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Abstract
In an empirical study of 3241 Red Hat packages, we
show that software vulnerabilities correlate with depen-
dencies between packages. With formal concept analy-
sis and statistical hypothesis testing, we identify depen-
dencies that decrease the risk of vulnerabilities (“beau-
ties”) or increase the risk (“beasts”). Using support vec-
tor machines on dependency data, our prediction models
successfully and consistently catch about two thirds of
vulnerable packages (median recall of 0.65). When our
models predict a package as vulnerable, it is correct more
than eight times out of ten (median precision of 0.83).
Our findings help developers to choose new dependen-
cies wisely and make them aware of risky dependencies.

1 Introduction

The Federal Bureau of Investigation (FBI) estimates that
security incidents cost the U.S. industry at least 67 billion
dollars every year, according to a joint study [14] with
the Computer Security Institute in 2005. While keeping
a single program secure is already difficult, software se-
curity assurance for a large software distribution is a Her-
culean task. For example, the Red Hat distribution con-
tains more than three thousand software packages,1 each
potentially vulnerable. The challenge for Red Hat is to
stay on top of the flood of patches and new versions. In
particular, they need to prioritize work so that available
resources can be spent on packages that need attention
most urgently; for example, because a critical vulnera-
bility has been fixed and the patched version needs to be
distributed.

The efforts by Red Hat are complicated by depen-
dencies between packages. For example, the package
mod php needs to be installed before package mediawiki
can be installed, which is why mediawiki depends on
mod php. Sometimes dependencies form long chains or
are conflicting, which can cause frustration among users,
also known as dependency hell [5].

In this paper, we show that vulnerabilities correlate
with dependencies between software packages. For ex-
ample, when depending on Python the risk of an applica-
tion being vulnerable decreases, while the risk increases
when depending on PHP or Perl. In addition, we demon-
strate how to use dependencies to build prediction mod-
els for vulnerabilities. More specifically, our contribu-
tions are as follows:

1. Empirical evidence that vulnerabilities correlate
with dependencies. Our study of 3241 Red Hat
packages is the largest study of vulnerabilities ever
conducted in terms of number of investigated appli-
cations.

2. Identification of dependencies with positive or neg-
ative impact on vulnerabilities. We combine formal
concept analysis with statistical hypothesis testing
to find dependencies that increase the chance of a
package having vulnerabilities—we call such de-
pendencies “beasts”. We also find dependencies
that decrease the risk of vulnerabilities—we call
such dependencies “beauties” (Section 3).

3. Statistical models to predict vulnerabilities. We use
support vector machines on Red Hat dependency
data to predict which packages will have vulnerabil-
ities (classification) and which packages will have
the most vulnerabilities (ranking). For classification
models, the median precision is 0.83 and the me-
dian recall is 0.65. For ranking, the median Spear-
man correlation is 0.58. These numbers show that
the dependencies of a package can indeed predict its
vulnerability (Section 4).

4. Techniques to predict fragile packages. In early
2008, we predicted that 25 packages will turn vul-
nerable. In the subsequent six months, vulnerabili-
ties were discovered in 9 out the 25 packages (Sec-
tion 5).



Understanding how dependencies correlate with vulner-
abilities is important to build safe software. When build-
ing new applications, one can choose which packages
are dependable. For example, knowing that Python or
Gnome applications have been less prone to vulnerabili-
ties in the past, helps to make the right decisions and to
minimize risk early. Even if the dependency is unavoid-
able, one can plan for the increased risk by allocating
more resources for quality assurance.

When maintaining existing applications, being aware
of dependencies that likely lead to vulnerabilities helps
to prioritize resources. Instead of tracking changes and
patches for all packages the application depends on, one
only needs to track the risky packages.

In the remainder of this paper, we first describe how
the data for our experiments was collected (Section 2).
We then provide evidence for the correlation of depen-
dencies with vulnerabilities (Section 3) and show how to
build models to predict vulnerable packages (Section 4).
Next, we explain how to make predictions more descrip-
tive and how to identify fragile packages, i.e., packages
that have not yet had vulnerabilities, but soon will have
(Section 5). We continue with some hypotheses on why
dependencies may influence vulnerabiities (Section 6)
and conclude with related work (Section 7) and a dis-
cussion of consequences (Section 8).

2 Data Collection

For the study in this paper, we selected the Red Hat Linux
distribution, which consists of several hundred applica-
tions bundled in software packages, where each pack-
age is in a specific version. Packages are provided in
the Red Hat Package Manager (RPM) file format that al-
lows easy download and installation using specific tools.
In August 2008, there were 3241 RPMs available from
Red Hat.2

To protect its customers, Red Hat issues Red Hat Se-
curity Advisories (RHSAs) on the Internet [29]. RHSAs
describe vulnerabilities that have been found in pack-
ages,3 and how to prevent them. A typical RHSA is
shown in Figure 1. On the bottom of every RHSA is a
list of packages that need to be updated to remove the de-
scribed vulnerability from the system. We refer to this as
a package having an RHSA. By iterating over all RHSAs,
we collected all packages that were linked to vulnerabil-
ities because they had to be updated as part of an RHSA.
We also counted for each package by how many RHSAs
it was affected; we use this count as the number of vul-
nerabilities for a package.

The first RHSA was issued in January 2000. Up un-
til January 2008, there were 1468 RHSAs, which are the
primary dataset used for most experiments in this paper
(see also Figure 2). The following seven months saw an-
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Figure 1: Typical Red Hat Security Advisory.
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Figure 2: RHSAs used in this paper.

other 178 RHSAs, which we will use as testing set for
the prediction of fragile packages (non-vulnerable pack-
ages that turn vulnerable) in Sections 5.2 and 5.3. We
consider a total of 1646 RHSAs for this paper.4

For each package, the RPM file describes which pack-
ages are required to be installed. These dependencies
are stored in so-called tags (type-value pairs) in the RPM
header. Each tag with the type RPMTAG REQUIRENAME

specifies the name of a dependency.5 Extracting de-
pendency information from RPM files is straightforward
with the functionality provided by the RPM Library
(rpmlib) [3]. For our experiments Josh Bressers of the
Red Hat Security Response Team generously provided
us with a list of dependencies.

