
Mining Usage Expertise from Version Archives

David Schuler
Department of Computer Science

Saarland University
Saarbrücken, Germany

ds@cs.uni-sb.de

Thomas Zimmermann
Department of Computer Science

University of Calgary
Calgary, Alberta, Canada

tz@acm.org

ABSTRACT
In software development, there is an increasing need to find and
connect developers with relevant expertise. Existing expertise rec-
ommendation systems are mostly based on variations of the Line
10 Rule: developers who changed a file most often have the most
implementation expertise. In this paper, we introduce the concept
of usage expertise, which manifests itself whenever developers are
using functionality, e.g., by calling API methods. We present pre-
liminary results for the ECLIPSE project that demonstrate that our
technique allows to recommend experts for files with no or little
history, identify developers with similar expertise, and measure the
usage of API methods.
Categories and Subject Descriptors: D.2.7 [Software Engineer-
ing]: Distribution, Maintenance, and Enhancement—Version con-
trol;
General Terms: Human Factors, Management

1. INTRODUCTION
More and more software is developed across multiple sites in large
geographically distributed teams. As teams get larger and struc-
tures become more complex, finding developers best suited for a
specific task gets more difficult [3]. Ideally, this would be the de-
veloper that has the most expertise in the techniques and skills re-
quired for this task, and thus, would produce the best result in the
best possible time.

Organizations use different ways to track their members’ exper-
tise. One of the main responsibilities of a team manager is to know
people’s expertise to allocate the development resources in the most
economic way. While this does work for smaller collocated teams,
it does not scale to large projects that are developed across multi-
ple sites. Often systems that use manually provided expertise data
are introduced to assist in expertise location. These systems, how-
ever, are rarely precise and kept up-to-date [5]. Thus, there is a
need for systems that infer expertise for developers automatically,
for instance by leveraging data mined from version archives.

Most automatic approaches use variants of the Line 10 Rule to
determine experts for files. The name Line 10 Rule stems from a
version control system that stores the author who did the commit,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’08, May 10-11, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-024-1/08/05 ...$5.00.

in line 10 of the commit’s log message. Developers who changed
a file are considered to have expertise for this file. This heuristic,
however, does not work for files and developers with no or little
history. To recommend a developer for a file, there has to be at
least one commit by this developer related to this file. This kind of
expertise is also known as implementation expertise.

Implementation expertise. Within a codebase, developers accu-
mulate expertise by changing methods when they learn the
implementation details of the method. This kind of expertise
has been used for past expert recommendation systems (see
Section 2).

In this paper, we will introduce a different kind of expertise:

Usage expertise. Developers also accumulate expertise by calling
(using) methods. While they might not be aware of imple-
mentation details, they know when a method can be used and
how it should be called.

Both kinds of expertise can be mined from version archives. In
our data collection, we scan commits for changed methods (imple-
mentation expertise), as well as for inserted methods calls (usage
expertise). This data is then aggregated in an expertise profile for
each developer (Section 3). We also present potential applications
for expertise profiles, which range from recommending experts for
methods with no or little history, identifying developers with simi-
lar expertise, and measuring the usage of API methods (Section 4).
We conclude the paper with a discussion of future work (Section 5).

2. RELATED WORK
Our approach for expert recommendation is not the first to mine
software repositories. However, all previous approaches were
based on locations such as files and packages and thus, expertise
was specific to a given project. By mining usage expertise instead,
we get project-independent expertise (e.g., for external libraries),
which is transferable across projects. This allows to integrate new-
comers to software projects in expert recommendation. In addition
our approach allows to recommend experts for code with no or little
history.

Minto and Murphy present the Emergent Expertise Locator
(EEL) that proposes experts to a developer based on the recently
edited or selected files [7]. Their approach uses the coordination
requirements framework introduced by Cataldo et al. [2]. The ex-
perts for a set of files is computed by using information from the
version control system on which files are changed together and how
often a developer changed a particular file.

Anvick and Murphy propose and compare three different ways to
determine implementation expertise from bug reports [1]. Two ap-
proaches involve analyzing source repository check-in logs. Here

a bug report is linked to the source repository to obtain a change
set for each report. Then the containing module for each entry in
the change set is determined at file or package level. From this
containing module a list of all developers who previously made
changes to it is compiled. In their third approach, they determine
expertise from a bug network. A bug network consists of all bugs
that are connected by a relationship (e.g., duplicate, depends on).
From this network they use the carbon-copy lists, comments, and
resolver information to compile a list of experts.

Mockus and Herbsleb present the Expertise Browser [8] that uses
experience atoms (EA) as a measure of expertise. These EAs are
gathered mining the source repository using author and change in-
formation. Then each EA can be associated with several domains
(such as author, organization, technology used, release version).
Later the experience atoms can be queried for finding experts for
the different domains.

