=

JBAS: Feedback

JBLAB: Feedback

JBPORTAL: Feedback

JBQA: Feedback

worse

30h

25h

20h

15h

10h

5h

better

0h

=0 =0.2 =0.4 =0.6 =0.8 =1

kNN with k=

BUGS: AAR

FEATURES: AAR

TASKS: AAR

100%
better

80%

60%

40%

20%

0%
=0 =0.2 =0.4 =0.6 =0.8 =1

kNN with k=

BUGS: Pred(50)
FEATURES: Pred(50)

TASKS: Pred(50)

100%

better

80%

60%

40%

20%

0%

=0 =0.2 =0.4 =0.6 =0.8 =1

kNN with k=

BUGS: Feedback

FEATURES: Feedback

TASKS: Feedback

Figure 8. Accuracy values for α-kNN with k=∞ for different projects and issue types.

Although the researched projects themselves are quite

different, we cannot claim that their bug databases and ef-

fort data would be representative for all kinds of software

projects. Different domains, product standards, and soft-

ware processes may call for alternate processing of bug

reports as well as efforts—and come up with different re-

sults. Due to these threats, we consider our experiments as

a proof of concept, but advise users to run an evaluation as

described in this work before putting the technique to use.

Threats to internal validity. These threats concern our

ability to draw conclusions about the connections between

independent and dependent variables. The chief threat here

concerns the quality of the data. The effort, as entered into

the bug database, is not tracked during the task, but rather

estimated post facto by developers, i.e., after the fix.

We asked the JBoss developers whether they found their

effort was accurate. One of the JBoss managers explicitly

warned us against putting too much faith in the effort data,

as he generally considered post facto estimates to be too im-

precise. On the other hand, one should note that the effort

data is entered voluntarily, and one of the JBoss develop-

ers confirmed that “For the cases were [sic] the time spent
is reported, this should be relatively accurate.” Our com-

munication with JBoss developers emphasizes that contact

with people directly involved in collecting and recording

data during development cannot be neglected. Such contact

is vital for resolution of issues, clarifications regarding the

data and on the whole, better understanding [11].

Another source of threats is that our implementation

could contain errors that affect the outcome. To control for

these threats, we ensured that the diagnosis tools had no ac-
cess to the corrected versions or any derivative thereof. We

also did careful cross-checks of the data and the results to

eliminate errors in the best possible way.

Threats to construct validity. These threats concern the

appropriateness of our measures for capturing our depen-

dent variables, i.e., the effort spent for an issue. This was

justified at length when discussing the statistical approach.

8. Related Work

While much emphasis has been laid on estimating soft-

ware cost or effort over the last three decades [3], to the best

of our knowledge, little has been done to predict effort to fix

software bugs. Previously, Song et al. [13] used association

rule mining to classify effort in intervals using NASA’s SEL

defect data. They found this technique to outperform other

methods such as PART, C4.5 and Naı̈ve Bayes.

A self-organizing neural network approach for estimat-

ing effort to fix defects, using NASA’s KC1 data set, was ap-

plied by Zeng and Rine [15]. After clustering defects from

a training set, they computed the probability distributions

of effort from the clusters and compared it to individual de-

fects from the test set to derive a prediction error. While

their technique seemed to have performed favorably, unfor-

tunately, they used magnitude of relative error for evalua-

tion which is asymmetric [8, 6] casting doubt on the validity

of the results.

Manzoora [9] created a list of pointers for experts to keep

in mind when estimating effort for defect correction. They

were grouped on the basis of the type of defect and pro-

gramming environment in use, such as programming prac-

tices, application architecture, and object-oriented design.

Another contextually relevant work includes automated

bug triaging by Anvik et al. [2], which in part motivated this

research. They developed a technique that analyzed bug de-

scriptions to automatically assign them to developers. The

underlying conception behind their work was that new bugs

should be assigned to those developers who have previously

fixed similar bugs. Their approach could incorporate our

estimations, since the choice of who should fix a bug also

depends on the workload of developers and the estimated

effort and not only technical skills.

Other bug triaging approaches include a Naı̈ve Bayes

approach by Čubranić and Murphy [5] and a probabilistic

text similarity approach by Canfora and Cerulo [4]. An-

vik et al. observed that the quality of publicly available bug

databases is mixed [1], which emphasizes the need to repli-

cate our study on projects other than JBoss; unfortunately,

only few open source projects record effort data.

