

Build it yourself!

Homegrown Tools in a Large Software Company

Edward K. Smith

School of Computer Science

University of Massachusetts

Amherst, Massachusetts

tedks@cs.umass.edu

Christian Bird Thomas Zimmermann

Microsoft Research

Redmond, Washington

{cbird,tzimmer}@microsoft.com

Abstract— Developers sometimes take the initiative to build tools

to solve problems they face. What motivates developers to build

these tools? What is the value for a company? Are the tools built

useful for anyone besides their creator? We conducted a qualitative

study of tool building, adoption, and impact within Microsoft. This

paper presents our findings on the extrinsic and intrinsic factors

linked to toolbuilding, the value of building tools, and the factors

associated with tool spread. We find that the majority of developers

build tools. While most tools never spread beyond their creator’s

team, most have more than one user, and many have more than one

collaborator. Organizational cultures that are receptive towards

toolbuilding produce more tools, and more collaboration on tools.

When nurtured and spread, homegrown tools have the potential to

create significant impact on organizations.

I. INTRODUCTION

Tools are a critical aspect of any software development pro-

ject. They take on many forms. Compiler toolchains, version con-

trol, debuggers, test automation, and issue tracking systems are all

examples of development tools aimed at making tasks easier.

Software development tools come from a variety of sources.

Some may be commercial products while others come from open

source. The research community is active in creating, evaluating,

and disseminating tools to software developers. Tools may be cre-

ated in-house to help a particular development project as a require-

ment from project management. However, we have observed that

many tools come about not due to management decree, but rather

because developers themselves made the decision to build a tool.

This may be the result of working conditions to enable a developer

to complete his work more quickly or as part of a side project. We

term this latter group of tools, developed of developer’s own ini-

tiative, responding to a local need, and originating in a bottom-up

manner through the organizational hierarchy, homegrown tools.

Homegrown tools represent a category of work developers un-

dertake that is not mediated by external processes or demands.

While homegrown tools might be developed in response to a prob-

lem a developer encounters during the source of his or her work,

writing a tool is rarely the proscribed avenue of problem-solving.

Tools might even be developed clandestinely, without the

knowledge or approval of a developer’s management. These tools

are not tracked in official bug trackers nor stored in official source

repositories, making them difficult to study. However, we suspect

that informal, homegrown toolbuilding is a common aspect of

software development. In our surveys, most developers report

building such tools.

Why are homegrown tools worthy of study? Over the past five

years that we have conducted research at Microsoft and interacted

with development groups in diverse products, we have observed

an inordinate amount of in-house tools and have been impressed

by the value that these tools bring to developers in the small and

entire products in the large.

As just one example of a homegrown tool, CodeFlow [1] is a

code review tool at Microsoft that began as a homegrown tool.

Clark Roberts and Mike Cook were both developers that felt that

the way code reviews were conducted was both tedious and pain-

ful. In 2009, they built a prototype of a tool to reduce the overhead

of creating and performing code reviews and showed it off in an

internal contest for tools and apps within Microsoft’s developer

division. After being joined by Victor Boctor, a senior architect

with similar ideas about how to improve code review, they made

CodeFlow available to anyone that wanted to use it. At the time,

each team within Microsoft had their own tools and processes for

conducting code reviews, but they managed to get their own teams

to begin using CodeFlow. Over the next few years, more and

more people contributed features and bug fixes to CodeFlow and

more teams began using it. Now CodeFlow is the primary code

review tool in all product groups at Microsoft. It has been used to

conduct nearly five million reviews and currently is used for over

130,000 changes per month by over 30,000 people per month.

Over the past year, CodeFlow has transitioned from being a “com-

munity” project (a project in which developers volunteer their own

time, outside of standard working hours) to a fully funded project

in which a small team of developers is paid full time to maintain

and improve it. The impact is now extending beyond the com-

pany, as many of the design principles in CodeFlow are influenc-

ing the code review experience for Visual Studio.

Not all homegrown tools will have the same success and im-

pact that CodeFlow has had. Nonetheless, we have found many

examples of others that have become integral to the development

projects of the teams that use them. These tools represent count-

less hours of development, often outside of normal working time.

However, they also save development teams’ time and increase

software quality. Thus, many have a direct relationship with a

team’s bottom line. It is surprising, therefore, that there has been

little investigation of these tools that result from developers’ own

volition. In this paper, we mount an investigation into homegrown

tools in an effort to provide answers to the following questions:

Who are homegrown toolbuilders?

 Understanding the scope, motivations, and extent of tool-

building begins with understanding toolbuilders themselves. Most

initiatives aimed at increasing toolbuilding would be useless if

only a subpopulation of developers built tools. Even if toolbuild-

ing is universal, studying the personal factors that contribute to it

completes our understanding of the holistic process.

What kinds of tools do homegrown toolbuilders build?

Investigating the types of homegrown tools that toolbuilders

build provides insight into gaps in tooling and the challenges that

developers face. They may also highlight inefficiencies in current

processes and provide avenues for improvement.

Why and when do homegrown toolbuilders build tools?

Exploring the motivations and conditions that lead toolbuild-

ers to build their own tools can enable management and teams to

foster environments where developers are more likely to develop

beneficial tools. It may also uncover systemic problems that can

be addressed (for example, one challenge we observed was tool

discoverability within the company).

How do homegrown tools spread?

Understanding how tools spread enables us to maximize

spread for most benefit and enhance those channels that work best.

Also, understanding how and why tools might not spread enables

us to understand the reasons behind proliferation of similar tools.

We present a descriptive, exploratory study of homegrown

tools at Microsoft. We used surveys and semi-structured inter-

views to answer basic questions about homegrown tools. In par-

ticular, we examined the types of tools that exist; characteristics

of the people who build them; what events and conditions cause

tools to be built; how tools spread inside organizations; and the

impact that tools have.

II. RESEARCH METHODOLOGY

We collected the data for this study in three phases. In Phase

I, we deployed a survey to Microsoft developers to discover base-

line information about tools. In Phase II, we followed up with a

representative cross-section of toolbuilders and conducted semi-

structured interviews in order to find out more about the impact

tools have, how tools spread within and between teams, and what

attitudes organizations have about tools. In Phase III, we deployed

a second survey designed to explore the link between a devel-

oper’s personality and their tool-building behavior. We present

data only from complete survey responses.

A. Phase I: Open-Ended Survey

We conducted a survey of 138 developers and testers at Mi-

crosoft to assess baseline levels of toolbuilding. This survey was

composed of open-ended questions related to the tools developers

had used, grassroots tools they had written, and how they found

out about those tools. We used this data to build up our initial ideas

about grassroots tools, determine the frequency of toolbuilding,

and determine the typical level of sophistication of a tool. The full

text of this survey is available for interested readers as a technical

report [2] at http://research.microsoft.com/apps/pubs/de-

fault.aspx?id=227190.