We represent the dependency and vulnerability data as
follows. If there are n packages in all, dependency data
is represented by an n×n matrix M = 〈m jk〉, where

m jk =

{
1 if package j depends on package k;
0 otherwise.

(1)
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Figure 3: Distribution of RHSAs

The row vector m j is also called the dependency vector.
The number of dependencies of a package varies from
0 (typically development packages that contain header
files and therefore do not depend on other packages) to
a staggering 96 (for kdebase), with a median number of
4. The number of dependencies per package looks to be
exponentially distributed with a long tail.

Vulnerability information is represented by a vector v
with n components where

vk = number of known vulnerabilities in package k.
(2)

We call v j the associated vulnerability value for a de-
pendency vector m j. At the time of writing, there were
1133 packages with and 2108 packages without vulner-
abilities. The vulnerable packages were updated a to-
tal of 7313 times because of security flaws. The num-
ber of updates (RHSAs) per package looks to be ex-
ponentially distributed with a long tail (see Figure 3;
note the logarithmic y-axis): Many packages needed to
be updated only once (332 packages), but 801 pack-
ages needed more than one update. The most frequently
updated packages were kernel and kernel-doc with 129
RHSAs. The next most frequently mentioned package
was kernel-smp with 112 RHSAs. The packages php-
pgsql, php, php-ldap, php-mysql, php-odbc, and php-
imap were mentioned in 51 RHSAs.

3 Dependencies and Vulnerabilities

In a first experiment, we applied formal concept analy-
sis (FCA) [10] to the dependency and vulnerability data.
FCA takes a matrix as input (in our case M) and returns

all maximum blocks. Each block B consists of two sets
of packages O and A. The set O contains the packages
that depend on all packages in set A, or more formally:6

∀o ∈ O : ∀a ∈ A : moa = 1

Being a maximum block means, there is no true superset
of O for which each package depends on all packages
in A and there is no true superset of A on which each
package in O depends on.

@O′ ⊃ O: ∀o ∈ O′: ∀a ∈ A : moa = 1

@A′ ⊃ A : ∀o ∈ O : ∀a ∈ A′: moa = 1

In total, FCA identifies 32,805 blocks in the Red Hat
dataset (for a subset see Figure 4). As an example for
a block consider B2 = (O2,A2):

O2 = {PyQt, ark, arts, avahi-qt3, cervisia,
chromium, . . . , 155 packages in total}

A2 = {glibc, qt} (3)

Here each of the 155 packages in O2 depends on glibc
and qt, which are the packages in A2. Some of the pack-
ages in O2 also depend on additional packages; however,
these dependencies are captured by separate, more spe-
cific blocks. Consider B3 = (O3,A3) as an example for a
block that is more specific than B2. Block B3 additionally
takes the dependency xorg-x11-libs into account:

O3 = {PyQt, arts, doxygen-doxywizard, k3b, kdbg,
kdeaddons, . . . , 34 packages in total}

A3 = {glibc, qt, xorg-x11-libs}
(4)

Out of the 155 packages that depend on glibc and qt, only
34 also depend on xorg-x11-libs. Note that between B2
and B3 the set of dependencies grows (A2 ⊂ A3) and the
set of packages shrinks (O2 ⊃ O3).

FCA records specialization relationships between
blocks such as between B2 and B3 in a concept lattice
(Figure 4). We combine this lattice with a statistical
analysis to identify dependencies that correlate with vul-
nerabilities. To assess the vulnerability risk of a block
B = (O,A), we measure the percentage of packages in O
that are vulnerable, i.e., have a non-zero entry in the vul-
nerability vector v. This percentage indicates the risk of
being vulnerable when depending on the packages in the
set A.

risk(B = (O,A)) =
|{o | o ∈ O,vo > 0}|

|O|

In Figure 4, the risk of B2 is 120/155 = 77.4% and the
risk of B3 is 27/34 = 79.4%. The top most block B0 in
the lattice represents all Red Hat packages because when



B1

B0

B4

B3

B2

glibc, qt, xorg-x11-libs

glibc, qt

77.4% vulnerable
(120 out of 155 pkgs)

79.4% vulnerable
(27 out of 34 pkgs)

glibc

33.5% vulnerable
(692 out of 2066 pkgs)

∅

32.9% vulnerable
(1065 out of 3241 pkgs)

kdelibs

85.6% vulnerable
(143 out of 167 pkgs)

...

......

glibc
+0.6%

qt
+43.9%

kdelibs
+52.7%

xorg-x11-libs
+2.0%

Packages O

Dependencies A

...

......

Figure 4: Part of the Red Hat concept lattice.

A = /0, every package o satisfies the condition ∀a ∈ A :
moa = 1. Thus when nothing is known about their de-
pendencies the risk of packages is 1065/3241 = 32.9%.

Both B2 and B3 have a substantially higher risk than
B0, which means that depending on glibc, qt, and xorg-
x11-libs increases the chances of a package being vulner-
able. To find out which dependencies matter most, we
traverse the concept lattice and test whether the changes
in risk are statistically significant. We use χ2 tests if the
entries in the corresponding contingency table are all at
least 5, and Fischer Exact Value tests if at least one entry
is 4 or less [34, 37].

For example between B0 and B1 there is no statistically
significant change in risk; in other words, a dependency
on glibc has little impact on packages being vulnerable.
However, risk significantly increases between B1 and B2
by 43.9 percentage points, thus depending on qt when
already depending on glibc correlates with the vulnera-
bility of packages. Risk does not change significantly
between B2 and B3, which indicates that xorg-x11-libs
does not increase the risk any further.

Note that in the example, qt increases the risk only
when there is a dependency on glibc. We call such a
condition the context C. The context can be empty; for
example in Figure 4, the block B4 shows that without
any context, a dependency on kdelibs increases the risk
of vulnerabilities by 52.9 percent points.

To find the patterns reported in this paper, we checked
for each edge e = (Bi,B j) in the concept lattice that

• risk(Bi) 6= risk(B j) at a significance level of p =
0.01 (with χ2 and Fischer Exact Value tests); and

• we have not reported a more general context for the
dependency before. For example, if we find that
dependency qt increases the risk for both contexts
C1 = {glibc} and C2 = {glibc, libstdc++}, we only
report the more general one, which is C1 in this case.

