
Ramp-up Journey of New Hires
Tug of War of Aids and Impediments

Ayushi Rastogi∗, Suresh Thummalapenta†, Thomas Zimmermann‡, Nachiappan Nagappan‡ and Jacek Czerwonka†
∗Indraprastha Institute of Information Technology, New Delhi, India

†Microsoft Corporation, Redmond, USA
‡Microsoft Research, Redmond, USA

ayushir@iiitd.ac.in, {suthumma, tzimmer, nachin, jacekcz}@microsoft.com

Abstract—Hiring top talent is essential for any software
company’s success. After joining the company, new hires often
spend weeks or months before making any major contribution
and attaining the same productivity level as existing employees.
We use the term ramp-up journey to refer to this transition of
new hires from novice to experts. There can be several factors,
such as lack of experience or lack of familiarity with processes
unique to the new company, which influence the ramp-up journey.
To understand such aids and impediments in the ramp-up
journey, we conducted a study by analyzing data extracted
from version control systems of eight large and popular product
groups in Microsoft with several thousand software developers. In
particular, we studied two aspects of the ramp-up journey. First,
we studied time taken to make the first check-in into the version
control system, an important milestone in the ramp-up journey
indicating the first contribution. Second, we analyzed the time
taken to reach the same productivity level as existing employees in
terms of check-ins. We further augmented our quantitative study
with qualitative results derived by surveying 411 professional
developers. Our study produced promising results, including
factors such as having a mentor, prior knowledge of required skill
sets, and proactively asking questions, that could help reduce the
ramp-up journey of new hires.

I. INTRODUCTION

Hiring new talent is one of the core competencies of any
software company, to meet evolving business requirements
and to stay ahead of its competitors. For instance, over
the past decade, Microsoft hired several thousand software
developers each year. These new hires range from fresh college
graduates without any prior industry experience to professional
developers with several years of experience. Soon after on-
boarding the company, new hires undergo rigorous training
in getting familiar with not only their assigned project, but
also with processes and the overall culture of the company.
Therefore, new hires take some time before making any
contribution to their project and becoming as productive as
existing employees. We use the term ramp-up journey to refer
to this time period spent by new hires in transitioning from
novice to experts and becoming as productive as existing
employees.

There exist several reasons why ramp-up journey of new
hires can span up to several weeks or months. In the case
of college graduates, despite of best curricula, there are still
gaps between what graduates learn in the college and what

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

Existing Employees New Hires

P
er

ce
nt

ag
e

(%
)

0

20

40

60

80

100

14% 17% 18% 22% 24% 24% 26% 49%

Fig. 1. Percentage of new hires in different product groups

they need to know to be productive in a typical work envi-
ronment [1] [2]. For instance, graduates are trained in various
skills such as programming and development methodologies
(Agile or Extreme Programming). However, college graduates
often lack communication and teamwork skills, and are also
not prepared to deal with various aspects such as complex
development processes, legacy code, and tight deadlines [3].
On the other hand, experienced professionals, although famil-
iar with some aspects such as working under tight deadlines,
also face challenges in a new company. The primary reason is
that different companies use different processes, technologies,
and tools. For example, IBM primarily uses Rational Team
Concert [4] as a version control system, whereas Microsoft
primarily uses Source Depot, Team Foundation Server [5], or
Git [6]. Therefore, experienced professionals need to master
new processes and technologies before becoming as productive
as existing employees [7].

To understand the aids and impediments in the ramp-up
journey of newly hired software developers, in this paper, we
conducted a large-scale study that uses mixed data analysis.
Our analysis combines software engineering data extracted

from version control systems and qualitative data from surveys
and interviews. We analyzed recent releases of eight large
and popular product groups in Microsoft with several thou-
sand software developers. These eight product groups account
for the majority of engineering workforce at Microsoft. We
observed that 18-49% of all software developers in product
teams considered in our study are new hires (refer Figure 1).
In Figure 1, the horizontal axis shows different product groups
and the vertical axis shows percentage of new hires for the
duration of product release under analysis. We use P1 to P8 to
identify different product groups and to anonymize the results
for confidentiality. Percentage of new hires in product groups
as high as 49% makes it interesting to understand factors that
influence the time it takes for new hires to become productive.
To gain deeper understanding of the factors that influence the
ramp-up journey of new hires with different experience levels,
we used three levels to represent new hires: entry, middle,
and senior. ‘Entry Level’ represents developers such as col-
lege graduates without any prior industry experience. Middle
level represents developers with 1-3 years of experience or
have higher qualification such as doctorate degree. Finally,
senior level represents developers with more than 3 years of
experience.

We analyze the ramp-up journey of new hires on two
aspects. The first milestone in the ramp-up journey of new
hires is achieved when new hires make first check-in into
the version control system. Specifically, we examine check-
ins in the master branch or shippable branch. The choice of
master or shippable branch ensures that all check-ins analyzed
in the study mark significant contribution and are not test
check-ins. Thus, first check-in ensures that new hires have
attained a basic understanding of the engineering system used
by the project and also some basic knowledge of the project to
achieve the task. Finally, new hires ramp-up when they attain
the productivity level of existing employees. In this study, we
measure the time to first check-in and the ramp-up time to
analyze the productivity of new hires and understand factors
that influences the ramp-up journey.