We sent personalized invitation emails written to 1,000 Mi-

crosoft employees with roles related to writing code. We selected

the employees at random from the Microsoft organizational data-

base. We have found that personalization and incentives increase

participation [3], so we offered participants the option to enter into

a raffle for two $50 Amazon.com gift cards. We received 123 re-

sponses from our initial population. Since one of the questions in

our survey asked if the participant knew any other employees that

had written a tool, we sent a second wave of invitations to those

engineers and received 15 more responses. Since we intended to

use this survey to build a sample for the next phase of our study,

this survey was not anonymous.

B. Phase II: Toolbuilder Interviews

After receiving responses from our initial survey, we asked

several tool authors from our pool of survey respondents to sit for

a semi-structured interview [4] about their tools. Our interview

participants included developers, testers, and managers, drawn

from the Bing, Office, Windows, and other organizations within

Microsoft. We conducted 16 interviews about 12 tools. These in-

terviews ranged between 20-60 minutes in length. We coded tran-

scripts without selecting any a priori codes or categories.

C. Phase III: Toolbuilder Personality Survey

In order to further assess the characteristics of toolbuilders re-

sponsible for tool building, we decided to conduct a survey of per-

sonality data. We decided to conduct this survey because our early

interviews yielded less information about the personalities of tool

builders than we had hoped, primarily because of participant’s

hesitancy to talk about more personal topics. Several personality

inventories exist in the psychometric research community; the two

commonly used in software engineering research are the Meyers-

Briggs Type Indicator or MBTI [5], and the Five Factor or “Big

Five” model [6]. We selected the Big Five model due to its

Fig. 1. Experimental methodology diagram. The Phase I survey leads to Phase

II interviews. These insights lead to a quantitative personality survey (center

left), and open card sorting (center right). These were distilled into a finished

research product which you are currently consuming.

stronger theoretical and empirical basis, as well as its higher test-

retest reliability [7].

The Five-Factor Model: The five-factor personality model re-

fers to five personality domains, called the OCEAN domains by

their initials: openness, conscientiousness, extraversion, agreea-

bleness, and neuroticism. Over the past few decades, the person-

ality psychology research community has converged on the five-

factor model [8] as the standard for assessing human personality

traits, and prior research in software engineering that examined

personality traits has found success using this model [9] [10]. The

five-factor model decomposes personality into five dimensions:

 Openness to experience, which measures an individual’s

creativity, mental flexibility, cultural aptitude, and corre-

lates to intelligence;

 Conscientiousness, or will, which measures an individ-

ual’s will to achieve, responsibility, and follow-through

of plans;

 Extraversion, the degree to which an individual seeks out

social contact;

 Agreeableness, the degree to which an individual is

friendly and altruistic;

 Neuroticism, the degree to which an individual is effected

by negative emotional states and moods.

Survey Device: To assess the personality traits of toolbuilders,

we used the International Personality Item Pool [11] to construct

a 50-item inventory to measure personality according to the Five-

Factor model. We sent this survey to 3,000 developers and re-

ceived 797 responses for a 26% response rate. Since this survey

was markedly more personal, this survey was completely anony-

mous. Participants could choose to email us to enter a drawing for

two $50 Amazon.com gift cards. This survey was also longer than

the first, containing first the 50-item IPIP personality inventory

and later, to justify the effort of the personality inventory, a series

of demographic, behavioral, and opinion items totaling 25 ques-

tions. This study only reports the findings related to the questions

about toolbuilding and their relationship to personality scores and

demographics (whether the participant was a developer, tester, or

neither at the time, and how long they had been employed at Mi-

crosoft).

While the five-factor model performs well on international

populations [12], concerns related to the cultural localization of

IPIP items led us to distribute this survey only to engineers based

in the United States. When piloting the survey, non-native Eng-

lish speakers working outside the United States had trouble under-

standing the question “How often do you feel blue?” because the

term “blue” has different connotations in different cultures, mean-

ing sad in the United States, but intoxicated in some European

countries.

D. Data Analysis

This study involved three data sets:

 The survey from Phase I, containing open questions re-

lated to tools (abbreviated to tool survey)

 The interview transcripts from Phase II. We conducted

16 interviews with homegrown toolbuilders. Table I

gives brief introductions to the tools discussed in the in-

terviews.

 The personality survey from Phase III, containing closed,

multiple-choice questions (abbreviated to personality sur-

vey)

We analyzed qualitative data using an open card sort [13]. This

entailed printing all of our discrete observations on individual

cards, then collaboratively clustering the cards into categories.

Open card sorts are a natural fit for exploratory studies, because

they allow researchers to let a natural organizational system form

without pre-existing bias polluting the category structure. We con-

ducted four card sorts, for the following topics: (1) tool types, (2)

intrinsic and extrinsic motivations, (3) tool impacts, and (4) tool

spread. Our dataset for the card sort included survey responses

from the Phase I survey, and transcripts from the Phase II inter-

views. We generated 564 cards from coded transcripts and surveys

that we categorized according to themes that emerged over the

course of the card sort. Afterwards, we sorted each category into

subcategories.

III. WHO BUILDS HOMEGROWN TOOLS?

To understand tools, we must consider their builders. In this

section, we present the demographic and psychological factors

that contribute to toolbuilding. For legal reasons, we were unable

to collect data related to gender, ethnicity, or other protected clas-

ses, since demographic data for our first study was taken from the

Microsoft personnel database.

A. Tenure

 Tenure, the length of time an employee has been with the

company, is an intrinsic factor in the toolbuilding equation. We

computed this statistic from our Phase 3 survey data.

Boxplots with tenure for toolbuilders and non-toolbuilders are

shown in Figure 2. Median tenure for toolbuilders in the Phase 3

survey data was 6.0 years, while median tenure for non-toolbuild-

ers was 2.0 years. A Mann-Whitney test of the two groups de-

tected a significant difference in the distribution of the two groups

(𝑝 < 0.01).

Fig. 2. Boxplots for tenure of non-toolbuilds and toolbuilders

B. Personality Traits

In total, 597 (74.9%) of the 797 respondents to our personality

survey indicated that they had built homegrown tools. We ran an

independent-samples Mann-Whitney test on each of the Big Five

personality factors across toolbuilders and non-toolbuilders. The

Mann-Whitney test detected that toolbuilders are significantly

more open (p = 0.041, median difference = 1), conscientious (p <

0.001, median diff. = 2), and extraverted (p = 0.024, median diff.

