
How Design Predicts Failures

Adrian Schr̈oter Thomas Zimmermann Andreas Zeller

Saarland University, Department of Computer Science, Saarbrücken, Germany
{adrian,zimmerth,zeller }@st.cs.uni-sb.de

Abstract

In an empirical study of 52ECLIPSEplug-ins, we found
that the software design as well as past failure history, can
be used to build support vector machines which accurately
predict failure-prone components in new programs. Our
prediction only requires usage relationships between com-
ponents, which are typically defined in the design phase;
thus, designers can easily explore and assess design alter-
natives in terms of predicted quality.

1 Introduction

In this work, we aim topredict how failure-prone a com-
ponent will be by learning from history which design de-
cisions correlated with failures in the past. More precisely,
in contrast to research that used metrics to predict failure-
proneness [2, 1, 3], we focus onusage relationships:Does
using the libraryA increase or decrease the risk of failure?
It turns out that this information alone suffices to predict
the failure-proneness of individual components.

2 Failure-Proneness of Single Components

Why does usage influence the risk of failure? In a first
experiment, we checked our hypothesis that the usage of
certain components such as packages or classes correlates
with failures. For everyECLIPSEcomponentC, we com-
puted the likelihoodp(✘|C) that a post-release failure oc-
curred when this component was used in a file:

p(✘|C) =
number of files usingC with failures

number of files usingC
=

NC
✘

NC
all

We tested for every component with twot-tests(α = 0.05)
whether its likelihood is significantly higher (or lower)
than the average likelihoodp(✘) = 1649/6751 = 0.244
of a failure and the likelihoodp(✘|¬C) of a failure when
not using componentC.

As an example, consider two packages from the
ECLIPSE API. The packageorg.eclipse.jdt.core.compiler
provides an interface to theJAVA compiler, such as invok-
ing it or accessing compilation results. On the other hand,
theorg.eclipse.uipackage gives access to theECLIPSEuser
interface, providingGUI elements for user interaction. For
the average programmer, dealing with user interfaces is an
everyday’s job—in contrast to interacting with a compiler
package. Therefore, we would assume that code which
uses thecompilerpackage is more error-prone than code
that uses theui package. But can we actually quantify
these differences?

PackageC NC
all NC

✘ p(✘|C)

org.eclipse.jdt.internal.compiler.lookup.* 197 170 0.8629
org.eclipse.jdt.internal.compiler.* 138 119 0.8623
org.eclipse.jdt.internal.compiler.ast.* 132 111 0.8409
org.eclipse.jdt.internal.compiler.util.* 148 121 0.8175
org.eclipse.jdt.internal.ui.preferences.* 63 48 0.7619
org.eclipse.jdt.core.compiler.* 106 76 0.7169
. . .
org.eclipse.swt.custom.* 233 41 0.1760
org.eclipse.pde.internal.ui.* 211 35 0.1659
org.eclipse.jface.resource.* 387 64 0.1654
org.eclipse.pde.core.* 112 18 0.1608
org.eclipse.jface.wizard.* 230 36 0.1566
org.eclipse.ui.* 948 141 0.1488

Table 1: Good and bad imports (packages) in ECLIPSE

To this end, we have mined theECLIPSEbug and ver-
sion archives for usage data (which component uses which
other components?) as well as for failure rates (which com-
ponent had how many failures in the past?). Applied to the
compilerandui packages above, we found that 71% of the
components using thecompilerpackage needed to be fixed
due to a failure. However, only 14% of the components us-
ing ui had to be fixed. Hence, we can confirm: compiler-
related code is more failure-prone thanGUI-related code.

With such a prediction, a software designer can explore
and assess the design alternatives and check which one has
the lowest risk. She can also use the prediction to identify
the components that are most likely to fail afterwards, and
assign appropriate quality assurance efforts—and all this
at design time, when decisions matter most.

In ECLIPSE, using the compiler and theGUI are just two
extremes of how the usage of individual components im-
pacts later failures. In this work, we therefore investigate
whethercombinationsof usages make good failure predic-
tors: If a component uses, say, theGUI and version con-
trol, but not the compiler, this specificusage patternmay
indeed correlate with failures—and this is what we want to
mine, as a model that makes accurate failure predictions.