In total we checked 121,202 edges, for which we found
195 patterns. In this paper, we report only patterns with
at least 65 supporting packages (=2% of all Red Hat
packages). Table 1 shows the “beast” dependencies that
increase the risk of vulnerabilities by at least 20 percent
points. In contrast, Table 2 contains the “beauty” depen-
dencies that decrease the risk of vulnerabilities by at least
16.6 percent points.

Several of the beasts in Table 1 are related to secu-
rity and cryptography, for example, krb5-libs, pam and
openssl. One possible reason could be that applications
that depend on these packages have to protect sensitive
data and thus are more likely to be the target of an attack.
Many graphics libraries are beasts as well, for example,
libmng, libjpeg, and libpng (related to image file formats)
as well as freetype and fontconfig (related to fonts). Of-
ten such libraries are misused by developers and buffer
overflows are introduced into an application.

The most notable beauty in Table 2 is python, which
indicates that Python applications are less likely to be
vulnerable. One may ask what about the perl package?
Here we found two beast rules, which are listed below
because they lacked support count to be included in Ta-
ble 1.

Context Dep Count Risk Count Risk Delta

! perl-CGI 3241 0.329 7 0.857 0.529

libxml2 perl 194 0.237 25 0.480 0.243

Context Context+Dep

Applications that depend on perl-CGI or use perl in ad-
dition to libxml2 are more likely to be exposed to vul-
nerabilities. However, we advise caution when interpret-
ing these results; Python applications are not guaranteed
to be better or safer than Perl applications. Whether an
application is vulnerable is not solely determined by de-
pendencies. The experience of developers and the devel-
opment process are other factors with a strong influence
on vulnerabilities.

Another “religious” comparison is between the two ri-
val desktop managers KDE and Gnome. Here, a depen-
dency to kdelibs is listed as a beast, while dependencies
to gnome-keyring and gnome-libs are listed as beauties.
Again, we advise caution when interpreting these results.



Table 1: The Beasts in Red Hat.
 

Context Dependency Count Risk
Count

!65
Risk

Delta

!0.200

! openoffice.org-core 3241 0.329 72 1.000 0.671

! kdelibs 3241 0.329 167 0.856 0.528

! cups-libs 3241 0.329 137 0.774 0.445

! libmng 3241 0.329 134 0.769 0.440

glibc qt 2066 0.335 155 0.774 0.439

glibc krb5-libs 2066 0.335 108 0.769 0.434

! e2fsprogs 3241 0.329 87 0.759 0.430

! pam 3241 0.329 116 0.733 0.404

! openssl 3241 0.329 313 0.719 0.390

! freetype 3241 0.329 251 0.645 0.317

! libjpeg 3241 0.329 238 0.639 0.310

! gcc-c++ 3241 0.329 78 0.628 0.300

! libpng 3241 0.329 254 0.626 0.297

! libstdc++ 3241 0.329 360 0.569 0.241

glibc fontconfig 2066 0.335 66 0.576 0.241

! grep 3241 0.329 66 0.545 0.217

! fileutils 3241 0.329 94 0.543 0.214

! libgcc 3241 0.329 391 0.535 0.206

(92 rules below threshold)

Context Context+Dependency

Table 2: The Beauties in Red Hat.

Context Dependency Count Risk
Count

 !65
Risk

Delta

"-0.166

glibc xorg-x11-server-Xorg 2066 0.335 66 0.015 -0.320

compat-glibc glibc zlib audiofile (*) 385 0.613 103 0.359 -0.254

glibc glibc-debug zlib audiofile (*) 410 0.590 94 0.351 -0.239

! gnome-keyring 3241 0.329 69 0.101 -0.227

! libglade2 3241 0.329 90 0.111 -0.217

! python 3241 0.329 190 0.132 -0.197

XFree86-libs glibc imlib 493 0.469 103 0.272 -0.197

XFree86-libs glibc glibc-debug audiofile (*) 397 0.521 104 0.327 -0.194

glibc zlib libSM 700 0.456 99 0.263 -0.193

glibc zlib gnome-libs 700 0.456 89 0.281 -0.175

! libgnomecanvas 3241 0.329 104 0.154 -0.175

XFree86-libs glibc zlib audiofile (*) 324 0.531 111 0.360 -0.171

XFree86-libs glibc esound (*) 493 0.469 114 0.298 -0.170

glibc zlib libart_lgpl (*) 700 0.456 135 0.289 -0.167

compat-glibc glibc gnome-libs 1090 0.439 84 0.274 -0.166

(70 rules below threshold)

Context Context+Dependency

Some dependencies are both beasts and beauties, but
within different contexts. For example consider the fol-
lowing two rules for the package esound:

Context Dep Count Risk Count Risk Delta

glib2 glibc esound 312 0.231 45 0.489 0.258

XFree86-libs glibc esound 493 0.469 114 0.298 -0.170

Context Context+Dep

When applications depend on glib2 and glibc, an addi-
tional dependency to esound increases the risk of vul-
nerabilities. In contrast, when applications depend on
XFree86-libs instead of glib2, the additional esound de-
pendency decreases the risk. Overall, we found only
four hybrid dependencies: audiofile, esound, glib, and
libart lgpl. In Table 2, we mark rules involving hy-

brid dependencies with an asterisk (*); there are no such
rules in Table 1 because they are below the support count
threshold of 65.

Overall, only a few beauties have an empty context,
i.e., decrease the risk unconditionally, while most beasts
always increase risk. To some extent this is intuitive
since any extra dependency adds some potential risk to
an application and only a few dependencies have enough
positive influence to mitigate this risk. Also, it is impor-
tant to point out that we reported statistical results. Just
adding a dependency to python or gnome-keyring will not
guarantee a safe application. In the end, it is always the
developer who introduces a vulnerability, either by using
a library incorrectly or by implementing unsafe code.



4 Predicting Vulnerable Packages with
SVMs

In the previous section we showed that there is an em-
pirical correlation between certain package dependencies
and vulnerabilities. In this section, we use this observa-
tion to predict which packages have vulnerabilities by
using just the names of the dependencies.