= 2) than non-toolbuilders. Toolbuilders are less neurotic than

non-toolbuilders (p = 0.032, median diff = 1). While these differ-

ences in OCEAN scores are statistically significant, the small me-

dian difference indicates that the effect size is small.

In order to understand and determine key factors related to

toolbuilding behavior, we created a pruned decision tree. Fig. 4

presents this tree. The round inner nodes are decision criteria and

the edges indicate the criteria used to traverse the tree. Each leaf

node corresponds to a group of participants. We label each leaf

with the number of participants who do not build tools (“No”) and

the number who build tools (“Yes”); the majority class is in bold.

Decision trees use the most differentiating factor first as decision

criteria, in this case the Tenure of an employee.

 Employees who have been at Microsoft for at least 1.8

years are more likely to be toolbuilders: 497 employees

have built a tool while 95 have not. No other factor was

differentiating for this group in the decision tree.

 For employees who have been at Microsoft for less than

1.8 years (left subtree), differentiating factors between

toolbuilders and non-toolbuilders are their personality

(the levels of extraversion, conscientiousness) and their

role (developers vs. testers and others).

This might suggest that for new employees the personality and

development role influences whether they build tools. However,

once employees are with the company for a certain period and

adapt to corporate culture, personality traits and development role

do not differentiate toolbuilder from non-toolbuilders anymore.

The tree is also in agreement with our other findings and intu-

itions on toolbuilding. We found that toolbuilders have signifi-

cantly more tenure, and are significantly more extraverted and

conscientious. Discussions with employees and anecdotes created

an expectation that within Microsoft that testers write more tools

than developers (testing requires significant automation), though

there was no significant difference in either of our survey datasets

(p = 0.775).

IV. WHAT KINDS OF TOOLS DO TOOLBUILDERS BUILD?

One goal of our study was to characterize what types of home-

grown tools are being built. Understanding these can give insight

into the challenges that developers face and tooling gaps that may

exist and may need to be addressed more broadly. The categories

that we present come from our card sort of open survey responses

gathered in Phase I and the interviews conducted in Phase II.

A. Common types of tools

Here we present an overview of the descriptions of tools that

developers built. Each category emerged during our card-sorting

process as described in Section II.D. These categories represent

qualitative distinctions between tools emerging from our discus-

sions, not an attempt at an objective taxonomy of tools.

Information Retrieval – Information retrieval tools access and

report specific information to their users. Information retrieval

tools locate, process, and display information on-demand for us-

ers.

Testing – This category represents any tool related to testing soft-

ware. This may category includes tools such as test automation,

test reporting, or tools that actually conduct the testing. We de-

scribe an example of such a testing tool called xAuto in more de-

tail in the Section B.

General Automation – The general automation category repre-

sents any tool unrelated to testing, building, or deploying specifi-

cally that automated a previously manual process.

Debugging – We categorized any tool related to tracking down a

specific defect in software as a debugging tool. MemSpect (a tool

we will describe in Section D) is an example of a debugging tool.

Fig. 3. Median personality factor score for toolbuilders and non-toolbuilders.

Scores for a particular factor range from 0 to 50.

Fig. 4. Decision tree classifying toolbuilding in our Personality Survey dataset.
Numbers below a leaf node are the number of “no” and “yes” cases on the left

and right respectively at that node, with the model’s prediction in bold.

User Interface – User interface tools provide ways to use existing

functionality in a different, usually graphical, interface. Microsoft

contains a diversity of services and processes that might lack a

visualization or graphical interface, e.g., because it runs on the

command line, prompting developers to build their own UI.

Deployment Automation – Deployment automation tools relate

to installing software, usually for the purposes of testing new

builds. While this is a common task, complex build processes and

runtime dependencies as well as diverse environments can make

deployment difficult, necessitating automated tools.

Monitoring – We categorized any tool that persistently watched

for a set of events as a monitoring tool. Many monitoring tools

were information retrieval tools that ran constantly, or tools that

automatically performed an action given some trigger, such as a

build being completed or source code being checked in.

Extensions – Many commercial tools provide extension points or

plugin facilities. This category comprises all the quotations we

found that described extensions of existing products or tools, and

which did not belong in a more specific category. One notable

case is the IDE. Microsoft developers spend most of their time in

the Visual Studio IDE, and some have used Visual Studio’s exten-

sion framework to add functionality. DiffButler, discussed later in

this section, is an example of an IDE-based tool. One of our inter-

view tools, SuiteNinja, is a Visual Studio plugin intended to be a

general grab bag of common actions performed by a specific team.

Build-Related Tools – Many developers referred to the build pro-

cess that they deal with. The tools described range from simple

build automation systems to more sophisticated actions that ran as

part of a build. One developer mentioned a tool that added addi-

tional information to a build; another tool extracts information

from a new build.

We received a small number of responses indicating other types

of tools, which we categorized into: Personal Support Tools,

which facilitate communication and information management

with team members; Machine Learning Tools, which relate to

building machine learning models; and software libraries. Nota-

bly, VSO Cortana is an example of a personal support tool.

In the following subsections, we present three vignettes that

illustrate toolbuilding scenarios we encountered, to provide a

more comprehensive picture of what factors drive tool creation,

the challenges and goals in toolbuilding, how teams react to home-

grown tools, and how they spread. While these vignettes are not

intended to be representative in a statistical sense, they illustrate

diverse points throughout the space of homegrown tools. All

names are anonymized.

B. xAuto

When the OneNote team was first building collaboration fea-

tures, they encountered a data corruption bug that only manifested

within the first day after interacting with a shared notebook. Typ-

ically, internal beta usage data would isolate the problem, but it

was difficult to find enough users of the beta software on this new

feature in a still-nascent product. Adam, a test lead, wrote a ran-

dom testing tool that he called OneAuto to in an effort to find the

bug. The bug was so critical that the entire team ran instances of

OneAuto on their machines overnight. OneAuto randomly selects

edits to apply to a shared notebook and then randomly passes con-

trol to another instance on another machine, which then does the

same thing.

Before it had found the bug it was created to track down,

OneAuto proved its value by discovering other bugs. Most im-

portantly, the OneNote team was able to fix these bugs, because

OneAuto was discovering problems with a high degree of accu-

racy. Even today, while directed automated scenario testing finds

more bugs in total than xAuto, the bugs xAuto discovers have a

40% fix rate, which interviewees indicated is considered high for

an automated tool. Further, because OneAuto worked through the

existing extensibility system, and since testers were obligated to

test the extension points for their features, OneAuto quickly grew

to support all OneNote features. Impressed by the tool, Adam’s

manager, Barbara, evangelized the tool heavily to other groups

within Office.