3 Building Prediction Models

We built prediction models from import relationships us-
ing support vector machineswith a radial basis function as
kernel. We used the imported components of a file as in-
put features to predict the number of post-release failuires.
All models were trained with historic design data. Such
models help us to address two problems:



Model failure-prone

not failure-prone

util.Vector

core.Signature

lang.Math

graphics.Point

io.Reader

util.RecourceBundel

Figure 1: Classification of a component

Model

Predicted Observed

42

23

22

17

27

24

22

13

 
 

 

Model 
 

 

Model 
 

 

Model 
 

 

C.java

B.java

A.java

D.java

C.java

A.java

D.java

B.java

Figure 2: Comparison of predicted and observed ranking

Classification. Can we tell whether a component will be
failure-prone based on its design? This helps to mark
risky parts of a software design.

Ranking. Can we tell which components will have the
most failures? This information identifies the parts
of a software design that require most attention when
being implemented and tested.

Figure 1 illustrates the classification of files as failure-
prone. If a file imports five classescore.Signature, graph-
ics.Point, util.Vector, io.Reader, andlang.Math—it is clas-
sified as failure-prone by our model. If another file ad-
ditionally importsutil.ResourceBundle, our model classi-
fies it as not failure-prone. For ranking we predict for
every component the number of failures and sort by this.
We compare predicted rankings—such asC.java, B.java,
A.java, andD.java in Figure 2—to the observed rankings.

4 Results: 52 ECLIPSE Plug-Ins

For our experiments, we usedrandom splits: we randomly
chose one third of the 52 plug-ins ofECLIPSEversion 2.0
as our training set, the other two third as test set for 2.0 and
the complement in 2.1 as test set for 2.1. We generated
a total of 40 random splits; we averaged the results for
computing theprecision, recall, andcorrelationvalues.

Precision and Recall.For the test sets in version 2.0, our
models obtained aprecisionof 0.6671 (see Table 2). That
is, two out of three components predicted as failure-prone
were observed to produce failures. For a random guess
instead, the precision is only 0.365.

Precision Recall Spear. Coef.

training 0.8770 0.8933 0.5961

test in v2.0 0.6671 0.6940 0.3002
→5% 0.7861 0.1369
→10% 0.7875 0.2032
→15% 0.7957 0.2648
→20% 0.8000 0.3190

test in v2.1 0.5917 0.7205 0.2842
→5% 0.8958 0.3416
→10% 0.8399 0.3702
→15% 0.7784 0.3675
→20% 0.7668 0.3615

Table 2: Predicting packages with classes in ECLIPSE

The recall of 0.6940 for the tests in version 2.0 (see Ta-
ble 2) indicates that two third of the observed failure-
prone components were actually predicted as failure-
prone. Again, a random guess yields only a recall of 0.365.

Ranking vs. Classification.The low values for the Spear-
man rankcorrelation coefficient in Table 2 indicate that
our predicted rankings do not correlate with the observed
rankings. However, the precision values for the top 5% are
higher than the overall values. This means that our classi-
fication works best for the parts that are highly ranked.

Applying Models across Versions.The results for the test
set ofECLIPSEversion 2.1 show a similar behavior to the
ones for version 2.0. This indicates that our model is robust
over time, i.e., we can learn a model for one version and
apply it to a later version without losing predictive power.

5 Conclusion

A component’s likelihood to fail is significantly deter-
mined by the set of components that it uses. Why is this
so? Our hypothesis is that the set of used components is
determined by the problem domainand some of these do-
mains are harder to get right than others—at least, this is
what theECLIPSEfailure history suggests.

Using our approach, managers and developers can
leverage earlier failure history to predict future failure-
prone components, and thus assign resources to those com-
ponents which need it most. Since the set of used compo-
nents is typically defined at design time, these decisions
can be made very early in the software process.

For ongoing information on the project, log on to

http://www.st.cs.uni-sb.de/softevo/

References
[1] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-

oriented design metrics as quality indicators.IEEE Trans. Software
Eng., 22(10):751–761, 1996.

[2] G. Denaro, S. Morasca, and M. Pezzè. Deriving models of software
fault-proneness. InInternational Conference on Software Engineer-
ing and Knowledge Engineering, pages 361–368, July 2002.

[3] R. Subramanyam and M. S. Krishnan. Empirical analysis of ck met-
rics for object-oriented design complexity: Implications for soft-
ware defects.IEEE Trans. Software Eng., 29(4):297–310, 2003.

http://www.st.cs.uni-sb.de/softevo/

	Introduction
	Failure-Proneness of Single Components
	Building Prediction Models
	Results: 52 ECLIPSE Plug-Ins
	Conclusion