We use Support Vector Machines (SVMs) for our pre-
diction models. SVMs are a supervised learning tech-
nique that is used for classification and regression [36].
In the terminology of Section 2, we are given the depen-
dency matrix M and the vulnerability vector v, and the
SVM computes a model from them. This is known as
training the model. Then, one can use this model on a
new row vector mn+1 to compute a prediction v̂n+1. Hat-
ted values such as v̂k are always the result of a prediction;
un-hatted values are known beforehand and are assumed
to be exact. Our implementation used the SVM library
for the R project [28, 8] with a linear kernel.

We chose SVMs in favor of other machine learning
techniques because they have several advantages [15]:
first, when used for classification, SVMs cope well with
data that is not linearly separable;7 second, SVMs are
less prone to overfitting.8

In order to assess the quality of a classification or
regression model, we split the available packages ran-
domly in two parts: a training set (two thirds) and a test-
ing set (one third). A classification or regression model is
then built from the training set and predictions are made
for the packages in the testing set. These predictions v̂k
are then compared with the actual observed values vk and
differences are penalized as described in the subsequent
sections.

In order to compare the quality of the SVM predic-
tions, we also used decision trees, specifically those re-
sulting from the C4.5 algorithm [27] to train and test the
same splits that were used for SVMs. Decision trees are
readily interpreted by humans (all classifications can be
explained by the path taken in the tree) and therefore
have explanatory power that support vector machines
lack. It is therefore interesting to compare these two ap-
proaches.

4.1 Classifying Vulnerable Packages

For classification, vk is either 0—no vulnerabilities—or
1—vulnerable. Therefore, the classification problem in
our case is, “Given new dependency vectors, will their
associated vulnerability values be 0 or not?” In other
words, given new packages, we want to predict whether
they have vulnerabilities or not. A typical use for such
a prediction is to assess whether a new package needs

additional testing or review before it is included in a dis-
tribution.

For classification, each prediction belongs to one of
the following four categories:

• a true positive (TP), where vk = v̂k = 1,

• a true negative (TN), where vk = v̂k = 0,

• a false positive (FP), where vk = 0 and v̂k = 1, and

• a false negative (FN), where vk = 1 and v̂k = 0.

We want few false positives and false negatives. The two
measures used the most to assess the quality of classifi-
cation models are precision and recall. They are defined
as follows (for both measures, values close to 1 are de-
sirable):

precision = TP/(TP+FP)
recall = TP/(TP+FN)

4.2 Ranking Vulnerable Packages
The regression problem in our case is, “Given new de-
pendency vectors, what is their rank order in number of
vulnerabilities?” In other words, given new packages, we
want to know which of them have the most vulnerabili-
ties. A typical use for such a prediction is to decide on
the order in which packages are tested or reviewed.

For regression, we report the Spearman rank correla-
tion coefficient ρ , which is a real number between −1
and 1. If ρ = 1, the predicted and actual values have
the same ranks (identical rankings): when the predicted
values go up, so do the actual values and vice versa. If
ρ = −1, the predicted and actual values have opposite
ranks (opposite ranking): when the predicted values go
up, the actual values go down, and vice versa. If ρ = 0,
there is no correlation between predicted and actual val-
ues.

Because the rank correlation coefficient is computed
for all packages in a testing set, it is an inappropriate
measure for how well a model prioritizes resources for
quality assurance when only a subset of packages are in-
vestigated. Let us illustrate this with a simple example.
Suppose that we can spend T units of time on testing
and reviewing, and that testing or reviewing one package
always takes one unit. In the best possible case, our pre-
diction puts the actual top T most vulnerable packages in
the top T slots of v̂. However, the relative order of these
packages does not matter because we will eventually in-
vestigate all top T packages. In other words, predicting
the actual top T vulnerable packages in any order is ac-
ceptable, even though some correlation values ρ will be
poor for some of those orderings.

To account for this scenario, we compute an addi-
tional measure, which we call ranking effectiveness. Let
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Figure 5: Prediction results for 50 random splits (both classification and ranking).

l be the number of new dependency vectors and let
p = (p1, . . . , pl) be a permutation of 1, . . . , l such that the
predictions v̂p = (v̂p1 , . . . v̂pl ) are sorted in descending or-
der (i.e., v̂p j ≥ v̂pk for 1 ≤ j < k ≤ l). Let q be another
permutation that sorts the observed values vq in descend-
ing order. When we now investigate package p j, by def-
inition we can find and fix vpk vulnerabilities. Therefore,
when we investigate the top T predicted packages, we
find

F = ∑
1≤ j≤T

vp j

vulnerabilities, but with optimal ordering, we could have
found

Fopt = ∑
1≤ j≤T

vq j

vulnerabilities. Therefore, we will take the quotient

Q = F/Fopt = ∑
1≤ j≤T

vp j

/
∑

1≤ j≤T
vq j (5)

as another quality measure for ranking vulnerable pack-
ages.

For ranking, we also report a precision-recall graph.
This graph visualizes the trade-off between precision and
recall by plotting precision against recall when packages
are examined in a given order. For effective rankings,
the precision will start out near 1.0 and will gradually
drop to the fraction of vulnerable packages. Precision-
recall graphs indicate how robust prediction models are
and can also help choosing a different operating point.
For example, in cases where 65% recall is considered to
low, a precision-recall diagram allows choosing a higher
recall and shows the resulting precision.

4.3 Results
The results of classifying and ranking 50 random splits
are shown in Figure 5. The first subfigure is for classifi-
cation, the others are for ranking.

• Classification. For the SVM (shown as circles),
the median precision is 0.83 (with a standard de-
viation of 0.0226), and the median recall is 0.65
(with a standard deviation of 0.0250). This means
that our SVM models successfully and consistently
catch about two thirds of vulnerable packages and
that when a package is predicted as vulnerable, they
are correct more than eight times out of ten.

The same figure also contains the respective values
for the decision tree (shown as triangles). The me-
dian precision is 0.79 (standard deviation 0.0277),
and the median recall is 0.50 (standard deviation
0.0264). The median values for both precision and
recall are significantly greater for the SVM than for
the decision tree models (p < 0.001).9 The decision
tree not only performs worse than the SVM both for
precision and recall, the results are also less consis-
tent.