Soon after the team fixed the collaboration bug, Adam left the

group to head another team. OneAuto development responsibili-

ties fell to Claire, a developer in test who was an intern when

OneAuto was first developed. As more products added collabora-

tion features and Barbara continued evangelizing the tool,

OneAuto attracted mounting attention. At the same time, more of

the products within Office began implementing collaborative co-

authoring. When Word implemented this feature, they forked

OneAuto to help with testing, having heard of it from Barbara. To

avoid the inefficiency of a fork, Claire worked six months full-

time on OneAuto, collaborating with David, another developer in

TABLE I. TOOLS DISCUSSED IN INTERVIEWS

Tool Name Description

MemSpect A memory debugger for hybrid managed/native
applications.

DiffButler A visual studio extension that displays an inline diff of
the file the user is editing.

Agile Support
Tools

Assorted tools to support an agile team workflow.

Watchdog
Video Viewer

A WTT log viewer for Windows interface tests that
plays screen captures synchronized to the test log.

Suite Ninja A Visual Studio extension that automates common

actions for its home team.

MSMQ

Viewer

A utility to view and edit Microsoft Message Queuing

queues on Windows servers.

xAuto A distributed, randomized “chaos monkey” testing

system.

Build Status

Monitor

A tool that monitors for new Windows builds and

automatically copies the build to test machines and
extracts build metadata.

Damascus A webservice that continuously checks development

environment setup scripts and reports when an error
occurs.

VSO Cortana A Cortana-based app for Windows Phone that allows
developers to close tasks, view build status, and perform

other actions in Visual Studio Online.

CrunchNet An automated diagnostic tool for network captures.

Test Pass

Manager

A monitoring service for test runs.

test in OneNote. When she was finished, OneAuto had become

fully generic, and its name changed to xAuto. The Word team

quickly adopted xAuto, and the tool began to spread within Office.

Later, Barbara moved from OneNote to the Project group in-

side office and was replaced by Edward. Edward had formerly

worked with Adam and had previous experience with genetic-al-

gorithm driven smart monkey testing. He continued to champion

the project as it spread within Office. Eventually, Claire became a

test lead, and switched from developing xAuto to managing it. A

“virtual” team built of developers and testers from across Office,

headed by David, currently maintains the tool. As of today, every

team inside Office has added support for their product to xAuto,

and the tool has become ubiquitous within Office.

C. DiffButler

One popular homegrown tool within Microsoft is Odd, a diff

viewer. Frank was a heavy user of Odd, because he likes to have

a reference of what changes he’s made in a code file. However,

after becoming annoyed at how often he had to switch windows

between Odd and Visual Studio, Frank decided to write a tool.

DiffButler is a Visual Studio add-on that highlights lines and

tokens that a developer changes. If a file is tracked in source con-

trol, DiffButler will use the last version checked into source con-

trol as the base file rather than the file as it exists on disk. While

Frank has told his immediate team about DiffButler, he thinks no

more than one or two of them use it. Frank said that while some

developers might find inline diffing valuable, others might not

need it.

DiffButler is shared on a Microsoft-internal site similar to

SourceForge or GitHub that hosts downloads, issue tracking, and

source control for homegrown tools inside Microsoft. Frank usu-

ally updates DiffButler to work with new versions of Team Foun-

dation Server or Visual Studio once every few months to annually.

The most recent version has more than 300 downloads.

D. MemSpect

About three years ago, Grace was assigned a memory leak bug

in Visual Studio – when a certain feature was exercised in a loop

for 20 hours, a memory leak occurred which eventually starved

the host machine of memory. Grace realized that the only way to

track down the bug was to write a tool that could inspect Visual

Studio’s memory while it was running. Grace searched for exist-

ing tools, but only found tools that worked on fully native code.

At the time, Visual Studio had begun to transition to being a hy-

brid managed and native application, preventing the existing tools

from being useful. To track down and fix the bug, Grace wrote

MemSpect.

Gradually, Grace gained a reputation as “the memory guru”,

and as her colleagues came to her with memory issues, she taught

them to use MemSpect. MemSpect gradually spread further as

Grace presented it in various contexts. MemSpect even won

awards inside Microsoft.

MemSpect is developed entirely in Grace’s personal time; alt-

hough it now has hundreds of users by her estimation, it does not

contribute directly to Grace’s team’s bottom line, and so she does

not receive time allocation for it. While she has received many

requests to add support for 64-bit applications to MemSpect, it is

unlikely to be implemented because Visual Studio is 32-bit.

V. WHEN AND WHY DO TOOLBUILDERS BUILD TOOLS?

We have described who builds tools and the types of tools they

build. We also investigated the conditions, needs, and desires that

led to building a homegrown tool.

By our definition, developers do not build homegrown tools

because that are told to. Rather they make the choice themselves

as a result of internal and external factors. We posit that at some

point, developers decide that the cost of building a tool is out-

weighed by the cost of continuing without it. At this “creation

moment” a developer begins building a homegrown tool. We de-

scribe each in more detail here. Note that often, more than one of

these factors may come into play when deciding to build a home-

grown tool.

Save Time – The most common reason for developers to build

tools is to reduce the time a process takes to execute. This could

be something that they would otherwise have to do manually or

something that takes time on their team. For example, Test Pass

Monitor is a tool that checks if Windows tests runs have com-

pleted or have stalled; previously this check was performed man-

ually, and the responsibility for performing it cycled through the

team. By writing a tool that does this, the team was able to elimi-

nate the distraction of micromanaging test runs and put that time

back into their cycles. The MSMQ viewer developed by the Office

Engineering team allowed the team to spend orders of magnitude

less time debugging errors involving the Microsoft Message

Queuing system in Windows Server, by enabling them to quickly

see an overview of the contents of a queue and edit messages dy-

namically.

Help Others – People are empathetic by nature; sometimes they

express empathy through altruistic toolbuilding. Some developers

expressed their wishes to make other people’s lives easier, and

built tools to address pain points for team members.

Reduce Pain – We posit that developers might have a lower pain

threshold for automatable activities than other demographics, due

to their ability to automate many of their daily tasks. This ability

to automate can make manual tasks more annoying or mentally

painful, leading developers to automate away these annoying

tasks. This was particularly the case for the tool Build Status Mon-

itor, which exists primarily so that its developer could stop having

to manually find build identifiers present in a build’s directory

structure, a process the developer found irritating.

Personal Need – We coded responses as reflecting a personal

need if they contained a statement about the developer’s own

needs separate from their business needs or team needs. Personal

differences between a developer and their environment might lead

them to write tools that address those specific differences.

DiffButler is an example of a tool motivated by a personal need.

