
Predicting Vulnerable Software Components

Stephan Neuhaus, Thomas Zimmermann, Andreas Zeller
Saarland University, Saarbrücken, Germany
{neuhaus, zimmerth, zeller}@cs.uni-sb.de

Abstract

We introduce Vulture, a new approach and tool to predict vulnerable components in large software
systems. Vulture relates a software project’s version archive to its vulnerability database to find those
components that had vulnerabilities in the past. It then analyzes the import structure of software com-
ponents and uses a support vector machine to learn and predict which imports are most important for a
component to be vulnerable.

We evaluated Vulture on the C++ codebase of Mozilla and found that Vulture correctly identifies
about two thirds of all vulnerable components. This allows developers and project managers to focus
their testing and inspection efforts: “We should look at nsXPInstallManager more closely, because it is
likely to contain yet unknown vulnerabilities.”

1 Introduction

Suppose you are the development manager of a large application that is about to ship. Before release, you
would certainly like to do your best such that the application does have a minimum of software vulnerabili-
ties. Of course, “do your best” implies that your resources are limited. But still, you would probably like to
spend your resources in the most effective way, finding (and fixing) the largest amount of vulnerabilities with
the given resources. This means to focus your efforts those parts of the program which need it most—those
components which have the highest risk of security vulnerabilities.

Allocating quality assurance resources is a difficult task. If you search for vulnerabilities in the wrong
places, you waste time and money. If you do not search enough for vulnerabilities in components that are
likely to contain some, a vulnerability may escape into production, with all consequences. What is needed,
therefore, is a means to predict where vulnerabilities are most likely to occur.

Of course, such prediction takes place all the time. Developers and their managers remember failures
as well as successes, and can build on their experience to direct their efforts. Furthermore, people can
abstract from multiple incidents and come up with general rules that may help in identifying future problems.
However, this requires that one actually remembers where past vulnerabilities were located; and the sheer
number of incidents, not to speak of code or team size, makes it hard to remember all facts and abstract from
them.

Since teams are aware of limitations of human memory, the typical approach to keep track of problems is
to set up a bug database—a database which records all problems with the software. A bug database not only
lists the current issues, but also the closed ones. Fixed problems can be linked to the fixes themselves—that
is, who closed a bug by changing which component when.

Vulnerabilities form a specific subset of bugs. By mining the vulnerabilities from the bug database, we
can learn which components are most prone to vulnerabilities. This is so because, as the vulnerabilities
are fixed, the fixes apply to individual components—and therefore, one can actually compute how many
vulnerabilities (or reported incidents) some component is associated with.
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Figure 1: How Vulture works. Vulture mines a vulnerability database (e.g. a Bugzilla subset), a version
archive (e.g. CVS), and a code base, and maps past vulnerabilities to components. The resulting predictor
predicts the future vulnerabilities of new components, based on the structure of their imports.

For this paper, we have mined the security incidents from the Mozilla CVS and mapped them to individ-
ual components. As shown in Section 2, we found that of the 10,452 components, only 424 (or 4.05%) were
involved in security fixes. Does this mean that managers only need to focus on these 4.05% of vulnerable
components? Unfortunately, no—because the number of vulnerabilities in the past may not be indicative for
the future:

• Software evolves, with substantial refactorings and additions being made all the time. This gradually
invalidates earlier measurements about vulnerabilities.

• The vulnerabilities we measure from history can only be mapped to a component because they have
been fixed. Thus, by definition, any measurement of vulnerable components applies to an already
obsolete revision.

For these reasons, we need to come up with predictive methods that can be applied to new as well
as evolved components—predictions that rely on invariants in domain and structure that allow predicting
defects although the code itself has changed. What could be the nature of such invariants? In Section 3, we
observe that the domain—as expressed by the other components that are interacted with—characterizes a
component’s vulnerability. In case of Mozilla, for instance, we found that of the 14 components importing
nsNodeUtils.h, 13 components (93%) had to be patched because of security leaks. The situation is even
worse for those 15 components that import nsIContent.h, nsIInterfaceRequestorUtils.h and nsContentUtils.h
together, because they all had vulnerabilities. In other words: “Tell me what you import, and I’ll tell you
how vulnerable you are.”

Would a new Mozilla component importing nsNodeUtils.h be prone to vulnerabilities as well? In Sec-
tion 4, we develop statistical models that allow predicting whether a component—new or not—is vulnerable
or not. In Section 5, we evaluate these models for Mozilla. Not only can we predict vulnerable components;
we can even successfully predict their vulnerability ranking.
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We have implemented this approach in a tool called Vulture, automating all the steps listed above. As
sketched in Figure 1, Vulture parses given version and vulnerability databases, determines the most vul-
nerable components, and predicts the vulnerability of new components. Vulture is fully automatic: No
interaction is required except for specifying the locations of the database and the CVS. This is the central
contribution of this paper: A tool that automatically learns from past vulnerabilities to predict the future
vulnerability of new components.