Our motivation is that the results of our study help fix the
problems from a two pronged approach for both industry and
academia. From the industry perspective, this information help
managers and business analysts fix some of the bottlenecks
in the existing processes and improve useful practices to
help new employees ramp-up faster, increase morale, improve
productivity, etc. From an academic perspective, the study can
help faculty understand the skills needed for the students to
succeed in the industrial environment. To summarize, in this
study, we try to answer two broad sets of research questions:

1) The factors that influence the ramp-up journey of new
hires; and

2) The amount of time it takes for new hires to become
productive.

To the best of our knowledge, our study is the first that
attempts to combine both quantitative and qualitative data to
address these questions. There have been prior studies [8] [9]

[10] discussed in related work that approach this from different
perspectives like interviews, surveys, etc. However, we are the
first to quantitatively combine both software engineering data
and data from developers’ opinions. Noteworthy to add that
some of the findings from this study may already be known in
the industry, however, there exists no empirical evidence drawn
from a systematic analysis of software engineering data. We
believe that product teams can use the results from this study
to adopt best practices.

Our results indicate that the ramp-up journey is influenced
by various factors in the company. We discovered that while
having a mentor, prior knowledge of required skill sets, etc.
help in increasing the productivity; lack of proper documen-
tation, trying to get access and permissions, etc. reduce the
productivity of new hires. We complete the story by presenting
a comprehensive list of activities that new hires engage in and
present their suggestions to improve the productivity.

II. RELATED WORK

There exists a large body of research on integrating freshly
recruited university graduates into the organization. Begel and
Simon conducted a qualitative analysis of fresh university
graduates. They observed that a large fraction of problems en-
countered by university graduates is due to their inexperience
with the corporate environment [8]. Dagenais et al. provided
an initial theory on project landscapes to help new hires
familiarize faster with the team [9]. Their study emphasized
the relevance of mentor and good documentation to help new
hires adjust and perform in team. Sim and Holt interviewed
new hires to identify patterns in which they familiarize them-
selves with the project and the environment, and discussed its
implication [11]. Besides these, Ostroff investigated the role
of mentoring in the learning process of newcomers [10]. The
author observed that newcomers with mentor have a better
understanding of organizational issue and practices compared
to others. Another class of study provide recommendations to
bridge gaps between the understanding of college graduates
and the requirements of the industry. Raderwacher and Walia
conducted a systematic literature review to identify the most
common areas of deficiency in university graduates from
academia or industry job perspectives [12]. Similarly, Begel
and Simon observed difficulties in the transition from college
graduates to experienced software engineers and suggested
changes in curricula and software engineering courses [2].
Brechener goes on to recommend courses that might help
bridge the expectation gaps between academia and indus-
try [1]. The existing studies have largely focused on under-
standing problems encountered by fresh university graduates
and attended this question from the qualitative analysis per-
spective. In relation to existing studies, our study makes the
following two novel contributions:

1) We study the ramp-up journey of new hires ranging from
fresh university graduates to professionals with prior job
experience.

2) We quantitatively analyze the software engineering data
and augment the results with qualitative analysis.

Fig. 2. Data collected by CodeMine

III. BACKGROUND

CodeMine [13] provides a data collection framework for
all major Microsoft development teams. It collects information
from source code repositories, irrespective of their format, and
stores data on changes, sources, branches, and code integra-
tions in a normalized schema. It does the same for builds, work
item repositories, and organizational data. After normalizing
into a common schema (see Figure 2), it creates relationship
between artifacts. For example, it creates relationship between
work items and source changes to capture the changes made
in response to a work item. Similarly, it creates relationship
between builds and source code to capture the changes which
appeared for the first time in a particular build. When the
relationships are built, CodeMine exposes all collected and
interpreted data as a service. As a result, the tool is ideal for
learning about the practices used across teams and developing
a set of metrics that can be used for generally characterizing
branch structures.

IV. RESEARCH METHODOLOGY

A. Data Collection

In this section, we describe the data collection methodol-
ogy for our study. We use a mixed data analysis technique
combining software engineering data extracted from version
control systems and bug repositories, and qualitative data
from surveys and interviews, to answer our research questions.
Table I summarizes the products from which we analyzed new
employees and the start-end date of the releases under analysis.

To determine the ‘new hires’ in our analysis, used in the
rest of the paper, the employee in the software development
role had to satisfy one or more of the following four criteria:

1) The employee is a university recruit or this is the first
company of the employee.

2) The employee joined the company as an intern or vendor
and converted to a full time position.

3) The employee left the company and joined again after at
least a year.

4) The employee worked for other companies in the past.
In point 3, we consider returning employees as new hires
because they have to adapt to the rapidly changing technology
and practices in the company, in addition to the other factors.

TABLE I
PRODUCTS AND START-END DATE OF THE RELEASES

Products Start Date End Date
Azure 2011-01-01 2013-12-31
Bing 2009-12-30 2013-11-12
Exchange 2010-10-01 2013-08-31
Office 2011-09-01 2013-08-31
SQL Server 2009-07-01 2012-03-06
Windows 2009-10-22 2013-07-01
Windows Phone 2010-07-03 2014-02-03
Windows Server 2009-10-22 2013-07-01

The rest of the software developers, including internal trans-
fers, are termed as existing employees for this study. Next,
we explain below the quantitative and qualitative analysis
methodology.

B. Quantitative Analysis

The core part of our quantitative analysis is formed by
the CodeMine data [13]. We use the version control system
database and the employee information database as the starting
point in our analysis. In the ramp-up journey, for new hires
to transition from novice to experts, they have to attain the
productivity level of existing employees. To do so, we first
define a baseline for productivity of software developers in
the context of our study.