No Known Solution – The most common reason people report

building tools is because they are not aware of an existing tool that

does what they want. In some cases, such tools may exist, but

while Microsoft has internal sites for sharing tools, not all devel-

opers share their tools on them. When they do, their tools still

might not be discoverable enough to prevent all duplicated work.

Different Environment – When a tool does exist that matches

most of what a developer wants it may not work in that devel-

oper’s environment. For example, while memory debuggers ex-

isted for native code, MemSpect’s author was unable to find any

that would work for Visual Studio, which was moving to managed

code at the time MemSpect was designed. Since Microsoft is so

vast, many teams have different or dedicated infrastructures that

prevent tools they build from being useful in other environments.

As powerful as xAuto is, it remains tied to Office infrastructure

that prevents it from being used by Visual Studio or Windows de-

velopers. The most common cause of environmental differences

is change. As languages, frameworks, and feature sets change, the

existing tool ecosystem built around them are rendered obsolete.

The migration from C++ to C# had a dramatic effect on tooling;

the transition from waterfall to agile development at Microsoft

was mentioned as a factor for building Agile Collaboration tools,

VSO Cortana, and another tool mentioned during the Damascus

interview.

Management Support – Possibly the most vital factor for tool-

building is a supportive management. Homegrown tools are, by

definition, outside the scope of an engineer’s normal work, so if

an engineer’s management is not supportive of toolbuilding, the

engineer can use only their free time to build tools. However,

some managers are generally supportive towards toolbuilding. We

observed this attitude in both the test and development disciplines,

but support for toolbuilding was more consistently present in the

test discipline, possibly because automated testing can have a

more relevant and immediate return on investment than develop-

ment support tools. For example, when the author of Test Pass

Monitor spoke about his manager’s reactions to his tool, he de-

scribed the manager as being “really happy about it actually.”

Suite Ninja was developed as part of a push from the VP-level to

improve tool support in its org. The Suite Ninja interview partici-

pant said that “our management is very supportive of anything

that can free up our time, or is beneficial to the team overall – you

do the work once and everybody benefits, and generally manage-

ment’s very much for that.” Some managers see toolbuilding as a

long-term investment – as Barbara, the test manager from our

xAuto vignette said, “It can sometimes take years [for a tool effort

I support to be finished]. I’ll be patient.”

Management Barriers – Management culture can also be hos-

tile to toolbuilding. Several of our interview participants thought

their managers would not support their work on tools because

their primary responsibility is to implement features. This might

be a systemic difference between development and test roles: vir-

tually all of the environments we observed that were not support-

ive of tools were in the development role. Conversely, testers can

work on tools that directly relate to their jobs in a more meaning-

ful way, and an effective test tool can serve as a productivity

boost for a test team. The productivity gains for a tool that a de-

veloper could use are more indirect, and harder to measure.

While Microsoft is trying to become more supportive of in-

ternal innovation, other policy changes might work against this

goal. For example, one interview participant noted that in the

older waterfall development cycles, team members could repur-

pose slack space between large development efforts to build

tools. In the newer Agile development practices, these slack

times no longer exist, leading to fewer opportunities where de-

velopers can reinforce their tooling.

Business Need – We coded responses as a business need motiva-

tion if the quotation mentioned building tools to make Microsoft

better as a company, or to respond to an immediate business need.

For example, one participant identified an internal infrastructure-

consolidation effort as a motivation for building a tool.

Reduce Error – Homegrown tools sometimes emerge to reduce

the amount of error in a pre-existing process. Suite Ninja is a Vis-

ual Studio plugin that allows developers to force an association of

a monitoring ID with their code branch. Previously, this process

occurred days or weeks later as part of a build step. Delaying the

association meant that conflicts sometimes occurred, causing

alerts from faulty branches to go to the wrong developers. Suite

Ninja was motivated in part by desire to prevent these errors.

Assignment – While our definition of homegrown tools preclude

tools created by assignment, tools that rise organically might be

adopted by their organization. As grassroots tools mature and

prove their value to a team, the team might allocate official re-

sources towards that tool. This was the case for three of our inter-

view tools: Agile Support Tools, MSMQ Viewer, and xAuto. One

survey respondent even said, “I was tasked to work on this tool as

a project” when asked why they began working on extending a

homegrown tool.

Centralize Expertise – Some developers built tools in an effort

to consolidate expertise in a process. A developer might build a

tool to enable other people to perform actions that otherwise re-

quire significant domain expertise. The tool CrunchNet is an ex-

ample of this; it allows software engineers without significant net-

working experience to determine if the network is causing a fail-

ure in a deployed service. Without the tool, this would require

manually inspecting a packet trace.

Team Culture – Some teams have a shared culture of building

and distributing tools among themselves. The Damascus authors

described a typical interaction: “We just talk about [tools we

build]. I say, ‘Hey, remember that problem we ran into last night?

I wrote this thing last night, you should use it now.’” When asked,

several interviewees said that their team had a tradition of building

tools collaboratively, though none of them felt that was typical.

VI. HOW DO HOMEGROWN TOOLS SPREAD?

Many of the tools that we encountered spread beyond their

original developers or teams. It is difficult to accurately determine

how a tool spreads and assess its impact because homegrown tool-

builders may not be aware of who is using their tools or how others

become aware of them; this prevents us from presenting authori-

tative, quantitative data on tool use and spread. In addition, we

found that many toolbuilders did not have grand aspirations for

their creations and instead were happy to have their tools used

solely by their teams or just themselves. Some expressed the no-

tion that the more people using a tool means more bugs to fix and

feature requests, something developers avoid in their normal rou-

tines, let alone their spare time.

Nonetheless, effective tools can have a larger benefit if more

people are using them. Tool spread can also avoid duplicate work

in the form of developers writing their own very similar tools. We

therefore investigated the various channels by which tools spread

and the ways that they have had impact in terms of users and time

savings.

Cross-Product Collaboration – Within Microsoft, different

products have a significant distance between them, and are often

developed in entirely different infrastructures. However, some

grassroots tools displayed collaboration across products. Most of

these quotations originate from interviews related to xAuto, but

DiffButler, MSMQ Viewer, CrunchNet, and MemSpect have also

crossed product boundaries.

Sanctioned Channels – Microsoft contains a number of official

channels where developers are encouraged to share side projects.