2 Components and Vulnerabilities

2.1 Components

For our purposes, a component is an entity in a software project that can have vulnerabilities. For Java,
components would be .java files because they contain both the definition and the implementation of classes.
In C++, and to a lesser extent in C, however, the implementation of a component is usually separated from
its interface: a class is declared in a header file, and its implementation is contained in a source file. A
vulnerability that is reported only for one file of a two-file component is nevertheless a vulnerability of the
entire component. For this reason, we will combine equally-named pairs of header and source files into one
component.

In C, it is often the case that libraries are built around abstractions that are different from classes. The
usual case is that there is one header file that declares a number of structures and functions that operate on
them, and several files that contain those functions’ implementations. Without a working build environment,
it is impossible to tell which source files implement the concepts of which header file. Since we want to
apply Vulture to projects where we do not have a working build environment—for example because we want
to analyze old versions that we cannot build anymore due to missing third-party software—, we simply treat
files which have no equally-named counterpart as components containing just that file. We will subsequently
refer to components without any filename extensions.

Of course, some components may naturally be self-contained. For example, a component may consist
only of a header file that includes all the necessary implementation as inline functions there. Templates must
be defined in header files. A component may also not have a header file. For example, the file containing a
program’s main function will usually not have an associated header file. These components then consist of
only one file.

2.2 Mapping Vulnerabilities to Components

A vulnerability is a defect in one or more components that manifests itself as some violation of a security
policy. Vulnerabilities are announced in security advisories that provide users workarounds or pointers to
fixed versions and help them avoid security problems. In the case of Mozilla, advisories also refer to a bug
report in the Bugzilla database. We use this information, to map vulnerabilities to components through the
fixes that remove the defect.

First we retrieve all advisories from the Web to collect the defects, in case of Mozilla from the “Known
Vulnerabilities in Mozilla Products” page.1 We then search for references to the Bugzilla database that
typically take the form of links to its web interface:

https://bugzilla.mozilla.org/show bug.cgi?id=362213

The number at the end of this URL is the bug identifier of the defect that caused the vulnerability. We collect
all bug identifiers and use them to identify the corresponding fixes in the version archive. In version archives

1http://www.mozilla.org/projects/security/known-vulnerabilities.html

3



Security Advisory Changes Components

Figure 2: Mapping Mozilla vulnerabilities to changes. We extract bug identifiers from security advisories,
search for the fix in the version archive, and from the corrected files, we infer the component(s) affected by
the vulnerability.

every change is annotated with a message that describes the reason for that change. In order to identify the
fixes for a particular defect, say 362213, we search these messages for bug identifiers such as “362213”,
“Bug #362213”, and “fix 362213” (see also Figure 2). This approach is described in detail by Śliwerski et
al. [28] and extends the approaches introduced by Fischer et al. [10] and by Čubranić et al. [7].

Once we have identified the fixes of vulnerabilities, we can easily map the names of the corrected files
to components. Note that a security advisory can contain several references to defects, and a defect can be
fixed in several files.

2.3 Vulnerable Components in Mozilla

Mozilla as of 4 January 2007 contains 1,799 directories and 13,111 C/C++ files which are combined into
10,452 components. There were 134 Mozilla Foundation Security Advisories, pointing to 302 bug reports.
Of all 10,452 components, only 424 or 4.05% were vulnerable.

Since January 2005, security vulnerabilities in Mozilla are announced through Mozilla Foundation Se-
curity Advisories (MFSAs) [31]. These advisories describe the vulnerability and give assorted information,
such as Bugzilla bug identification numbers. As of January 4, 2007, there were 134 MFSAs, pointing to
302 bug reports. Of these bug reports, 280 or 92.7% could be assigned to components using the techniques
described above.2

It turns out that out of all 10,452 components, only 424 or 4.05% had vulnerability-related bug reports
associated with them. We call these component vulnerable. In contrast to a vulnerable component, a neutral
component has had no vulnerability-related bug reports associated with it so far.3

The distribution of the number of vulnerability-related bug reports and MFSAs can be seen in Figure 3.
The top ten most vulnerable components in Mozilla are listed in Table 1. The three most vulnerable compo-

2Some bug reports in Bugzilla [30] are not accessible without an authenticated account. We suppose that these reports concern
vulnerabilities that have high impact but that are not yet fixed, either in Mozilla itself or in other software that uses the Mozilla
codebase. In many cases, we were still able to assign bug reports to files automatically because the CVS log message contained
the bug report number. By looking at the diffs, it would therefore have been possible to derive what the vulnerability was. Denying
access to these bug reports is thus largely ineffectual and might even serve to alert blackhats to potential high-value targets.