• Ranking. The median rank correlation was 0.58
(standard deviation 0.0233), which indicates a con-
sistently moderate to strong correlation; see the sec-
ond subfigure. The ranking effectiveness values
(third subfigure) were computed for T = 25 and
have a median of 0.70 (standard deviation 0.111),
which means that the top 25 predicted packagescon-
sistently contain about seventy percent of the maxi-
mally possible vulnerabilities.

The last subfigure shows a precision-recall diagram
for each of the random splits. These diagrams show
the behavior for effective predictors: they start out
at or very near to 1.0 and gradually drop to about
0.35, which is the fraction of vulnerable packages
(1133/3241 = 0.35). The different precision-recall
curves also stay close together, indicating consis-
tence across random splits.

5 Discussion

In the previous section we showed that the names of de-
pendencies can actually predict vulnerabilities. In this



section, we refine these results motivated by two obser-
vations:

1. If developers know which dependency of a package
is most likely to increase the risk of having a vul-
nerability in the future, they can work on shifting
the dependency to another, less risky dependency,
or on providing the used services themselves. If the
package is new, developers can in many cases even
choose dependencies with little or no cost.

2. When we predict that a package has unknown vul-
nerabilities, and this prediction is true in most cases,
it may be worthwhile to examine the packages in
question by testing or review.

In the subsequent subsections, we first describe a tech-
nique to find risky dependencies for a given package
(Section 5.1) and next introduce two techniques to iden-
tify fragile packages, i.e., non-vulnerable packages that
likely will turn vulnerable (Sections 5.2 and 5.3).

5.1 Explaining SVM Predictions

As we have seen, SVMs outperform decision trees for
our data set. However, unlike decision trees, SVMs do
not explain predictions, which makes it hard for develop-
ers to comprehend and have confidence in the outcome of
SVM predictions. Even when they know that our models
are correct in eight out of ten cases, it remains difficult
for them to recognize the two cases where the model errs.
In order to better explain the decision of an SVM to de-
velopers, we describe how to find dependencies that were
most influential for the SVM’s decision. Dependencies
that led the SVM to classify a package as vulnerable are
candidates for removal, replacement, or increased qual-
ity assurance.

An SVM model is a hyperplane H in m dimensions,
where m≥ n holds to ensure that the data is linearly sep-
arable.10 When used to classify a dependency vector w,
which has n dimensions, the vector is first transformed
to a vector w′ in m dimensions, according to the kernel
used. Then the model looks on which side of the hy-
perplane vector w′ lies and returns the respective classi-
fication. The dependency that was most influential for
the classification of a package is that dependency which
moved the package the furthest away from the hyper-
plane, measured by the distance of w′ to H. One can use
this technique also to rank all dependencies of a package.

Assume first that the linear kernel is used for the SVM.
This kernel does not introduce any additional dimensions
(thus m = n) nor does it perform any transformations
(w = w′). Since the dependency vector w is binary (i.e.,
wk is either 0 or 1), one way of computing the most influ-
ential dependency is first to drop a perpendicular vector

p from w on H. Then s is the dimension of this perpen-
dicular vector p for which |ps| is a maximum.

If a kernel other than the linear one is used (m > n),
we can find the most influential dependency as follows.
For every component (dependency) k of the vector w for
which w j = 1, we create a new, artificial, “flipped” de-
pendency vector f by setting this component to 0:

fk =

{
0 if k = j;
wk otherwise.

Then the most influential dependency is the one for
which the flipped and transformed dependency vec-
tor f ′ minimizes the distance to the hyperplane H (or
even changes the classification from vulnerable to non-
vulnerable). We call this technique bit-flipping.

As an example, consider the sendmail package with
21 dependencies. The distance between its dependency
vector and the separating hyperplane is 3.88. The maxi-
mum reduction in distance is 0.73 and occurs with the re-
moval of cyrus-sasl from the dependencies of sendmail.
The package cyrus-sasl implements the Simple Authen-
tication and Security Layer (SASL) [21], which is used
to add authentication to connection-based protocols such
as IMAP. The package is one the most popular SASL im-
plementations; however, the high reduction in distance
to the separating hyperplane, suggests that replacing the
dependency with another SASL implementation (such as
GNU SASL [17]) could decrease the risk of vulnerabili-
ties. In any case, one should track patches and vulnera-
bilities in the cyrus-sasl package to check whether they
affect sendmail.

5.2 Predicting Fragile Packages with
SVMs

In order to predict fragile packages, i.e., regular pack-
ages that will turn into vulnerable packages, we again
used SVMs. We took RHSAs prior to January 2008
to build a model from which we predicted which non-
vulnerable packages have yet undiscovered vulnerabil-
ities. We then used RHSAs from January 2008 on-
wards and additional information to assess the quality
our model. The higher the percentage of correctly pre-
dicted packages, the stronger the model.

The basic idea is to learn an SVM regression model
for the entire dataset (until January 2008) and then ap-
ply the model again to the same data. Packages without
vulnerabilities but with predicted vulnerabilities are then
considered to be fragile packages. Essentially, we pre-
dict the packages that the SVMs fails to describe in its
model (and thus having high residuals) to be fragile.

More formally, using the notation of Section 2, we use
an SVM to build a regression model from M. We then



Table 3: Predicted packages.

Package Reported Vulnerability

4 #1 mod php Integration into php [6]
#2 php-dbg
#3 php-dbg-server
#4 perl-DBD-Pg
#5 kudzu
#6 irda-utils
#7 hpoj
#8 libbdevid-python
#9 mrtg

4 #10 evolution28-evolution-data-server RHSA-2008:0515-7 (a)

#11 lilo
4 #12 ckermit Xatrix Advisory #2006-0029 (b)

4 #13 dovecot RHSA-2008:0297-6 (c)

#14 kde2-compat
#15 gq

4 #16 vorbis-tools Ubuntu Advisory USN-611-2 (d)

#17 k3b
#18 taskjuggler

4 #19 ddd Inspection (see Section 5.2)
#20 tora

4 #21 libpurple RHSA-2008:0297-6 (e)

#22 libwvstreams
4 #23 pidgin RHSA-2008:0584-2 (f)

#24 linuxwacom
4 #25 policycoreutils-newrole Changelog entry (Section 5.2)

URLs:
(a) http://rhn.redhat.com/errata/RHSA-2008-0515.html
(b) http://www.xatrix.org/advisory.php?s=8162
(c) http://rhn.redhat.com/errata/RHSA-2008-0297.html
(d) http://www.ubuntu.com/usn/usn-611-2
(e) http://rhn.redhat.com/errata/RHSA-2008-0297.html
(f) http://rhn.redhat.com/errata/RHSA-2008-0584.html

input the dependency vectors of M into the same SVM
model to get n predictions (v̂1, . . . , v̂n). Next, we con-
sider only the predictions v̂ j for packages with no known
vulnerabilities, that is, for which v j = 0. Finally, we sort
the v̂ j in descending order. We hypothesize that pack-
ages with high v̂ j are more likely to have vulnerabilities
discovered in the future.

