How Design Predicts Failures

Adrian Schbter Thomas Zimmermann Andreas Zeller
Saarland University, Department of Computer Science, Sagkbn, Germany
{adrian,zimmerth,zeller }@st.cs.uni-sb.de
Abstract Package” NG NS po|o)
In an empirical study of 5ECLIPSE plug-ins, we found org.eclipse.jdt.internal.compiler.lookup.* 197 170 0.8629
that the software design as well as past failure history, carPrg-eclipse.jdt.internal.compiler.* 138 119 0.8623
be used to build support vector machines which accurately®r9-eclipse.jdt.internal.compiler.ast.* 132 111 0.8409

predict failure-prone components in new programs. Ourorg.ec:?pse.jgt.?nterna:.cpmpifler.util.* . 14:3% li; 0687167159
prediction only requires usage relationships between com2'9-eclipse.jdt.nternal.ui preferences. :

ponents, which are typically defined in the design phase;Org'ec“pse'Jdt'Core'Comp”er'* 106 76 0.7169
thus, designers can easily explore and assess design altegfé.eclipse.swt.custom.* 233 41 01760
natives in terms of predicted quality. org.eclipse.pde.internal.ui.* 211 35 0.1659
. org.eclipse.jface.resource.* 387 64 0.1654

1 Introduction org.eclipse.pde.core.* 112 18 0.1608
org.eclipse.jface.wizard.* 230 36 0.1566

In this work, we aim tgpredict how failure-prone a com-
ponent will be by learning from history which design de-
cisions correlated with failures in the past. More precisely,
in contrast to research that used metrics to predict failure-
proneness |2,11] 3], we focus asage relationshipsDoes
using the library4 increase or decrease the risk of failure?
It turns out that this information alone suffices to predict
the failure-proneness of individual components.

org.eclipse.ui.* 948 141 0.1488

Table 1: Good and bad imports (packages) in ECLIPSE

To this end, we have mined tl®CLIPSEbug and ver-
sion archives for usage data (which component uses which
other components?) as well as for failure rates (which com-
ponent had how many failures in the past?). Applied to the
2 Failure-Proneness of Single Components compilerandui packages gbove, we found that 71% qf the

components using thempilerpackage needed to be fixed
Why does usage influence the risk of failure? In a firstdue to a failure. However, only 14% of the components us-
experiment, we checked our hypothesis that the usage Giig ui had to be fixed. Hence, we can confirm: compiler-
certain components such as packages or classes correlatesated code is more failure-prone thapli-related code.

with failures. For everfgCLIPSEcomponent’, we com- With such a prediction, a software designer can explore
puted the likelihoogh(C|C) that a post-release failure oc- and assess the design alternatives and check which one has

curred when this component was used in a file: the lowest risk. She can also use the prediction to identify

number of files using with failures NS the components that are most likely to fail afterwards, and

p(0C) = number of files using = Njﬁ assign appropriate quality assurance efforts—and all this

at design time, when decisions matter most.

In ECLIPSE using the compiler and th&Ul are just two
extremes of how the usage of individual components im-
of a failure and the likelihoog(C|~C) of a failure when pacts later falllurels. In this work, we therefor.e mvestlgate

whethercombinationof usages make good failure predic-

notusing component’ tors: If a component uses, say, tB&! and version con
As an example, consider two packages from the =~ ™ P Say,

ECLIPSE API. The packagerg.eclipse.jdt.core.compiler ;[rr%l bgt n(r): tlhf Cv?mn;lpf”?lr’ rthls Spﬁg'{ﬁﬁgzﬂattts\:mﬁymt
provides an interface to thi&VA compiler, such as invok- eed correlate alures—a S 1S What we want fo

ing it or accessing compilation results. On the other hand,m'ne’ as a model that makes accurate failure predictions.

theorg.eclipse.upackage gives access to theLIPSEuser g _—

interface, providingsUl elements for user interaction. For 3 Building Prediction Models
the average programmer, dealing with user interfaces is awe built prediction models from import relationships us-
everyday's job—in contrast to interacting with a compiler ing support vector machinesith a radial basis function as
package. Therefore, we would assume that code whickernel. We used the imported components of a file as in-
uses thecompiler package is more error-prone than code put features to predict the number of post-release failuires.
that uses thaii package. But can we actually quantify All models were trained with historic design data. Such
these differences? models help us to address two problems:

We tested for every component with tistests(a = 0.05)
whether its likelihood is significantly higher (or lower)
than the average likelihoog(O) = 1649/6751 = 0.244

core.Signature Precision Recall Spear. Coef.

graphics.Point trainin 0.8770 0.8933 0.5961
\ g
util.Vector ———————» Model —> failure-prone .
. testinv2.0 0.6671 0.6940 0.3002
o eader S —5% 0.7861 0.1369
lang Math notfallrerprone —10% 0.7875 0.2032
util. RecourceBundel H15% 07957 02648
Figure 1: Classification of a component —20% 0.8000 0.3190
testinv2.1 05917 0.7205 0.2842
Predicted Observed —5% 0.8958 0.3416
—10% 0.8399 0.3702
—15% 0.7784 0.3675
Civa ——B Movel [— <2 27 Cjava —.20% 0.7668 0.3615
Table 2: Predicting packages with classes in ECLIPSE
B.java 3 Model —» 23 24 Ajava
The recall of 0.6940 for the tests in version 2.0 (see Ta-
ble [3) indicates that two third of the observed failure-
Ajava 3 Model 0o 22 Djava prone components were actually predicted as failure-
prone. Again, a random guess yields only a recall of 0.365.
Ranking vs. Classification.The low values for the Spear-
D.java B Model — 17 13 Bjava man rankcorrelation coefficient in Tablé R indicate that

our predicted rankings do not correlate with the observed
)) _ ~rankings. However, the precision values for the top 5% are
Figure 2: Comparison of predicted and observed rankingpigher than the overall values. This means that our classi-

fication works best for the parts that are highly ranked.

Classification. Can we tell whether a component will be Applying Models across VersionsThe results for the test
failure-prone based on its design? This helps to markset of ECLIPSEversion 2.1 show a similar behavior to the
risky parts of a software design. ones for version 2.0. This indicates that our model is robust

over time, i.e., we can learn a model for one version and

Ranking. Can we tell which components will have the 4pp1y it to a later version without losing predictive power.
most failures? This information identifies the parts

of a software design that require most attention whens Conclusion

being implemented and tested. o S
A component’s likelihood to fail is significantly deter-

Figure[] illustrates the classification of files as failure- mined by the set of components that it uses. Why is this
prone. If a file imports five classesre.Signaturegraph- so? Our hypothesis is that the set of used components is
ics.Point util.Vector, io.Readerandlang.Math—itis clas- determined by the problem domaird some of these do-
sified as failure-prone by our model. If another file ad- mains are harder to get right than others—at least, this is
ditionally importsutil. ResourceBund|eour model classi- what theECLIPSEfailure history suggests.
fies it as not failure-prone. For ranking we predict for Using our approach, managers and developers can
every component the number of failures and sort by thisleverage earlier failure history to predict future failure-
We compare predicted rankings—suchGgava B.java prone components, and thus assign resources to those com-
A.java andD.javain Figure[2—to the observed rankings. ponents which need it most. Since the set of used compo-
nents is typically defined at design time, these decisions
4 Results: 52 ECLIPSE Plug-Ins can be made very early in the software process.

i : For ongoing information on the project, log on to
For our experiments, we useghdom splits we randomly going proj g

chose one third of the 52 plug-ins BELIPSEversion 2.0 http://www.st.cs.uni-sb.de/softevo/

as our training set, the other two third as test set for 2.0 an

the complement in 2.1 as test set for 2.1. We generate eferences

a total of 40 random splits; we averaged the results for[1] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-

computing theprecisior) recall. andcorrelationvalues. oriented design metrics as quality indicatdiSEE Trans. Software
’ Eng, 22(10):751-761, 1996.

Precision and Recall.For the test sets in version 2.0, our [2] G.Denaro, S. Morasca, and M. PézDeriving models of software

: ‘e fault-proneness. Imternational Conference on Software Engineer-
models obtained precisionof 0.6671 (see Tab[g 2). That ing and Knowledge Engineerinpages 361-368, July 2002.

is, two out of three components predicted as failure-pronez; r. subramanyam and M. S. Krishnan. Empirical analysis of ck met-

were observed to produce failures. For a random guess rics for object-oriented design complexity: Implications for soft-
instead. the precision is only 0.365. ware defects|IEEE Trans. Software Eng29(4):297-310, 2003.

http://www.st.cs.uni-sb.de/softevo/

	Introduction
	Failure-Proneness of Single Components
	Building Prediction Models
	Results: 52 ECLIPSE Plug-Ins
	Conclusion