3Determining invulnerable components, i.e. those that will never have a vulnerability-related bug report associated with them,
is beyond the scope of this paper.
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Figure 3: Distribution of Mozilla Foundation Security Advisories (MFSAs) and vulnerability-related bug
reports in vulnerable components. The y axis is logarithmic.

Rank Component Directory MFSAs Bug reports

# 1 nsGlobalWindow dom/src/base 14 14
# 2 jsobj js/src 13 24
# 3 jsfun js/src 11 15
# 3 nsScriptSecurityManager caps/src 11 15
# 5 jsscript js/src 10 14
# 6 nsDOMClassInfo dom/src/base 9 10
# 7 nsDocShell docshell/base 9 9
# 8 jsinterp js/src 8 14
# 9 nsGenericElement content/base/src 7 10

# 10 nsCSSFrameConstructor layout/base 6 17

Table 1: The top ten most vulnerable components in Mozilla, sorted by associated MFSAs and bug reports.

nents all deal with scripting in its various forms:

1. nsGlobalWindow, with fixes for 14 MFSAs and 14 bug reports, has, among others, a method to set the
status bar, which can be called from JavaScript and which will forward the call to the browser chrome.

2. jsobj (13 MFSAs; 24 bug reports) contains support for JavaScript objects.

3. jsfun (11 MFSAs; 15 bug reports) implements support for JavaScript functions.

In the past, JavaScript programs have shown an uncanny ability to break out of their jails, which manifests
as a high number of security-related changes to these components. Not surprisingly, a security component,
nsScriptSecurityManager with 11 MFSAs and 15 bug reports related to it is also ranked at position 3.
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3 How Imports Matter

As discussed in Section 2.3, we found that several components related to scripting rank among the most
vulnerable components. How does a concept like scripting manifest itself in the components’ code?

Our central assumption in this work is that what a component does is characterized by its imports.
A class that implements some form of content—anything that can be in a document’s content model—
will import nsIContent.h; a class that implements some part of the Document Object Model (DOM) will
likely import nsDOMError.h. And components associated with scripting are characterized by the import of
nsIScriptGlobalObject.h.

In a strictly layered software system, a component that is located at layer k would import only from
components at layer k + 1; its imports would pinpoint the layer at which the component resides. In more
typical object-oriented systems, components will not be organized in layers; still, its imports will include
those components whose services it uses and those interfaces that it implements.

If an interface or component is specified in an insecure way, or specified in a manner that is difficult to
use securely, then we would expect many components that use or implement that interface or component to
be vulnerable. In other words, we assume that it is a component’s domain, as given by the services it uses
and implements, that determine whether a component is likely to be vulnerable or not.

How do imports correlate with vulnerabilities? For this, we first need a clear understanding of what
constitutes an import and what it means for a set of imports to correlate with vulnerability.

3.1 Imports

C and C++, a component’s imports are those files that it references through #include preprocessor direc-
tives.4 They are handled by the preprocessor and come in three flavors:

#include <name> This variant is used to import standard system headers.

#include "name" This variant is used to import header files within the current project.

#include NAME This variant is a so-called computed include. Here, NAME is treated as a preprocessor
symbol. When it is finally expanded, it must resolve to one of the two forms mentioned above.

Import extraction for C and C++ is difficult because the exact semantics of the first two variants are
implementation-dependent, usually influenced by compile-time switches and macro values. That means
that it is not possible to determine exactly what is imported without a working build environment. We
adopted the following heuristics:

• We treat every occurrence of #include as an import, even though it may not be encountered in
specific compile-time configurations—for example because of conditional compilation. The reason is
that we want to obtain all possible import relations, not just the ones that are specific to a particular
platform.

• For <...>-style includes, we assume that the name inside the angle brackets is not under the project’s
root directory. That means even if the compile-time switches are set so that, say, #include <util.h>
is resolved to src/util/util.h, We will treat it as a reference to an external include file, different from
src/util/util.h. it also means that if compile-time switches make <util.h> and <util/util.h>
refer to the same file, we will treat them as two different imports.

4For Java projects, a component’s imports would be referenced by import statements. Component extraction in Java is also
much easier than for C and C++ since Java does not distinguish between the definition and implementation of a class and because
everything has to be encapsulated in classes.
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• For "..."-style includes, we assume that the name inside the double quotes is under the project
root, even if compile-time switches might make them refer to different files, as above. If an include
references "util.h", but if there is no file called util.h under the project root, it is treated as a
reference to an external include. If there are two or more files named util.h, the include will be treated
as importing a “meta-include”, consisting conceptionally of all like-named files.5

• Implementing the computed include would require a full preprocessor pass over the source file. This
in turn would require us to have a fully compilable (or at least preprocessable) version of the project.
Fortunately, this use of the include directive is very rare, so we chose to ignore it.