For the Red Hat data, we have 3241 packages, of
which 2181 had no vulnerabilities reported by January
2008. Until August 2008, 73 packages turned vulnerable
(or 3.3%). The result of our prediction is a list of 2181
packages, sorted in decreasing order by expected number
of vulnerabilities. We want the newly-found vulnerable
packages to appear early in this list. The top 25 predic-
tions are shown in Table 3. Packages found to have vul-
nerabilities after January 2008 are marked with the sym-
bol 4. In this case, the last column contains a reference
to the respective advisory.

For Table 3, we used sources in addition to the official
RHSAs.11We marked package evolution28-evolution-
data-server as vulnerable because the main package,
evolution28, was affected by RHSA-2008:0515. In ad-
dition, we marked policycoreutils-newrole because the

Changelog entry for version 1.30.28-1 reads, “Security
fixes to run python in a more locked down manner”. This
was apparently a pro-active fix, since there seems to have
been no exploit.

In Table 3 the top 25 predictions contain 9 packages
with newly-found vulnerabilities (36%). Taking into ac-
count the low percentage of packages that turned vul-
nerable (3.3%), our prediction is significantly better than
random guesses (at p < 0.001). Note that the 36% is a
lower bound for the precision because the non-vulnerable
packages might yet have undiscovered vulnerabilities.

Manual inspection of DDD. In order to assess our pre-
dictions even in the absence of RHSAs or other advi-
sories, we selected the ddd package [9]. DDD stands for
“Data Display Debugger” and is a graphical front-end for
text-based debuggers such as gdb. The latest version as
of this writing is 3.3.9, released on June 24, 2004. The
graphics of DDD are implemented using a combination
of plain Xlib (the lowest level of graphics programming
using the X Window System), a rather low-level GUI
toolkit (Xt), with a GUI library (Motif) on top.

When we performed a cursory review of its source
code, we almost immediately found a code-injection vul-
nerability. This vulnerability occurs in exectty.C, where
a pipe is opened using popen(), but the arguments to the
shell are not properly quoted, thus allowing for the in-
sertion of extraneous shell commands for anyone with
write access to a configuration file. This will make it
possible to run arbitrary code for anyone with local ac-
cess to the machine if the configuration file is not write
protected. Such code injection and arbitrary code execu-
tion vulnerabilities are typically classified as “moderate”
by Red Hat.

Another security code smell occurs in xconfig.C and
concerns the use of fgets():

char buffer[PATH_MAX];
buffer[0] = ’\0’;
fgets(buffer, sizeof(buffer), fp);
pclose(fp);

int len = strlen(buffer);
if (len > 0 && buffer[len - 1] == ’\n’)

buffer[len - 1] = ’\0’;

The C standard guarantees that buffer is null-terminated
when any characters are read at all, and unchanged when
no characters are read. Therefore, in these two cases,
buffer will always be properly null-terminated. However,
if a read error occurs, the contents of buffer are “indeter-
minate” [16, Section 7.19.7.2]. This means that after a
read error, it is no longer guaranteed that buffer is null-
terminated, the strlen call could run away, and the sub-
sequent access to buffer[len - 1] could cause a
buffer overflow. The fix is simple: simply exit whenever
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∅

32.9% vulnerable
(1065 out of 3241 pkgs)

xorg-x11-deprecated-libs

85.7% vulnerable
(6 out of 7 pkgs)

Outlier: ddd

...

......

xorg-x11-deprecated-libs
+52.8%

...

Figure 6: Example of an anomaly.

fgets returns null. The impact of this flaw is not clear;
however, there have been arbitrary code execution vul-
nerabilities resulting from similar errors; see for example
CVE 2007-5135 [23].

5.3 Predicting Fragile Packages with
Anomalies

Another approach for predicting fragile packages is to
search for anomalies in the concept lattice. The basic
idea is that for blocks where all but a few packages are
vulnerable, the non-vulnerable packages are likely to be
fragile. As an example consider B5 = (O5,A5) from Fig-
ure 6:

O5 = {ddd, xpdf, nedit, openmotif, openmotif-devel,
openmotif21, xorg-x11-deprecated-libs-devel}

A5 = {xorg-x11-deprecated-libs}
(6)

All packages in O5 have been vulnerable, except ddd.
Thus it is likely that ddd soon will have vulnerabilities.
We also get a dependency that is responsible for ddd
being fragile, in this example it is xorg-x11-deprecated-
libs.

From the 110 rules found in Section 3 for beasts, we
selected all rules that had at most three outliers. For
the 17 selected rules, we then combined all outliers to
come up with a prediction of 27 unique fragile packages
(including ddd). Out of these, 7 predictions were cor-
rect (precision of 25.9%). As in the previous section,
the results are significantly better than random guesses
(p < 0.001) and should be considered a lower bound for
precision because of yet undiscovered vulnerabilities.

Manual inspection of DDD. We again inspected
DDD, this time with a special focus on the dependency to
xorg-x11-deprecated-libs. This dependency means that

the package depends on a deprecated Xlib implementa-
tion. This is not a vulnerability in itself, but past expe-
rience has shown that low-level X Window System pro-
gramming has been a rich target for exploiters, and dep-
recated libraries could lack important security fixes more
easily than up-to-date ones.