McDonald and Ackerman propose a recommendation architec-
ture called Expertise Recommender [6] that uses expertise pro-
files for organization members. These profiles are built using two
heuristics: change history and calls to tech support. The change
history heuristic assigns expertise to all authors that modified a file
and the tech support heuristic assigns expertise based on previously
completed support calls. When a new call to tech support comes in,
these profiles are queried to find members of the organization that
can assist in solving the problem at hand.

3. METHODS AS UNIT OF EXPERTISE
Expertise is a combination of domain knowledge, skills, and char-
acteristics that give a person the ability to solve problems rapidly
and effectively in a given problem domain. In some domains there
is an objective measure for expertise, e.g., sportsmen can measure
time, heart rates, and lactate values to gain an objective measure of
their fitness. In software development, however, there exists no ob-
jective measure to predict how well a developer will solve a given
task.

In order to provide a measure for expertise in software develop-
ment, our approach measures expertise on the level of methods. In
an object-oriented system, methods are an object’s way of provid-
ing and describing the services it offers. By changing a method,
developers express that they understood the effects and the func-
tionality of this method (implementation expertise). By calling
a method, developers express that they are aware how to use the
method (usage expertise).

3.1 Data Collection
Our approach can be applied to any version control system. How-
ever, we based our implementation on CVS since many open-source
projects currently use it. First, we reconstruct CVS commits with
a sliding time window approach [12]. A reconstructed commit is
a set of revisions R, where each revision r ∈ R is the result of a
single check-in.

Additionally, we compute method calls that have been inserted
within a commit operation R. Every commit R also has set of
changed locations C(R)—in our case locations are method bodies
but could be classes or files as well. For every location l that was
changed in R, we compute the set of added method calls M(l) by
comparing the abstract syntax tree of l before and after commit R.
As a result we obtain the set of new calls for a commit R

T (R) = {m | l ∈ C(R),m ∈ M(l)}

In the example below, the commit Rex added calls to three methods.

T (Rex) = {addTest(1), worked(1), refreshStatus(0)}

Table 1: Expertise profile for Erich Gamma (egamma).

Ten most frequently changed Ten most frequently used

createPartControl 185 addSelectionListener 72
aboutToStart 163 openError 57
createControl 148 addModifyListener 35
rerunTest 143 refreshStatus 31
menuAboutToShow 142 addTest 29
testFailed 136 worked 26
testReran 117 asyncExec 24
testRunEnded 114 handleFieldChanged 24
showFailure 113 postRefresh 24
endTest 109 findType 21

The set of changed locations C(R), the set of new calls T (R),
and the author of commits author(R) serve as main input for the
construction of expertise profiles, which is described in Section 3.2.

Unlike Williams and Hollingsworth [10], our approach does not
build (compile, link) snapshots of a system to compute inserted
method calls. As they point out, such interactions with the build en-
vironment (compilers, make files) are extremely difficult to handle
and result in high computational costs. Instead, we analyze only
the differences between single revisions. As a result, our prepro-
cessing is cheap, as well as platform- and compiler-independent;
the drawback is that types cannot be resolved because only one file
is investigated. As a consequence, we cannot resolve signature for
called methods. Instead we identify methods calls with their names
(e.g., addTest) and number of arguments (e.g., (1)). For more
details on our preprocessing, we refer to the APFEL plug-in [11].

3.2 Expertise Profiles
For each developer the data mined from the version archive is ag-
gregated in an expertise profile. Such a profile contains all methods
a developer changed (implementation expertise) and called (usage
expertise) as well as frequency counts. More formally, the expertise
profile P for a developer d is represented by the tuple

(Id, Ud, changesd, usesd)

with

Id = {m | m ∈ C(R), R ∈ R, author(R) = d}

Ud = {m | m ∈ T (R), R ∈ R, author(R) = d}
and the frequency counts changesd : L → N and usesd : L → N
defined as

changesd(m) = |{R | R ∈ R, m ∈ C(R), author(R) = d}|

usesd(m) = |{R | R ∈ R, m ∈ T (R), author(R) = d}|
In addition, we relate counts to the total number of method
changed/called by a developer (rel_changesd : L → R and
rel_usesd : L → R).

Table 1 shows the expertise profile of Erich Gamma (egamma),
which we mined from the ECLIPSE CVS archive. We ignored getter
and setter methods, as well as calls to Java API. For brevity, we
report only simple method names. Erich mostly changed methods
related to testing and UI (which is no surprise because he is one of
the inventors of JUNIT), and used listeners and progress monitors
frequently.

The profile in Table 1 is computed for the entire lifetime of
ECLIPSE. However, it is also possible to compute expertise pro-
files on a weekly (or monthly) basis to show what developers have
been recently working on.