Software developers perform various activities like writing
code, reviewing code, debugging code, etc. The objective of
these activities is to generate useful features, provide fixes
to existing bugs, etc. In Microsoft, all software developers
are expected to make code check-ins into the version control
system as part of developing new features or making bug fixes.
So, one denomination to measure the contribution of software
developers is code check-ins. In this study, we examine various
factors related to code check-in to suggest the productivity of
software developers.

The first milestone in the ramp-up journey of new hires is
when they make their first check-in into the version control
system. First check-in marks the first useful contribution, and
time to first check-in indicates the time it takes to make a
useful contribution. Since, the first check-in alone does not
suggest that the developer is productive, we also measure the
time to ramp-up. We quantify the ramp-up time as the time
it takes for a new hire to reach the average productivity level
of existing employees. To measure the time to ramp-up, we
examine the frequency of check-ins as an indicator of the
familiarity with the process that comes with initial experience.
Thus, frequency of check-ins measure the familiarity with the
process. However, it falls short to comment on the efforts and
the span of knowledge required to implement the change. To
capture these features, we examine artifacts related to source
code like lines changed and files changed. Lines changed
indicate efforts of software developers, where the contribution
can be in the form of code, comments, or documentation. Simi-
larly, files changed indicates that the developer has acquired an
understanding of a set of files and their relationships. These
measures, that is, check-ins counts, lines of code changed,

and files changed have also been used in literature to measure
developer’s contribution [14] [15].

In this section, we measure the time to first check-in and
examine the ramp-up time using frequency of check-ins, lines
changed, and files changed. Here, it is important to note
that the three metrics used to compute ramp-up time are
not exhaustive. However, the three metrics capture the key
contributions of software developers and gives a fair picture
of the ramp-up journey. In addition to this, we examine the
influence of experience and the product team of the new hire
on the time to first check-in and the ramp-up time. In this
study, we try to answer the following research questions:
RQ1 Does the product group of new hires influence the time

to first check-in?
RQ2 Does prior job experience, within or outside the com-

pany, influence the time to first check-in?
RQ3 Does early check-in correlates with early ramp-up?
RQ4 Is ramp-up journey a function of experience and prod-

uct?

C. Qualitative Analysis

To complete the understanding of factors that influence
the ramp-up journey of new hires, we augment quantitative
analysis with qualitative results. Here, qualitative results in-
clude a small set of interviews and a broad deployment of
a survey directed towards new hires at Microsoft. To get a
flavor of factors that influence the ramp-up journey of new
hires and to help with designing the survey, we conduct a
small scale interview of four software developers. Three out of
the four interviewees were ‘Entry Level’ software developers
and one of them was ‘Senior Level’ software developer. We
interviewed software developers for a half hour each and
presented them with two open-ended questions.

1) What factors supported or undermined their attempts to
make early first check-in and reduced the time to ramp-
up?

2) What could have been done to reduce the time to first
check-in and the ramp-up time?

We use the responses from the four interviews to formulate
two sets of multiple-choice questions, in addition to the demo-
graphics and open ended questions. The first set of questions
try to understand the influence of specified factors on the
time to first check-in. Similarly, the second set of questions
try to understand the effect of specific factors on the time
to ramp-up. The two sets of questions are evaluated on a 5-
point Likert scale, along with an additional field titled ‘I don’t
know’. The field ‘I don’t know’ is intended to address cases
where the survey respondents have no understanding of the
situation described as factors influencing the ramp-up journey.
Both sets of questions are followed by an open ended question
to capture factors that are not mentioned in the list. Next,
we asked software developers the list of activities, other than
code check-in, that demands their time and efforts. Finally, we
requested their suggestions on practices that may help reduce
the ramp-up time.

TABLE II
STATISTICAL SIGNIFICANCE OF SURVEY RESULTS

Parameter Increase No effect Decrease p-value
Lack of proper doc-
umentation for the
project

267 63 75 <0.001***

To conduct the survey, we identified software developers
from the eight product groups based on the following criteria:

• Developers have some minimum experience with the aids
and impediments that can be faced during ramp-up.

• The aids and impediments encountered during the ramp-
up journey are still fresh in their minds.

• Have a reasonable sample of new hires, as we anticipated
a response rate of ≈ 20% based on previously conducted
studies.

Based on the above criteria, we identified 1,189 software
developers with 6 to 13 months of experience at Microsoft
on the date of analysis. The survey was sent to all identified
software developers representing different roles, career stage
paths, and nationalities. We received 411 completed responses
(34.57% response rate), 1 partially filled response, and no
disqualified response. 99.8% of the responses we received
were from individual contributors. The other roles asked in
the survey were lead and manager.

As we present the qualitative results, we first analyze the
usefulness of the summaries of survey by computing statistical
significance using chi-square test at 0.05 significance level.
To compute statistical significance, we convert the ordinal
scale to its nominal equivalent. We merge ‘Strong Increase’
with ‘Moderate Increase’ and collectively present the result
as ‘Increase’. Similarly, we merge ‘Strong Decrease’ with
‘Moderate Decrease’ as ‘Decrease’. The rest two categories,
‘I Don’t Know’ and ‘No Effect’ are considered as one and are
titled ‘No effect/I don’t know’. For each statistically significant
result, we compute the central tendency as the most frequent
response or ‘mode’ and present the results. Table II presents
a sample question asked in the survey that tries to understand
the impact of ‘Lack of proper documentation for the project’
on the time to first check-in. A detailed discussion of the
complete list of factors is given in the next two sections.
In Table II, 267 survey respondents said that lack of proper
documentation for the project increases the time to first check-
in. 63 survey respondents either did not encounter this problem
or considered that it had no effect, and 75 responses suggested
that it decreases the time to first check-in. We conducted chi-
square test and observed p-value<0.001. P-value<0.001 gives
a very strong presumption against the null hypothesis, thereby
suggesting that the result is statistically significant. The claim
made by central tendency summaries, as identified by mode,
is that ‘Lack of proper documentation increases the time to
first check-in’.