These include:

 The Garage, a Microsoft-wide hackerspace that offers

trainings, hosts talks on new technologies, and has weekly

hack nights and demos where Microsoft employees and

interns can share side projects

 Organizational hackfests, events where all teams in a par-

ticular organization create, pitch, and execute ideas

 Organizational “science fairs” or other presentation days,

where engineers can register a booth or talk about their

side project and demonstrate it to their peers and manag-

ers

 Less formal presentations and brown bags (informal

lunch presentations) within teams or groups of closely-

linked teams

Many of the tools from our sample were influenced by these

sanctioned toolbuilding channels. The developers of VSO Cortana

were encouraged by the Garage community to develop their app,

and got the idea to make it cross-platform after a demonstration

on Xamarin hosted by the Garage. We met the VSO Cortana de-

velopers at a Bing Science Fair, an annual event where developers

are encouraged to present their tools to their peers and compete to

receive recognition by a panel of expert judges. The authors met

the developers of Damascus and CrunchNet at the same science

fair. Damascus developers credit the science fair with giving them

motivation to finish Damascus: “We had the code, and then we

saw the science fair stuff, and thought maybe we should finish it

for that, so again we talked to our manager and said we need to

be able to spend time on this.” Suite Ninja was proposed and de-

veloped during a similar Hack Day.

Collaboration – Collaboration was typical in the tools studied.

Since homegrown tools aren’t subject to the security constraints

surrounding product code, it is easier for developers to collaborate

on them. For example, xAuto’s current maintainer David de-

scribed it in our first interview as “essentially an open source tool

within the Office community.” Of the other tools whose creators

we interviewed, the MSMQ Viewer, Watchdog Video Viewer,

MemSpect, and Suite Ninja were developed collaboratively.

Direct Contact – One of the most common ways tools spread is

by their developers telling other people about them. The developer

of Watchdog Video Viewer said that his users found out about his

tool by, “basically my telling them.” When the developer of Test

Pass Monitor started using it to replace his own shifts manually

watching tests, he configured the tool to send an automatic email

with a link to the tool’s internal project page to the testers who

owned the current test run. To some extent, all of the developers

we interviewed had directly spread their tool to new users.

Hierarchical Spread – Many tools in our dataset spread hierar-

chically throughout Microsoft – spreading up the corporate hier-

archy from a developer to a manager, and then out to the rest of

that manager’s reports and peers. This is most common in envi-

ronments that are more receptive to toolbuilding, xAuto notably

had a number of management evangelists early in its lifespan who

assisted its spread from the OneNote team to others inside the Of-

fice organization. In another instance of hierarchical spread, the

developer of Test Pass Monitor related how his tool came to be

used by the rest of his organization: “My manager’s manager

found out about it, and scheduled a meeting with all the other

leads in my group. I gave a quick presentation on how the tool

works, and from there it spread.”

Team Use – The first people a developer tends to share a new tool

with are those nearby – namely, their team. Each of our interview

tools had users on the developer’s team, with the exception of

VSO Cortana and Damascus, which are currently unreleased.

Low Barrier to Entry – Some of our quotations explicitly dis-

cussed the low barriers to entry that their tool exploited, leading

to more rapid adoption of the tool. xAuto is a particularly good

example of this, having hit several sweet spots early on. As one

xAuto developer put it, “Since [xAuto] was built on a shipping

extensibility model, [and] each one of the testers had to test exten-

sibility for their feature in general, they had the knowledge of how

to write the ability to add a page, or whatever features they had…

they just needed to plug it into this framework, and I tried to make

that as straightforward as possible.” Additionally, xAuto re-

quired no installation – “you just had to have the exe on the ma-

chine.” Later, as xAuto was spreading through Office, it benefited

from having a reserved lab for xAuto runs – meaning that new

teams didn’t have to allocate computing resources to run xAuto.

Without taking advantage of these previously existing systems to

create low barriers to entry, xAuto and other tools might not have

spread as far.

Uncertain Spread – Many developers we talked to were uncer-

tain of the extent to which their tools had spread. This was usually

the case for personal tools that the authors had shared on internal

sites, since they had no way of knowing the active users of their

tool beyond how many times a particular version has been down-

loaded. The developer of the Build Status Monitor tool said, “I’m

not sure what the usage of the tool is,” and the developer of

Watchdog Video Viewer similarly said, “I don’t know if anyone

else has used it on a regular basis. I know about 56 people have

downloaded the tool.”

Needs Differences – Differences in the needs of user groups af-

fects the spread of tools. As the author of DiffButler said in an

interview, “I still have the hunch that there are varying types of

developers out there, and some don’t need this and some do.”

While individual differences might prevent someone from using a

personal tool, organizational resources and needs might preclude.

For example, differences in the overall quality goals between Bing

and Office mean that Bing is very unlikely to use xAuto.

Social Spread – Some tools spread via a social network. In a large

company like Microsoft, many developers have previously been

on different teams with different people. When developers move

teams, they might bring new tools with them, or bring up a tool

they’ve heard of. When xAuto was first spreading to other teams

outside OneNote, the first teams to adopt it were teams containing

developers that had previously been in OneNote or on other teams

with people related to xAuto. Another tool discussed with the

MSMQ Viewer developer spread outside his team for the first

time when a former team member, having just moved to a new

team, was appalled at the error-prone nature of their database up-

date procedure and helped them adopt the tool his previous team

used to orchestrate the process.

Barriers – Some of the developers we talked to had chosen not to

share their tools. For personal tools, a big obstacle was legal lia-

bility, and uncertainty about the policies regarding sharing within

Microsoft. For example, the developer of DiffButler remarked he

would like to share his tool externally, but “wouldn’t even know

where to start with something like that.” Similarly, an xAuto de-

veloper didn’t spread the tool early on because he “didn’t know

[he] had the scope to actually go out” and spread the tool.

A team that supports a tool might not share it because that

would require some amount of additional work the team cannot

justify to themselves, since the tool is already usable to them. A

developer of xAuto said, “I don’t think we’ve published it further

out because we didn’t know how to maintain it.” Teams might also

not want to publish work that reflects badly on them – the devel-

oper of the MSMQ Viewer said, “We would want to clean it up a

little bit more in terms of …the UI.” Homegrown tools are typi-

cally side projects, so polishing them to the point at which other

teams can use them might not be a priority.

VII. IMPLICATIONS

What are the implications of this research? While we have

gained an understanding of homegrown toolbuilding, there are

also additional lessons learned that can benefit software develop-

ment organizations. Some of these recommendations come from

things we observed already in practice at Microsoft. Others come

from shortcomings that can be addressed. The value and imple-

mentation of each is dependent on the context of the particular de-

velopment team or organization, as startups and open source pro-

jects may face different challenges or have different needs.

Hackdays - Organizations should embrace and encourage tool-

building through hackdays. One of the most valuable practices we

observed in our study was organizational hackdays. These hack-

days consumed between two to four days out of a year, typically,

but produced a multitude of valuable tools and provide engineers

with an opportunity to exercise their passion for toolbuilding. Or-

ganizational hackdays and tool presentation days allow for tool-

builders to be recognized for their hard work, and for valuable

tools to spread within an organization. We observed that engineers

feel uncertainty about the appropriateness of spreading tools –

hackdays alleviate this uncertainty by providing a defined struc-

ture for developing and spreading tools. Hackdays are a cheap in-

vestment with potentially massive returns.