When we look at DDD’s source code, we find this as-
sessment confirmed: much of the graphics code in DDD
is on the lowest level, using Xlib directly; other parts use
Xt, one of the oldest graphics toolkits for X Windows.
This suggests that DDD is old (it was first released in the
1990’s) and has not been actively maintained in the last
few years (the most recent release is from 2004). This
alone makes it unlikely that it has fixes for all the pitfalls
that have surfaced recently. Not surprisingly, the new
DDD maintainer wants to switch over to a more mod-
ern toolkit such as Qt [9, Entry 2008-05-06], certainly to
give DDD a more modern appearance, but also perhaps
to offload the burden of maintaining and fixing low-level
code to a more active project.

5.4 Threats to Validity

In this section, we discuss threats to validity of our study.
For our analysis, we ignore the possible evolution of

dependencies. That is, we assume that the dependency
matrix M (see Equation 1) does not change with time.
We believe that it is reasonable to assume that M will
not change much: a dependency of package j on pack-
age k exists because package j will want to use services
offered by package k. Changing this dependency will
mean that the package will have to supply these services
itself, stop using them entirely, or use another package to
supply them. Any of these alternatives is usually work-
intensive, so there is a strong economic incentive against
frequently changing dependencies.

One complicating factor when using precision and re-
call to evaluate our approach is that there may be undis-
covered vulnerabilities leading to too low values for vk.
For example, it is possible and even likely that for some
packages vk is 0, even though package k does in fact have
a vulnerability. In practice, this means that the computed
value for the precision will be lower than the true pre-
cision value (because the true number of false positives
may be lower than what was computed). We can there-
fore regard our precision values as a lower limit. We can-
not make a similar estimation for the recall values, since
both false-positive and false-negative values can change.
Therefore, the recall values are merely approximations
to their true values.

In determining the most influential dependency, we ig-
nore the joint effect of two or more dependencies: it could
be that two dependencies together are much more influ-
ential than a single dependency, and that two together



are a better explanation of the classification of a package
than the single dependency that results from the distance
minimization technique. This should be the object of fur-
ther study.

For this paper, we considered only how first-order12

(or direct) dependencies influence vulnerability. We also
did not distinguish between different types and severi-
ties of vulnerabilities. In practice, however, many other
factors such as developer experience, quality assurance,
complexity of source code, and actual usage data likely
influence the number of vulnerabilities as well, either
separately or in combination. However, there is little
scientific evidence for this wisdom and more empirical
studies are needed to learn more about vulnerabilities.
This paper is a first step in this direction.

6 Possible Interpretations

We described the phenomenon that some dependencies
increase vulnerability, and some decrease vulnerability.
We also demonstrated that dependencies have predictive
ability. Why is this the case?

Our first hypothesis is that dependencies describe the
problem domain of packages and that some domains are
simply more risky than others. For example, we would
expect web applications to have more vulnerabilities than
C compilers because they have a much larger attack sur-
face. Schröter et al. found similar evidence for the in-
creased error-proneness of some domains [31].

Our second hypothesis is that certain usages may make
a package more vulnerable. For example, some packages
use unsafe services, i.e., services that are inherently un-
safe. Similar, there can be also unsafe use of services,
i.e., some services are difficult to use safely. Both these
situations reflect in the dependencies of a package. In an
earlier study, Neuhaus found evidence for unsafe usages
on the source-file level of Firefox [24].

We will investigate both hypotheses in future work.

7 Related Work

Only few empirical studies exist for software vulnera-
bilities. Shin and Williams [32] correlated several com-
plexity measures with the number of security problems,
for the JavaScript Engine of Mozilla, but found only a
weak correlation. This indicates that there are further
factors that influence vulnerabilities, like dependencies
as we have showed in this paper.

Gegick et al. used code-level metrics such as lines of
code, code churn, and number of static tool alerts [12] as
well as past non-security faults [11] to predict security
faults. In the most recent work, Gegick et al. achieved a
precision of 0.52 and a recall of 0.57. In comparison, the

precision and recall values are higher in our experiments
(0.83 and 0.65 respectively). However, these numbers
are not directly comparable because different data sets
were used for the experiments

Based on a pilot study by Schröter et al. [31], Neuhaus
et al. [25] investigated the Mozilla project for the corre-
lation of vulnerabilities and imports, that is, the include
directives for the functions called in a C/C++ source file.
They found a correlation and were subsequently able to
predict with SVMs vulnerabilities that were unknown at
the time of the prediction.

Compared to the earlier work by Neuhaus et al. [25],
we introduce in this paper an approach to assess the risk
of dependencies (concept analysis + statistical testing),
compare multiple prediction models (not just SVMs, but
also decision trees and anomalies), and show how to ex-
plain SVM predictions. Also the focus of this paper is en-
tirely different. Instead of a single program, we analyze
vulnerabilities for a large software distribution, Red Hat
Linux, that consists of several thousand packages. Thus
our base of evaluation is much broader: a software dis-
tribution covers a wider range of application scenarios,
programming languages, and probably every other dis-
tinguishing variation, as opposed to a single program.
In addition, a software distribution will typically cover
a greater range of software quality than a single soft-
ware project, where the number of contributors is much
smaller. The extent of these difference is probably best
emphasized by the list of beauties and beasts that we pre-
sented in Section 3. This list can serve as a catalog for
developers to assess the risk of dependencies and help
them make well-informed design decisions.

The idea of finding anomalies using concept analy-
sis (used in Section 5.3) was proposed by Lindig [19].
For the experiments in this paper, we extended Lindig’s
approach with statistical hypothesis testing. That is, we
considered only anomalies for rules which significantly
increased the risk of vulnerabilities. In our experiments,
this enhancement substantially reduced the number of
false positives.

Robles et al. [30] and German [13] studied software
distributions to better understand open-source software
development. Both studies, however, ignored the relation
between package dependencies and vulnerabilities.

Ozment at al. [26] and Li et al. [18] have studied how
the number of defects and security issues evolve over
time. The two studies report conflicting trends. Addi-
tionally, neither of the two approaches allow mapping of
vulnerabilities to packages or predictions. Di Penta et
al. [7] tracked vulnerabilities across versions in order to
investigate how different kinds of vulnerabilities evolve
and decay over time.