In the next two sections, we present an analysis of the
time to first check-in and the ramp-up time respectively.
We quantitatively analyze the time to first check-in and the

Fig. 3. Product groups and time to first check-in

ramp-up time, followed by the summaries of the multiple
choice questions asked in the survey. Further, to complete
the analysis, we present the opinions of survey respondents
presented in the open ended questions. We present the list
of activities that claim the time and efforts of new hires and
also suggestions from the survey respondents to improve the
ramp-up journey. We card sort the opinions of the new hires in
the open-ended questions and present it in the non-increasing
order of the frequency of occurrence.

V. TIME TO FIRST CHECK-IN

The time to first check-in marks the first step in the ramp-up
journey of new hires. We measure the time to first check-in as
the duration from the starting date at Microsoft until the time
the new hire makes first check-in into the master branch of the
version control system. For confidentiality reasons, we obscure
the unit of time used in the study and report the results.

A. Quantitative Analysis

1) RQ1: Does the product group of new hires influence the
time to first check-in?: Microsoft is a large software company
with multiple product divisions. Each product division at
Microsoft is slightly different from other divisions in terms
of tools, technologies, or processes being used. Here, we
are interested to know whether working with some specific
product group help new hires make early first check-in into
the system. By answering this question, we can identify some
of the best practices in product groups which can then be
transferred to other product groups. To do so, we measure the
time to first check-in for all new hires in the eight product
teams and compute quartiles. The choice of quartiles for the
study ensures that our results are not affected by outliers.
Figure 3 shows the boxplot of the time to first check-in for
the new hires in the eight product teams. Here, the horizontal
axis shows the product groups and the vertical axis shows
the time to first check-in measured in weeks. In Figure 3,

Fig. 4. Experience and time to first check-in

we observe that the median of the population of new hires
across all product divisions take ≈4-10% of the maximum
time to first check-in. The analysis of eight product groups
at Microsoft suggests that working on some specific product
group has no significant impact on the time to first check-in.
However, we see that the third quartiles of the product teams
show marked differences. Figure 3 shows that new hires in
products P2 and P8 take longer (≈34% and ≈43% of the
maximum time to first check-in across products respectively)
relative to other product groups (minimum ≈14% in product
P5). Further investigation is required to understand the cause.

2) RQ2: Does prior job experience, within or outside the
company, influence the time to first check-in?: Microsoft
recruits several thousand new hires every year, ranging from
fresh university graduates to professionals with prior job
experience. Here, we are interested to know whether prior
job experience help new hires make early first check-in into
the system. To investigate the impact of prior job experience
on the time to first check-in, we analyze the influence of the
career stage path or job title, an indicator of experience, on
the time to first check-in. At Microsoft, professionals are hired
with job-titles that conform to their prior job experience. For
instance, professionals with 1 to 3 years of experience are
hired as ‘Middle Level’ software developers. Thus, in this
study, we analyze the role of job title on the time to first
check-in. To start with, we classify job titles in Microsoft
into ‘Entry Level’, ‘Middle Level’ and ‘Senior Level’ software
developers. ‘Entry Level’ include software developers with job
titles ‘Software Development Engineer (SDE)’ and ‘IT SDE’.
‘Middle Level’ include job titles ‘SDE 2’ and ‘IT SDE 2’,
and ‘Senior Level’ include job titles ‘Senior SDE’, ‘Principal
SDE’, ‘Partner SDE’ , and ‘Distinguished Engineer’. For each
career stage path, we compute the time to first check-in for
all new hires and plot the results.

Figure 4 shows the viola plot where the horizontal axis
shows the three career stage paths of software developers and
the vertical axis shows the time to first check-in measured
in weeks. The plot in Figure 4 is a combination of box plot
and smoothened density function where the density function
indicates the developer distribution pattern. Thus, broader the
width; higher the fraction of new hires that takes specific time
to make first check-in. In Figure 4, we observe that the per-
centage increase in the median time to first check-in for middle
and senior level software developers is ≈20% relative to entry
level software developers. Least median time to first check-in
for entry level software developers imply that developers with
no or less than a year of prior job experience makes early
first check-in compared to experienced new hires. Further, we
observe that middle level and senior level software developers
have the same median time to first check-in with different
density distributions. The density distribution for senior level
software developers peaks at median, relative to the spread
of middle level software developers. This distribution implies
that senior level software developers perform consistently and
make early first check-ins compared to middle level software
developers. This observation calls for further investigation to
understand the factors that influence the time to first check-in
for all levels of software developers.

B. Qualitative Analysis

To present a comprehensive list of factors that influence
the ramp-up journey, we present the opinions of new hires
at Microsoft on the factors that influence the time to first
check-in. We asked new hires the effect of a set of factors
on the time to first check-in. These questions are based on the
interviews conducted with four new hires with different career
stage paths. Table III shows the impact of these factors on the
time to first check-in. The opinions of new hires are presented
on the scale of ‘Strong Increase’ to ‘Strong Decrease’. We use
an additional field titled ‘I don’t know’ to account for cases
where survey respondents have no opinion on the impact of
the factor asked in the survey. Table III present the opinions
of new hires in 7 (out of 8) product groups as there was no
survey response from one product group we analyzed in the
study. These observations can be used by the product groups
to identify and eliminate bottlenecks in the processes and help
improve existing practices.