9. Conclusion and Consequences

Given a sufficient number of earlier issue reports, our

automatic effort predictors beat the naı̈ve approach; in par-

ticular, our predictions are very close for bug reports. As

a consequence, it is possible to predict effort at the very

moment a new bug is reported. This should relieve man-

agers who have a long queue of bug reports waiting to be

estimated, and generally allow for better allocation of re-

sources, as well for scheduling future stable releases.

The performance of our automated model is the more

surprising if one considers that our effort predictor relies

only on two data points: the title, and the description. Our

future work aims at leveraging further information:

• Issue reports contain additional fields—such as ver-

sion information, stack traces, or attachments—which

can be specifically exploited. This may require alter-

native feature-based models integrating text similarity.

• To estimate effort, a project expert can exploit all her

knowledge about the problem domain, the project his-

tory, and of course, about the software itself. How can

we leverage this information? We are currently focus-

ing on techniques which map the issue reports to the

related code fixes, such that we can leverage features
of fixes and code as well.

• On the statistical side, the nearest neighbor approach

has some shortcomings when applied to cost estima-

tion [10]. One proven way to improve estimation ac-

curacy could be by filtering outliers in the data base,

i.e., issues with abnormal effort values.

• Last but not least, we would like to extend our research

to further projects and see how the results generalize.

However, one should not forget that the current estimates

are not yet perfect. The big question looming behind this

work is: What is it that makes software tedious to fix? Are

there any universal features that contribute to make debug-

ging hard? Or is it that debugging efforts are inherently un-

predictable? With the advent of open source bug data, and

sometimes even actual effort and estimated effort data, we

finally have a chance to address these questions in an open,

scientific, and competitive way—and to come up with solu-

tions that address the very core questions of software engi-

neering.

Acknowledgments. We are grateful to the JBoss team

members who responded to our questions regarding their

data and to the reviewers for their valuable comments.

References
[1] J. Anvik, L. Hiew, and G. C. Murphy. Coping with an

open bug repository. In Proc. of the OOPSLA workshop on
Eclipse technology eXchange, pages 35–39, 2005.

[2] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this

bug? In Proc. of the International Conference on Software
Engineering, pages 361–370, Shanghai, China, May 2006.

[3] B. Boehm, C. Abts, and S. Chulani. Software development

cost estimation approaches — A survey. Technical Report

2000-505, Uni. of California and IBM Research, Los Ange-

les, USA, 2000.

[4] G. Canfora and L. Cerulo. Supporting change request as-

signment in open source development. In Proc. of ACM
Symposium on Applied Computing, pages 1767– 1772, Di-

jon, France, April 2006.

[5] D. Čubranić and G. C. Murphy. Automatic bug triage using

text categorization. In Proc. International Conference on
Software Engineering & Knowledge Engineering (SEKE),
pages 92–97, 2004.

[6] T. Foss, E. Strensrud, B. Kitchenham, and I. Myrtveit. A

simulation study of the model evaluation criterion MMRE.

IEEE Trans. on Software Engineering, 29(11):985–995,

November 2003.

[7] E. Hatcher and O. Gospodnetic. Lucene in Action. Manning

Publications, December 2004.

[8] B. Kitchenham, L. M. Pickard, S. G. MacDonell, and

M. Shepperd. What accuracy statistics really measure. IEE
Proceedings - Software, 148(3):81–85, 2001.

[9] K. Manzoora. A practical approach to estimate defect-fix

time. http://homepages.com.pk/kashman/, 2002.

[10] R. Premraj. Meta-Data to Enhance Case-Based Prediction.

PhD thesis, Bournemouth University, UK, 2006.

[11] R. Premraj, M. Shepperd, B. Kitchenham, and P. Forselius.

An empirical analysis of software productivity over time. In

In Proc. of the 11th IEEE International Software Metrics
Symposium, Como, Italy, September 2005. IEEE.

[12] M. Shepperd and C. Schofield. Estimating software project

effort using analogies. IEEE Trans. on Software Engineer-
ing, 23(12):736–743, November 1997.

[13] Q. Song, M. Shepperd, M. Cartwright, and C. Mair. Soft-

ware defect association mining and defect correction effort

prediction. IEEE Trans. on Software Engineering, 32(2):69–

82, February 2006.

[14] A. Zeller. Why Programs Fail. Morgan Kaufmann, 2005.

[15] H. Zeng and D. Rine. Estimation of software defects fix

effort using neural networks. In Proc. of the Annual Inter-
national Computer Software And Applications Conference
(COMPSAC ’04), Hong Kong, Sept. 2004. IEEE.