Figure 1: The three largest neighborhood components in ECLIPSE. While developers in the left component do not share a unique
connecting theme, the developers in the middle component mostly use the JDT compiler and the developers in the right component
the ECLIPSE user interface API.

4. POTENTIAL APPLICATIONS
Expertise profiles help to locate and recommend experts (Sec-
tion 4.1), to support collaboration and communication between de-
velopers (Section 4.2), and to analyze and inform about the devel-
opers usage of APIs (Section 4.3).

4.1 Identify experts
Developers and managers can query the profiles to identify who
matches a given expertise Q the best. This helps with assigning
tasks, addressing questions to the right person, and organizing code
review ("Who has experience with SQL?").

For example, we want to know which ECLIPSE developers have
experience in using a given module, say the SQL part of the JAVA
SDK. First, we define Q as the 358 methods that are contained in the
java.sql package. (We manually filtered methods not specific to
SQL functionality, such as toString.) Next we compute for every
developer d the overlap between Ud and Q and rank accordingly.
Here’s what we get for ECLIPSE (top seven developers):

Developer d |Ud ∩ Q|
aweinand 18
carolyn 11
dj 10
bbokowski 9
othomann 8
dorme 7
dbaeumer 7

In this example, considering usage expertise has the following
advantages compared to implementation expertise:

• The developer Andre Weinand (aweinand) never changed
parts of the java.sql package. While he might not be ex-
perienced enough to change it, he knows enough to use it,
which is what is needed in most projects.

• While implementation expertise is typically project specific,
usage expertise is to some extent project independent (the
parts that are referring to external libraries).

In contrast to other expertise location techniques, our approach also
works for code with no or little history and in situations where for a
piece of code none of the previous developers is available to change
it. Using the method calls in that piece of code as our query Q,
we can identify developers who should have enough expertise to
understand and change this code.

4.2 Neighborhood of developers
Based on the usage profiles, we can define for every developer a
neighborhood that consists of the developers with the most similar
expertise. More formally, with X = Uc ∪ Ud we define similarity
between two developers c and d as:

similarity(c, d) = 1 − 1

|X|
X

m∈X

|rel_usesc(m) − rel_usesd(m)|

The similarity is between zero and one, where zero indicates dis-
joint expertise profiles and one indicates identical profiles. There
are many other possible ways to define similarity and in future work
we will evaluate which one works best.

Using the above similarity measure, the five closest neighbors
for the ECLIPSE developer egamma are the following:

Developer c Developer d similarity(c, d)

egamma maeschlimann 0.1198
egamma jszursze 0.0939
egamma cvs 0.0815
egamma mkeller 0.0740
egamma tmaeder 0.0701

The highest observed similarity in our experiments was 0.2445
(between the developers sarsenau and jeem). One reason for the
low similarity values is that we included all methods, including
private ones exclusively changed and called by one developer.

Ideally, neighborhood relations can encourage communication
and collaboration between developers. By considering usage exper-
tise rather than implementation expertise, developers from different
projects can become neighbors when they work with the same API.
They can collaborate and discuss the usage of the API and maybe
even team up with their projects. Neighborhood information is also
a very good starting point for newcomers to a software project and
helps them to direct their questions to the right person.

Furthermore, neighborhoods help to analyze the team structure,
e.g., to find developers that work on related parts of the code.
This information can be used to schedule meetings and create in-
terest groups ("Which developers should be interested about SWT
in ECLIPSE?") or to choose developers for training of their skills
("Which developers would benefit most from a training in this new
database technology?").

Figure 1 shows a social network of ECLIPSE in which two de-
velopers c and d are connected when similarity(c, d) ≥ 0.08. For
brevity, we show only the three largest connected components. For
one of the components, we could not identify a connecting theme,
but the other ones were connected because they used the JDT com-
piler and the ECLIPSE user interface respectively.

4.3 Impact of API methods
In software development, there is a hidden dependency between
developers who create methods (API producer) and the developer
who call it (API consumer). Our approach of mining usage exper-
tise makes these dependencies explicit and supports communica-
tion between API producers and consumers.

For API producers, we can provide information how their API is
used and by whom. They can ask consumers for feedback on the
API or inform them about upcoming changes (or serious bugs in
the implementation). Moreover, they obtain information about the
popularity of methods (which ones are used by many developers).
This helps to prioritize and plan development efforts (e.g., refac-
toring): heavily used methods deserve more attention, while rarely
used methods are candidates for deprecation.

A similar approach for measuring the API impact was proposed
by Holmes and Walker [4], which also distinguishes between API
producers and API consumers. In their work they investigate the
consumption of the ECLIPSE API. They consider program relations
like inheritance, interface implementation, and method calls to (a)
inform API producers how their API is used by other developers and
(b) inform API consumers how other consumers use the API. In con-
trast to our approach, they do not consider author information since
their analysis is focused solely on source code. In particular, their
approach is mostly for information purposes, while our approach
can establish a communication channel between API producers and
consumers—again across projects.