To visualize trends across product groups, we color code
the observations in Table III. Here, we present areas of
improvement as shades of red and good practices as shades
of green. The factors on which survey respondents have no
opinion are presented as yellow. We leave the factors with no
effect colorless. Also, ‘-’ indicates that we received insignif-
icant responses from the product division on the influence of
the factor to support interpretation. Further, darker the color;
stronger is the impact. Thus, dark red (on a relative scale)
means that the parameter strongly increases the time to first
check-in. In Table III, all results, except for ‘Availability of
Resources on Arrival’ are statistically significant. We present

summaries of statistically significant results and open ended
responses.

In Table III, we see that lack of proper documentation
increases the time to first check-in. The lack of proper doc-
umentation strongly increases the time to first check-in in 5
(out of 7) product groups. While for the rest 2 product groups,
it moderately increases the time to first check-in. Also, getting
access and permissions, working on codes with dependencies,
and working on legacy codes moderately increases the time to
first check-in for majority of product teams. 4 out of 7 product
teams say that joining the team near product release has no
effect on the time to first check-in, while the other 2 teams
did not comment on it. It is noteworthy to see that new hires
in product P4 says that joining the team near product release
strongly increases the time to first check-in. Besides these,
changing product teams, writing new code compared to fixing
the issues, identifying the reviewers for the code, changes in
team composition, and making check-ins in branches other
than the main branch have no effect for the majority of product
teams. One key observation from this analysis is that not
all product teams are influenced by all the parameters stated
above. Also, the degree of influence varies substantially across
product teams.

In the open-ended question that followed, we asked survey
respondents to enumerate factors, other than the ones listed in
the survey, which influence the time to first check-in. We card-
sorted the responses in the open-ended question and found the
following themes that influence the masses. The themes are
presented in the non-increasing order of occurrence.

1) Mentorship: Software developers stressed the importance
of having a manager, mentor or lead, to talk to, during
the initial days. They said that mentors can assist new
hires in getting unstuck and make early first check-ins.
Also, software developers who were not assigned mentors
experienced that absence of mentor resulted in significant
loss of time.

2) Documentation: Software developers feel that lack of de-
tailed documentation of products and processes strongly
increase the time to first check-in. To add to, the docu-
ments are stored at different places, in different formats,
and some documentation are out of date.

3) Process: Software developers feel that engineering pro-
cesses need some improvement. They believe that the use
of standard components, for which documentations and
manuals are available widely, will help reduce the time
to first check-in.

4) Access and Permissions: New hires feel that it takes some
time to figure out the desired access and permissions.
They suggest that it will be helpful to associate access
and permissions with the team and not the individuals.

5) System setup: Software developers say that they spend a
considerable amount of time to set-up environment and
configurations, which can be improved.

Besides these, developers find that the lack of confidence to
make changes, large size of the code base to study, lack of

TABLE III
INFLUENCE OF THE FOLLOWING FACTORS ON THE TIME TO FIRST CHECK-IN [SI: STRONG INCREASE; MI: MODERATE INCREASE; NE: NO EFFECT; MD:

MODERATE DECREASE; SD: STRONG DECREASE; DK: DONT KNOW]

How do the following items affect the time to first check-in? P1 P2 P3 P4 P5 P6 P7 Statistical
Significance

Lack of proper documentation for the project SI SI SI SI SI MI MI <0.001***
Getting access and permissions MI MI MI SI SI MI MI <0.001***
Working on a code with dependencies to others’ work SI MI MI MI - MI MI <0.001***
Working on preparatory tasks (like code review, coding assignments, etc.) MI MI MI SI MI MI MI <0.001***
Working on legacy code MI MI NE MI MI MI MI <0.001***
Availability of resources (like desktop, task related equipment(s) on arrival) NE NE NE SI SI - MI 0.25
Join the team near product release NE NE NE SI DK NE DK <0.001***
Changing products, such as moving from Windows DK DK DK NE NE NE DK <0.001***
Writing new code than fixing issues NE NE NE MI MI NE DK <0.001***
Identifying the reviewers for the code NE NE NE MI NE NE NE <0.001***
Changes in team composition, such as change of immediate manager NE NE NE NE NE NE NE <0.001***
Making check-ins in branches other than the main branch NE NE NE NE NE NE MI <0.001***

TABLE IV
CORRELATION BETWEEN TIME TO FIRST CHECK-IN AND RAMP-UP TIME

AFTER FIRST CHECK-IN

P1 P2 P3 P4 P5 P6 P7 P8
Commit
Counts

-0.06 -0.01 -0.09 -0.22 +0.04 -0.00 -0.04 +0.13

Lines
Changed

-0.07 -0.09 -0.24 -0.39 -0.13 +0.10 -0.34 -0.31

Files
Changed

-0.13 -0.18 -0.18 -0.52 -0.21 -0.00 -0.16 -0.30

technical skills required for the job, development environment,
meetings with a broader scope (not targeted), and frequent
manager changes increase the time to first check-in.