Alhazmi et al. use the rate at which vulnerabilities are
discovered to build models to predict the number of fu-



ture vulnerabilities [2]. In contrast to our approach, their
predictions depend on a model of how vulnerabilities are
discovered. Tofts et al. build simple dynamic models of
security flaws by regarding security as a stochastic pro-
cess [35], but they do not make specific predictions about
vulnerable packages. Yin et al. [38] highlight the need
for a framework for estimating the security risks in large
software systems, but give neither an implementation nor
an evaluation.

8 Conclusion and Consequences

In this paper, we presented a study of vulnerabilities in
3241 software packages of the Red Hat Linux distribu-
tion. We provided empirical evidence for a correlation
between vulnerabilities and certain dependencies. Fur-
thermore, we showed that prediction models using pack-
age dependencies perform well when predicting vulner-
abilities. Another observation is that the popular wisdom
that vulnerable packages will tend to develop even more
vulnerabilities does not hold for the packages within Red
Hat: the number of vulnerable packages needing two
fixes or fewer (584) is greater than the number of pack-
ages needing more than two fixes (549). If the popular
wisdom were correct, one would see a majority of pack-
ages with a high number of fixes.

Our future work will include the following:

• We will work on refining the distance-minimization
technique, looking at how joint effects of dependen-
cies explain SVM predictions.

• We will investigate how the correlation between de-
pendencies and vulnerabilities changes over time.
Some beasts will likely become less risky because
developers learn from past mistakes. At the same
time, new mistakes will likely lead to new beasts.

• We plan to apply our approach to other domains,
which require quality assurance; for example Ap-
ple’s App Store. Applications undergo a review pro-
cess before they can be downloaded from the App
Store. Using (past) quality and dependency infor-
mation, Apple could focus on applications that need
the most reviewing.

• We want to investigate what other factors predict
software vulnerabilities. This paper is just a first
step and more empirical studies are needed to better
understand security problems.

Often empirical findings are highly project-specific and
rarely apply to other projects. This dilemma is illustrated
best by a study of Nagappan et al. [22] who compared
five large subsystems of Microsoft Windows and found

that for each subsystem, there were metrics that worked
reasonably well, but that no single metric worked well
for every subsystem to predict failures. Since any em-
pirical study depends on a large number of context vari-
ables [4], replication has become an important practice
to generalize results.

We believe that the work presented in this paper is a
first step towards a new generation of empirical studies.
Rather than just a few projects, we analyzed vulnerabili-
ties for several thousand Red Hat packages. Our findings
come therefore with a higher generality compared to tra-
ditional single-project studies. While it may be that our
work does not generalize to other package collections,
we consider this highly unlikely, at least for Linux: other
package collections will contain much the same pack-
ages, with much the same dependencies. Another char-
acteristic of our study is that software developers can di-
rectly benefit by the results. By consulting the catalog
of beauties and beasts, developers can quickly assess the
risk of dependencies to other packages and thus make in-
formed decisions. This lookup is possible with little data
(only the dependencies are needed) and without adjust-
ing any prediction models.

To conclude, we are confident that the availability of
cross-project repositories (such as the Red Hat Security
Advisory database) will lead to more large-scale studies
such as the one presented in this paper.
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Notes
1Software packages are sets of related files, e.g., libraries or appli-

cations, distributed in a special file format (RPM) that allows for their
automated management, for example through installation and deinstal-
lation.

2For the study in this paper, we consider only packages that are
available from Red Hat itself because they are the ones supported by
Red Hat with security advisories. The total number of RPMs avail-
able for Red Hat includes third-party RPMs and is thus certainly much
larger than 3241.

3Strictly speaking, the security issues addressed in RHSAs need
not be vulnerabilities—a vulnerability is considered to be a “flaw in
software that can be exploited” [33, p. 52]. From looking at a sample
of RHSAs, we conclude however that this is almost always the case and
thus RHSAs are a good approximation for true vulnerabilities. Josh



Bressers of the Red Hat Security Response Team also confirmed that
flaws that do not cross a trust boundary are classified as bugs and not
as security advisories [6].

4The first RHSA we consider is RHSA-2000:001 and the last
is RHSA-2008:0812. When the first advisory was issued in 2006,
Red Hat switched to four-digit serial numbers. The serial number at
the end is also incremented for bug fix advisories (RHBA) and en-
hancement advisories (RHEA). Every year the serial number is reset
to 0001.

5Although version information is also present for each dependency
(in the tag RPMTAG REQUIREVERSION), we assumed dependencies
to be constant in our experiments. We discuss this decision as a poten-
tial threat to validity in Section 5.4.

6Formal concept analysis (FCA) is similar to market basket analysis
or frequent pattern mining [1, 20], which made the famous discovery
that diapers and beer are often purchased together. In data mining, the
set A is called a pattern (for example, diapers and beer) and the set O
are the supporting transactions, with |O| being the support count. If |O|
exceeds a given threshold, the pattern A is called frequent. FCA ad-
ditionally provides a lattice with the relations between patterns, which
we use to identify dependencies that significantly increase the risk of
vulnerabilities.

7Two sets of n-dimensional points are said to be linearly separable
if there exists an (n−1)-dimensional hyperplane that separates the two
sets.

8Overfitting often happens when a statistical model has too many
parameters. The model will try to minimize the error for the training
set, but the parameters will offer too many, wildly differing combina-
tions that will make the error small. Choosing one such combination
will then generally increase the error for the testing set. The only possi-
ble remedy for traditional models is to decrease the number of parame-
ters. SVMs are less prone to overfitting because they choose a specific
hyperplane (maximum margin hyperplane) among the many that sepa-
rate the data [36].

9The p-value has been corrected for multiple hypothesis testing us-
ing the Bonferroni method.

10Recall that n is the dimensionality of the input space, in our case
the number of dependencies.

11In using additional sources, we are not suggesting that Red Hat is
negligent in assigning RHSAs. It may well be that the additional advi-
sories found by us are not applicable to Red Hat distributions. Still, se-
curity advisories, even when they are not directly applicable to Red Hat
packages, indicate that investigating those packages would have been
worthwhile.

12If package p depends on package q, we call q a first-order de-
pendency. If p depends only indirectly on q, we call q a higher-order
dependency.
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