5. CONCLUSIONS AND CONSEQUENCES
In this paper, we proposed a new measure for expertise that is based
on how developers use methods (usage expertise), which comple-
ments the expertise measure based on what methods developers
change (implementation expertise). We also sketched possible ap-
plications for these expertise measures, which we will thoroughly
evaluate in our future work. In addition, we plan to work on the
following:

Improve precision of data collection. In our prototype, method
calls are not fully resolved because we are only analyzing
program fragments. We use a conservative strategy for ambi-
guities like overwritten and overloaded methods. We plan to
use fragment class analysis [9] to collect more precise data.

Combining implementation and usage expertise. A combined
usage and implementation expertise metric may be more
accurate in assigning tasks to developers. In addition, taking
both implementation and usage expertise into account,
assigns different roles to developers. They can be considered
as consumers and producers of methods, which can help to
facilitate communication between them.

Combining expertise with tasks and bug reports. We plan to
integrate expertise information with additional data sources
such as tasks and bug reports. By monitoring tasks, we can
recommend tasks to developers, which might be relevant for
their work. Bug reports can also be enriched with expertise
information, e.g., when a bug report contains source code or
stack traces, we can recommend experts for it.

Relation between expertise and quality of code. We plan to
conduct an empirical study about the effects that expertise
has on the development process. For example, what are the
implications of expertise on the quality of the code: "Are
changes by more experienced developers less error prone?".

To learn more about our work in mining expertise, visit

http://www.kode1061.com/

6. ACKNOWLEDGMENTS
This research was supported by an IBM Jazz Faculty Award and
by a start-up grant from the University of Calgary. Many thanks to
Rahul Premraj, Christian Lindig, and the anonymous MSR review-
ers who gave valuable feedback on earlier revisions of this paper.

7. REFERENCES
[1] J. Anvik and G. C. Murphy. Determining implementation

expertise from bug reports. In MSR ’07: Proceedings of the
Fourth International Workshop on Mining Software
Repositories. IEEE Computer Society, 2007.

[2] M. Cataldo, P. A. Wagstrom, J. D. Herbsleb, and K. M.
Carley. Identification of coordination requirements:
Implications for the design of collaboration and awareness
tools. In CSCW ’06: Proceedings of the 2006 ACM
Conference on Computer Supported Cooperative Work,
pages 353–362. ACM, 2006.

[3] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter.
An empirical study of global software development:
Distance and speed. In ICSE ’01: Proceedings of the 23rd
International Conference on Software Engineering, pages
81–90. IEEE Computer Society, 2001.

[4] R. Holmes and R. J. Walker. Informing Eclipse API
production and consumption. In Eclipse ’07: Proceedings of
the 2007 OOPSLA Workshop on Wclipse Technology
Exchange, pages 70–74. ACM, 2007.

[5] D. W. McDonald and M. S. Ackerman. Just talk to me: A
field study of expertise location. In CSCW ’98: Proceedings
of the 1998 ACM Conference on Computer Supported
Cooperative Work, pages 315–324. ACM, 1998.

[6] D. W. McDonald and M. S. Ackerman. Expertise
recommender: A flexible recommendation system and
architecture. In CSCW ’00: Proceedings of the 2000 ACM
Conference on Computer Supported Cooperative Work,
pages 231–240. ACM, 2000.

[7] S. Minto and G. C. Murphy. Recommending emergent
teams. In MSR ’07: Proceedings of the Fourth International
Workshop on Mining Software Repositories. IEEE Computer
Society, 2007.

[8] A. Mockus and J. D. Herbsleb. Expertise browser: A
quantitative approach to identifying expertise. In ICSE ’02:
Proceedings of the 24th International Conference on
Software Engineering, pages 503–512. ACM, 2002.

[9] A. Rountev, A. Milanova, and B. G. Ryder. Fragment class
analysis for testing of polymorphism in java software. IEEE
Transactions on Software Engineering, 30(6):372–387, 2004.

[10] C. C. Williams and J. K. Hollingsworth. Automatic mining
of source code repositories to improve bug finding
techniques. IEEE Transactions on Software Engineering,
31(6):466–480, June 2005.

[11] T. Zimmermann. Fine-grained processing of CVS archives
with APFEL. In Eclipse ’06: Proceedings of the 2006
OOPSLA Workshop on Eclipse Technology Exchange, pages
16–20. ACM, 2006.

[12] T. Zimmermann and P. Weißgerber. Preprocessing CVS data
for fine-grained analysis. In MSR ’04: Proceedings of the
First International Workshop on Mining Software
Repositories, pages 2–6, 2004.