VI. TIME TO RAMP-UP

A. Quantitative Analysis

As summarized in Mythical Man-Month, adding personnel
to the project decreases productivity in the short term [16].
New hires take time to reach the productivity level of existing
employees. The amount of time taken to ramp-up influences
resource planning, effort estimation, and hence the produc-
tivity of the team. Therefore, managers and business analysts
might be interested to know the time to ramp-up and study
its impact. In this study, we define ramp-up time of new hires
as the time required to reach the median productivity level of
existing employees. We measure the time to ramp-up on three
parameters, namely the frequency of check-ins, lines changed,
and files changed. To establish the baseline, we measure the
median check-in counts, lines changed, and files changed for
existing employees in each product per unit time. We then
measure the unit of time it takes for the new hires to reach
the median productivity level of existing employees. In this
section, we are interested to find answers to the following
research questions:

1) RQ3: Does early first check-in correlates with early
ramp-up?: Managers and business analysts might be interested
to understand the best practices that help reduce the ramp-
up time. So in this context, we analyze whether early first
check-in help new hires ramp-up faster, compared to others
who take longer to make first check-in. For all product teams,
we compute the correlation between the time to first check-

Fig. 5. Product groups and time to ramp-up

in and the time to ramp-up after first check-in. We compute
the correlation on check-in counts, lines changed, and files
changed using Spearman’s rank correlation coefficient. For all
three parameters, we observe negligible to weak correlation
ranging from +0.10 to -0.39 (refer Table IV). Negligible to
weak correlation between the time to first check-in and the
ramp-up time suggests that the time to ramp-up is not a
function of the time to first check-in. However, the negative
magnitude of correlation implies that new hires who take
longer to make first check-in do not necessarily take longer to
ramp-up after first check-in.

2) RQ4: Is ramp-up journey a function of experience and
product?: In the previous section, we examined the impact of
experience and product group on the time to first check-in.
We observed that the median time to first check-in is similar
across all product groups analyzed. Also, we saw that middle
level software developers’ take longer than entry level and
senior level software developers to make first check-in. In this
study, we are interested to know that similar to the time to
first check-in, does experience and product team influence the
ramp-up time?

For each product group, we compute the median time to
ramp-up and present the results (as shown in Figure 5). In
Figure 5, the horizontal axis shows the product groups and

the vertical axis shows the time to ramp-up in months. The
legend refers to the three parameters we used to measure the
time to ramp-up. In Figure 5, we observe that new hires ramp-
up on the three parameters stepwise. First, new hires ramp-
up on check-in counts, followed by lines changed, and files
changed. This follows the intuition that making changes to
multiple files require broad understanding of the task, and
hence takes longer than ramping-up on check-in counts, or
lines changed. Also, we observe that the median time to ramp-
up on eight product groups is similar for check-in counts (≈32-
45% of the maximum time to ramp-up measured in months).
However, it varies significantly for lines changed (≈45-81%)
and files changed (≈68-100%). A large variance in the ramp-
up time on lines changed and files changed indicate differences
in ramp-up time across products. This information can be
used by managers and business analysts in understanding the
productivity of new hires across products, make better effort
estimations, conduct resource planning, and take appropriate
actions.

Figure 6 shows the time to ramp-up based on experience.
In Figure 6, the horizontal axis shows experience as identified
by the title and the vertical axis shows the time to ramp-up
measured in months. We analyze the median time to ramp-
up on check-in counts, lines changed, and files changed. We
see that the percentage increase in the median time to ramp-
up on check-in counts for different experience levels is ≈5%
(measured in months). Thus, experience has no impact on
ramp-up time on check-in counts. However, for ramp-up on
files changed and lines changed, we see that middle and
senior level software developers take marginally longer than
entry level software developers to ramp-up. The percentage
increase in the median ramp-up time on lines changed for
middle level and senior level software developers is ≈13% and
≈6% respectively relative to entry level software developers.
Similarly, the percentage increase in the median time to ramp-
up on files changed is ≈22% for middle level and senior level
software developers relative to entry level software developers.

B. Qualitative Analysis

We present the opinions of new hires at Microsoft on the
factors that influence the time to ramp-up. We asked the new
hires the effect of the factors (mentioned in Table V) on the
time to ramp-up. These questions are based on the interviews
of new hires who followed different career stage paths. Table V
shows the central tendency summaries, as presented by mode,
for the 7 (out of 8) product groups analyzed in the study.
Similar to the previous section on qualitative results, here
red indicates areas of improvement, green indicates good
practices, yellow implies don’t know, and colorless means
no effect. Also, darker the color means stronger the impact.
In Table V, all results, except for ‘Communicating Technical
Prerequisites’, are statistically significant.

In Table V, we observe that prior knowledge of pro-
gramming languages, programming environment, and tools
help decrease the ramp-up time. Similarly, proactively asking

Fig. 6. Experience and time to ramp-up

questions, prior familiarity with the process, and having a
mentor decrease the time to ramp-up. Though, the influence is
different for products P4 and P5. Contrary to this, new hires
say that maintaining documentations, to do lists, and working
on preparatory tasks increase the ramp-up. When asked about
the impact of prior familiarity with the team on ramp-up time,
new hires expressed mixed opinions across product teams.
Also, 5 (out of 7) teams say that active participation in social
events has no effect on the time to ramp-up. The rest 2
teams say that it moderately increases the time to ramp-up. In
addition to the parameters stated above, software developers
feel that the following practices influence the time to ramp-up.

1) Team Interaction: New hires say that verbal communica-
tions in team and pair programming are the most effective
ways to ramp-up. They find that spending more time
with the manager and the team during first 1-2 months
is helpful. They add, that recently ramped-up employees
reduce the ramp-up time of new employees the most.

2) Training: Software developers say that training programs
like boot camp, etc. are very helpful.

3) Overview of the system: Software developers say that
well-chosen starting tasks that gives a complete overview
of the system helps reduce the ramp-up time.