Discoverability and Evangelism - A common reason that devel-

opers built tools was that they were unaware of existing tools that

matched or could be easily adapted to their needs. In some cases,

such tools do exist, but they may be difficult to find. Microsoft

has an internal site meant to host community projects that allevi-

ates some of the problem. Teams and individuals should be en-

couraged to use such resources even if they question that others

would find their tools useful. Further, curation and categorization

would make more useful and appropriate tools easier to find.

Currently, Microsoft provides opportunities for developers to

present their tools to other teams (e.g., informal lunch talks). In

addition to this, individuals and teams should have venues to dis-

cuss their problems and challenges with other teams that can lead

to collaboratively using or improve existing homegrown tools ra-

ther than reinventing them.

Plan Transitions - One common reason for building a new tool

is that previous solutions exist, but only for a different environ-

ment. We noticed that these environmental differences frequently

come about because of a longer-term transition. MemSpect was

hardly the first memory debugger, but it was the first (within Mi-

crosoft) that could handle managed programs. xAuto is the latest

in a long line of monkey testing systems, but was the first to test

collaborative co-authoring. VSO Cortana and Agile Support

Tools, as well as others discussed in interviews but not named

here, came about because of a tool gap exposed after the transition

from waterfall to agile development within Microsoft.

Because of this, tooling should be taken into account when

technology or process transitions are considered. Organizations

should plan for adapting their tools and consider the cost of losing

tools that are not adaptable. Where large teams or organizations

make a transition, they should take care to make sure that there

isn’t redundant work going on in their teams developing similar

tools to deal with the new environment or processes.

Developers should also consider how much a tool needs to be

tied to a particular environment or system. If relatively painless

design decisions up front can allow tools to be adaptive later, they

can yield a savings of effort. CodeFlow was designed from the

start to be loosely coupled with the repository system. As a result,

intrusive changes were not required when adding git support.

Tool Culture - Teams and organizations should encourage tool

culture. During this study, we often found ourselves discussing a

holistic concept of tool culture. Organizations with tool culture

are friendlier towards experimental making and toolbuilding. Be-

yond management practices, tool culture extends into the attitudes

team members have towards solving problems and collaborating.

A team with tool culture is likely to have several tools in various

stages of completion kicking around on developer’s computers.

While almost none of these tools will be valuable on the level of

the organization, this practice has two key valuable aspects. The

first is the attitude towards solving problems via toolbuilding; the

second is team collaboration on promising tools.

Broken Windows - Another interesting anecdote related to us in

our interview of the Damascus developers was the concept of

“broken window effects.” Taken from the sociological-crimino-

logical broken window theory [14], a “broken window” as applied

to software engineering is an element that is visible, and broken,

such as inaccurate documentation or broken setup scripts. Accord-

ing to broken window theory, broken windows beget broken win-

dows. A developer working on a project with an outdated wiki,

frequently incorrect documentation, and some persistent bugs

might not put as much effort into unit testing, writing performant

code, or keeping interfaces “clean.” Homegrown tools can play a

powerful role in preventing this effect, since the project compo-

nents most likely to become “broken windows” are those that are

considered ancillary rather than central, much like homegrown

tools. Teams that are friendlier to homegrown tools, valuing in-

vestment into team infrastructure more than strict adherence to as-

signed work, might stave off broken window effects more readily

than teams hostile to homegrown tools.

VIII. VALIDITY

This work is a qualitative case study; we do not attempt to

broadly generalize from our conclusions here. Since our surveys

and interviews were conducted with only Microsoft engineers, we

cannot make any overbroad conclusions. However, Microsoft is a

large company with a great degree of internal diversity with re-

spect to software engineering practices, and its employees come

from a wide array of backgrounds. That being said, our findings

are likely not reflective of typical open source projects where par-

ticipants do not work together in a single company and may not

have the same impetus to create or evangelize homegrown tools.

While our first survey was advertised as a tool survey and

therefore could have been subject to self-selection bias, the second

survey was not advertised as a tool survey, and should have no

self-selection effect between toolbuilders and non-toolbuilders.

IX. RELATED WORK

Homegrown tools are a specific case of the general concept of

grassroots innovation, management, and cultivation. This busi-

ness strategy, while not extensively studied in computer science,

is more commonly studied in management science. In computer

science, Bailey and Horvitz examined the grassroots innovation in

Microsoft, outlining the infrastructure that exists to cultivate inno-

vations in various business areas [15]. While the system they de-

scribe was not used for building tools during the course of their

case study, it is similar to the organizational hackfests we ob-

served. The management and organizational science community

contains more research on grassroots innovation. Brand presents

a review of 3M’s practices for fostering grassroots innovation, no-

tably it’s “15% rule”, the earliest example of allocating time for

employees to pursue their own projects [16]. This practice was

later adopted by Google (as “20% time”) and HP. While some re-

sults of these innovation processes are public, such as the inven-

tion of the Post-It note at 3M and of Gmail and Google Earth at

Google, not all inventions occurring as a result of these policies

are publicized and a selection bias exists in that failed grassroots

innovations will usually never be made public. We are unaware of

any work on the types of tools produced by these innovation pipe-

lines. More broadly, Andriopoulos presents a review of the man-

agement science literature pertaining to creativity within organi-

zations that includes the freedom to experiment and self-directed

activity as factors contributing to creativity [17]. Outside of indus-

try, Bardzell et al documents the toolbuilding behavior of individ-

uals in hackerspaces [18].

We used the OCEAN or Five-Factor/Big-5 personality metric

to attempt to answer the question of who builds homegrown tools.

Other examinations of the effect of personality on development

behavior include Salleh et al's and Hannay et al’s work on the ef-

fect of personality on pair programming behavior [9] [10] [19],

and Licorish and MacDonell's work on inferring personality types

for distributed developers using artifacts and using the data to ex-

plain how personality effects general development [20]. Personal-

ity is widely studied with respect to pair programming, specifi-

cally the problem of choosing which developers to pair. The Mey-

ers-Briggs inventory has also been used to examine personality

factors in software engineering [21] [22].

Tool adoption and tool spread within organizations and com-

munities is a well-studied problem in software engineering and

other research communities. Diffusion of Innovation theory is a

popular framework for studying the transmission of ideas through

communities [23]; Xiao et al [24] applies this framework to secu-

rity tools. Within computer science more broadly, the Socio-PLT

project has investigated the factors related to spread and adoption

of programming languages [25] [26].