4) Proximity to release: Developers find that joining the
team after product release increases the time to ramp-up
as there is not much code to write.

Other than these, developers’ say that familiarity with people,
customer, process, product, and code helps improve the ramp-
up journey.

VII. OTHER NEW HIRE ACTIVITIES

In the above two sections, we presented different factors that
influence the ramp-up journey and measured time to ramp-
up using various features of check-ins. However, new hires
perform various activities, other than code check-ins, thereby

TABLE V
INFLUENCE OF THE FOLLOWING FACTORS ON THE TIME TO RAMP-UP [SI: STRONG INCREASE; MI: MODERATE INCREASE; NE: NO EFFECT; MD:

MODERATE DECREASE; SD: STRONG DECREASE; DK: DON’T KNOW]

How do the following item affect the time to ramp-up? P1 P2 P3 P4 P5 P6 P7 Statistical
Significance

Prior knowledge about programming languages (such as C#), programming
environments (such as Visual Studio), or tools (such as versioning tools)

SD MD SD - MD - SD <0.001***

Proactively asking questions to your manager, mentor or team SD MD MD - - SD MD <0.001***
Prior familiarity with processes (such as how effort estimation is done or review
process)

MD MD MD MI MI MD MD <0.05**

Having a mentor SD SD SD SI SI SD DK <0.001***
Maintaining documentation, to do lists, introductory videos for different em-
ployee titles

SI NE SD SI MI MI MI <0.001***

Preparatory tasks (such as code review, building prototypes) or training pro-
grams (like boot camp)

MI MI MD SI SI MI SI <0.001***

Communicating the relevant technical prerequisites (such as tools and lan-
guages used) of an employee’s title, prior to joining

MD NE NE MI SI MI MI 0.66

Prior familiarity with team (such as the cases of moving from an intern to a
full time position)

NE DK DK MI MI DK DK <0.001***

Active participation in social events, such as team lunches etc. NE NE NE MI MI NE NE <0.001***

making it important to understand the activities that are not
captured in the study. We asked the survey respondents the list
of activities they perform and present the themes arranged as
different stages in the ramp-up journey of new hires.

New hires who relocated from other countries or states say
that it takes time to settle in a new country or state. Further,
they add that on arrival, they have to set-up the system, get
the required access and permissions, enroll for benefits, get
HR/staffing set up, etc. Once the required resources are made
available, new hires find themselves trying to understand the
existing system and identify their role in the team. They
say that they undergo training programs, attend meetings,
and study all kinds of documentation to acquire the required
technical and functional knowledge. They add, that sometimes
they are assigned code reviews, prepare prototypes or demos,
or even read legacy code to get a better understanding of
the system. Further, in the process of knowledge transfer,
they spend substantial time in proactively asking questions.
New hires emphasize that while they are learning and trying
to ramp-up, they also engage in other activities like testing,
bug fixing, debugging, bug triaging, identifying and resolving
dependencies, etc.

New hires also identify some miscellaneous activities that
claim their time and effort. They say that they spend time in
planning, writing proposals, estimate time for the task, perform
production related duties, add work items, participate in events
like ‘Hackathon’, etc. While this list is not exhaustive, it
gives a fair understanding of the various activities that new
hires perform other than code check-ins. This list of activities
suggest that while code check-in is a good indicator of
productivity, it does not present a complete picture.

We requested new hires for suggestions on practices that
might help improve the productivity of new hires. We believe
that this information can help companies in improving the
ramp-up journey of new hires. New hires suggest that improve-
ments in engineering systems like applying companywide
coding standards, improved code base and documentation,
easy tools, etc. will increase the productivity of new hires.
These findings align with Microsoft’s recent initiatives such as

One Engineering System to have one common system across
all projects. They emphasized the usefulness of training tools
and sessions, and guided work for a few weeks during ramp-
up time. They also added that centralization of all information
and clearly communicated expectations are other factors that
accelerate the ramp-up journey.

VIII. THREATS TO VALIDITY

A. Internal Validity

• Data accuracy: The accuracy of the results of this study
depends on the accuracy of the data on which it is built,
e.g., some data may be missing or incomplete. We believe
that this is only a minor threat. For the study, we used
the CodeMine tool, which attempts to capture software
development activities as accurately and completely as
possible. Several production systems at Microsoft are
built on top of CodeMine and its accuracy has been
extensively verified.

B. Construct Validity

• Activities in other product groups: We analyze commits
in the eight product groups, which constitute a vast ma-
jority of the Microsoft workforce. However, if developers
engage in activities in product groups other than the
ones analyzed here, we are not able to capture their
contribution.

• Activities other than code check-ins: We compute the
ramp-up journey of new hires in terms of code check-
ins. However, new hires engage in a wide variety of
activities other than code check-ins (refer Section VII).
Also, different product groups emphasize on different set
of activities during the ramp-up journey of new hires.
These two factors may influence the observed time to first
check-in and the time to ramp-up. So, while comparing
product groups on the time to first check-in and the
time to ramp-up, these two factors should be taken into
consideration.

C. External Validity

• Application of results to product divisions within and out-
side Microsoft: We analyzed eight large, popular product
teams, which constitute the majority of Microsoft’s engi-
neering workforce. We, therefore, believe that the results
are widely applicable to product divisions in Microsoft.
We do not claim that the findings and recommendations
presented in this study extend to any organization and
product team. For example, we expect that the find-
ings may not generalize to organizations with bootstrap
mechanism different from Microsoft or organizations that
hire software developers for testing purposes only. While
findings may not generalize, the research methodology
can be applied to other contexts as long as there are
sufficient data points to compute a baseline productivity
of existing employees.