The impact of specific tools on development processes has not

been widely studied. The closest similar research topic is cost

modeling and prediction, the problem of predicting how costly a

particular software project will be to implement. Some models,

including popular COCOMO family [27], include the use of soft-

ware tools as a component of cost, but only examine the raw avail-

ability of tooling rather than tool quality or development cost in

itself.

X. CONCLUSION

The goal of this work was to explore the space of homegrown

developer tools, in order to better understand what motivates tool-

builders and what effects their tools have on their teams and or-

ganizations. To this end, we conducted two surveys and a semi-

structured interview campaign. In our samples, most developers

reported building tools. We found that toolbuilders had statisti-

cally significant differences in the Openness, Extraversion, Con-

scientiousness, and Neuroticism scores on the Five-Factor person-

ality model, as well as being significantly more tenured. We show

that homegrown developer tools are diverse, ranging from test

systems to IDE plugins to mobile applications, and that they are

born from a wide array of circumstances and team cultures.

Many of the tools we observed were born of necessity, and

many have high impact relative to their development cost. The im-

plication we take from this is that organizations should encourage

a healthy culture towards tool building through organizational

hackfests, and make their tools discoverable in order to maximize

the benefit they can gain from homegrown tools.

We hope this work will be the first of many academic inquiries

into tools developers take the initiative, the time, and in some

cases, the risk, to build themselves. An understanding of the tools

developers find important to build, and the tools that provide or-

ganizational benefit, would be of great value to the software engi-

neering research community, focused in large part as it is on build-

ing new tools that enable developers to work more efficiently and

produce better software. This understanding could deeply

strengthen the relationship between the producers of research and

its intended consumers.

XI. REFERENCES

[1] Microsoft Corp., Codeflow, http://www.microsoft.com/en-

us/news/features/2012/jan12/01-05codeflow.aspx, 2012.

[2] C. Bird, T. Zimmermann and E. K. Smith, Appendix to Do

It Yourself! Homegrown Tools in a Large Software

Company, 2014.

[3] E. Smith, R. Loftin, E. Murphy-Hill, C. Bird and T.

Zimmermann, "Improving Developer Participation Rates in

Surveys," in Cooperative and Human Aspects of Software

Engineering, 2013.

[4] T. R. Lindlof and B. C. Taylor, Qualitative communication

research methods, Sage, 2010.

[5] I. Myers and P. B. Myers, Gifts differing: Understanding

personality type, Consulting Psychologist’s Press, 1980.

[6] P. T. Costa and R. R. McCrae, Revised neo personality

inventory (neo pi-r) and neo five-factor inventory (neo-ffi),

vol. 101, Psychological Assessment Resources Odessa, FL,

1992.

[7] D. J. Pittenger, "Measuring the MBTI… and coming up

short," Journal of Career Planning and Employment, vol.

54, pp. 48-52, 1993.

[8] J. M. Digman, "Personality structure: Emergence of the

five-factor model," Annual review of psychology, vol. 41,

no. 1, pp. 417-440, 1990.

[9] N. Salleh, E. Mendes, J. Grundy and G. S. J. Burch, "An

empirical study of the effects of conscientiousness in pair

programming using the five-factor personality model," in

Proceedings of the 32nd ACM/IEEE International

Conference on Software Engineering-Volume 1, 2010.

[10] N. Salleh, E. Mendes, J. Grundy and G. S. J. Burch, "An

empirical study of the effects of personality in pair

programming using the five-factor model," in Proceedings

of the 2009 3rd International Symposium on Empirical

Software Engineering and Measurement, 2009.

[11] L. R. Goldberg, J. A. Johnson, H. W. Eber, R. Hogan, M. C.

Ashton, C. R. Cloninger and H. C. Gough, "The

International Personality Item Pool and the future of public-

domain personality measures," Journal of Research in

Personality, vol. 40, pp. 84-96, 2006.

[12] R. R. McCrae and P. T. Jr, "Personality trait structure as a

human universal.," American psychologist, vol. 52, p. 509,

1997.

[13] D. Spencer, Card Sorting: Designing Usable Categories,

Rosenfeld Media, 2009.

[14] J. Q. Wilson and G. L. Kelling, "Broken windows," Atlantic

monthly, vol. 249, pp. 29-38, 1982.

[15] B. P. Bailey and E. Horvitz, "What's your idea?: a case study

of a grassroots innovation pipeline within a large software

company," in Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, 2010.

[16] A. Brand, "Knowledge management and innovation at 3M,"

Journal of knowledge management, vol. 2, pp. 17-22, 1998.

[17] C. Andriopoulos, "Determinants of organisational

creativity: a literature review," Management decision, vol.

39, pp. 834-841, 2001.

[18] J. Bardzell, S. Bardzell and A. Toombs, "now that's

definitely a proper hack: self-made tools in hackerspaces,"

in Proceedings of the 32nd annual ACM conference on

Human factors in computing systems, 2014.

[19] J. E. Hannay, E. Arisholm, H. Engvik and D. I. Sjoberg,

"Effects of personality on pair programming," Software

Engineering, IEEE Transactions on, vol. 36, pp. 61-80,

2010.

[20] S. A. Licorish and S. G. MacDonell, "Personality profiles of

global software developers," in Proceedings of the 18th

International Conference on Evaluation and Assessment in

Software Engineering, 2014.

[21] N. Katira, L. Williams, E. Wiebe, C. Miller, S. Balik and E.

Gehringer, "On understanding compatibility of student pair

programmers," in ACM SIGCSE Bulletin, 2004.

[22] B.-C. Catherine and D. D. Wheeler, "The Myers-Briggs

personality type and its relationship to computer

programming," Journal of Research on Computing in

Education, vol. 26, pp. 358-370, 1994.

[23] E. M. Rogers, Diffusion of innovations, Simon and

Schuster, 2010.

[24] S. Xiao, J. Witschey and E. Murphy-Hill, "Social influences

on secure development tool adoption: why security tools

spread," in Proceedings of the 17th ACM conference on

Computer supported cooperative work & social computing,

2014.

[25] L. A. Meyerovich and A. S. Rabkin, "Socio-PLT: Principles

for programming language adoption," in Proceedings of the

ACM international symposium on New ideas, new

paradigms, and reflections on programming and software,

2012.

[26] L. A. Meyerovich and A. S. Rabkin, "Empirical Analysis of

Programming Language Adoption," in Proceedings of the

2013 ACM SIGPLAN International Conference on Object

Oriented Programming Systems Languages &

Applications, 2013.

[27] B. W. Boehm, Software engineering economics, Prentice-

Hall, 1981.