• Geographic differences:The survey included participants
from different countries with different cultures and work-
ing hours. In addition, Microsoft relocates new hires
from other countries to new countries. We did not collect
enough data to analyze and control for this effect. We,
therefore, caution the reader that our findings may not
apply to arbitrary countries and cultures.

IX. CONCLUSION

We conducted quantitative and qualitative analysis to under-
stand the factors that influence the ramp-up journey of new
hires. Our results reiterate some of the knowledge already
known to the industrial world by mining software engineering
data. We analyzed eight large product groups at Microsoft
and observed that the time to first check-in, a milestone in
the ramp-up journey of new hires, is invariant to the product
group analyzed. In terms of experience, as indicated by the
career stage path levels, entry level software developers make
faster check-ins compared to middle and senior level software
developers. To complete the analysis, we asked the opinions
of new hires to understand the factors that influence the time
to first check-in. We observed that among other factors, lack
of proper documentation, getting access and permissions, etc.
increase the time to first check-in. Further, we computed the
ramp-up time of newly hired software developers on check-
in counts, lines changed, and files changed. We observed that
first new hires ramp-up on check-in counts, followed by lines
changed, and files changed. We also found that the time to
first check-in is weakly, if at all, correlated with the ramp-
up time. The negative correlation implies that new hires who
take longer to make first check-in do not necessarily take
longer to ramp-up thereafter. Also, we see that ramp-up time
is a function of experience and product on lines changed and
files changed. In addition to this, survey results suggest that
prior knowledge of required technical skills, proactively asking
questions, and familiarity with the process help reduce the
ramp-up time along with other factors. We also list activities,
other than the code check-in, that claim developers’ time and

efforts. We conclude the study with suggestions of new hires
to help improve the productivity of new hires.

In future, we would like to study the influence of cultural
and work hour differences in different nations on the ramp-up
journey of new hires. Also, we would like to investigate the
ramp-up journey of internal transfers to understand whether
internal transfers help organization.

ACKNOWLEDGMENT

We would like to offer our special thanks to Christian Bird,
Michaela Greiler, Trevor Carnahan, and Fei Huang for reviews
and Alok Bhayana for the data. We would also like to thank the
conference reviewers for insightful and constructive reviews.

REFERENCES

[1] E. Brechner, “Things they would not teach me of in college: what
microsoft developers learn later,” in Companion of the 18th annual
ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications. ACM, 2003, pp. 134–136.

[2] A. Begel and B. Simon, “Struggles of new college graduates in their first
software development job,” in ACM SIGCSE Bulletin, vol. 40, no. 1.
ACM, 2008, pp. 226–230.

[3] D. K. Taft, “Programming grads meet a skills gap in the real world,”
Retrieved September, 2007.

[4] “Rational Team Concert,” http://www-
03.ibm.com/software/products/en/rtc/, [Online; accessed 11-March-
2015].

[5] “Team Foundation Server,” http://msdn.microsoft.com/en-
us/vstudio/ff637362.aspx, [Online; accessed 11-March-2015].

[6] “git–distributed-even-if-your-workflow-isnt,” http://www.git-scm.com/,
[Online; accessed 11-March-2015].

[7] “Survey Identifies Greatest Challenges When Starting a New Job,”
http://accountemps.rhi.mediaroom.com/new-job-challenges, [Online; ac-
cessed 11-March-2015].

[8] A. Begel and B. Simon, “Novice software developers, all over again,”
in Proceedings of the Fourth international Workshop on Computing
Education Research. ACM, 2008, pp. 3–14.

[9] B. Dagenais, H. Ossher, R. K. Bellamy, M. P. Robillard, and J. P.
De Vries, “Moving into a new software project landscape,” in Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1. ACM, 2010, pp. 275–284.

[10] C. Ostroff and S. W. Kozlowski, “The role of mentoring in the infor-
mation gathering processes of newcomers during early organizational
socialization,” Journal of Vocational Behavior, vol. 42, no. 2, pp. 170–
183, 1993.

[11] S. E. Sim and R. C. Holt, “The ramp-up problem in software projects:
A case study of how software immigrants naturalize,” in Software
Engineering, 1998. Proceedings of the 1998 International Conference
on. IEEE, 1998, pp. 361–370.

[12] A. Radermacher and G. Walia, “Gaps between industry expectations
and the abilities of graduates,” in Proceeding of the 44th ACM technical
symposium on Computer science education. ACM, 2013, pp. 525–530.

[13] J. Czerwonka, N. Nagappan, W. Schulte, and B. Murphy, “Codemine:
Building a software development data analytics platform at microsoft,”
Software, IEEE, vol. 30, no. 4, pp. 64–71, 2013.

[14] G. Robles, S. Koch, J. M. GonZÁlEZ-BARAHonA, and J. Carlos,
“Remote analysis and measurement of libre software systems by means
of the cvsanaly tool,” in Proceedings of the 2nd ICSE Workshop on
Remote Analysis and Measurement of Software Systems (RAMSS). IET,
2004, pp. 51–56.

[15] A. Alali, H. Kagdi, and J. I. Maletic, “What’s a typical commit? a
characterization of open source software repositories,” in Program Com-
prehension, 2008. ICPC 2008. The 16th IEEE International Conference
on. IEEE, 2008, pp. 182–191.

[16] F. P. Brooks, The mythical man-month. Addison-Wesley Reading, MA,
1975, vol. 1995.