3.2 Mapping Vulnerabilities to Imports

In order to find out which import combinations are most correlated with vulnerabilities, we use frequent
pattern mining [1, 17]. The result of frequent pattern mining is a list of import sequences that frequently
occur in vulnerable components. To judge whether these imports are significant, we apply the following
criteria:

Minimum Support. The pattern must appear in at least 3% of all vulnerable components. (In other words,
it must have a minimum support count of 3% of 424, or 13).

Significance. We want to make sure that we only include patterns that are more meaningful than their
sub-patterns. For this, we test whether the entire pattern is more specific for vulnerabilities than its
sub-patterns. Let I be a set of includes that has passed the above test. Then for each proper subset
J ⊂ I , we look at all files that import I and at all files that import I − J . We then classify those
files into vulnerable and neutral files and then use the resulting contingency table to compute whether
additionally importing J significantly increases the chance of vulnerability. We reject all patterns
where we cannot reject this hypothesis at the 1% level. (In other words, it must be highly unlikely
that including J in addition to I − J is independent from vulnerability.)6

For patterns that survive these tests, the probability of it occurring in a vulnerable component is much
higher than for its subsets. This is the case even though the conditional probability of having a vulnerability
when including these particular includes may be small.

3.3 Imports in Mozilla

Again, we applied the above techniques to the Mozilla base. In Mozilla, Vulture found 79,494 import
relations of the form “component x imports import y”, and 9,481 distinct imports. Finding imports is very
fast: a simple ANTLR parser [22] goes through the 13,111 C/C++ files in about two minutes.

Frequent pattern mining, followed by weeding out insignificant patterns yields 576 include patterns. The
top ten patterns are shown in Table 2.

Going through all 576 include patterns additionally reveals that some includes occur often in patterns,
but not alone. For example, nsIDocument.h appears in 45 patterns, but never appears alone. Components
that often appear together with nsIDocument.h come from directories layout/base or content/base/public,
just like nsIDocument itself.

5There are some additional disambiguation heuristics in place, and Vulture will do its best to find out the target of an include
directive. For example, when a file includes "util/util.h", and there is more than one file named util.h, but only one is in a
subdirectory called util. However, describing all of them would be tedious.

6For this, we use χ2 tests if the entries in the corresponding contingency table are all at least 5, and Fischer exact tests if at least
one entry is 4 or less.
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P(V |I ) V ∧ I ¬V ∧ I Includes

1.00 13 0 nsIContent.h · nsIInterfaceRequestorUtils · nsContentUtils.h
1.00 14 0 nsIScriptGlobalObject.h · nsDOMCID.h
1.00 19 0 nsIEventListenerManager.h · nsIPresShell.h
1.00 13 0 nsISupportsPrimitives.h · nsContentUtils.h
1.00 19 0 nsReadableUtils.h · nsIPrivateDOMEvent.h
1.00 15 0 nsIScriptGlobalObject.h · nsDOMError.h
0.97 34 1 nsCOMPtr · nsEventDispatcher.h
0.97 29 1 nsReadableUtils.h · nsGUIEvent.h
0.96 22 1 nsIScriptSecurityManager.h · nsIContent.h · nsContentUtils.h
0.95 18 1 nsWidgetsCID.h · nsContentUtils.h

Table 2: Include patterns most associated with vulnerability. The column labeled “Includes” contains the
include pattern; the column labeled P(V |I ) contains the conditional probability that a component is vulner-
able (V ) if it includes the pattern (I ). The columns labeled V ∧ I and ¬V ∧ I give the absolute numbers
of components that are vulnerable and include the set, and of components that are not vulnerable, but still
include the set.

The table reveals that it implementing or using nsIContent.h together with nsIInterfaceRequestorUtils
and nsContentUtils.h correlated with vulnerability in the past. Typical components that imports these are
nsJSEnvironment or nsHTMLContentSink. The first is again concerned with JavaScript, which we already
know to be risky. The second has had a problems with a crash involving DHTML that apparently caused
memory corruption that could have led to arbitrary code execution (MFSA 2006-64).

It can also happen that a file that itself does not have a security leak is nevertheless changed in the course
of a security fix. This happens, for example, when interfaces are changed and all classes that implement or
use that interface also need to be changed.

Looking at Table 2, we see that of the 35 components importing nsIScriptSecurityManager.h, nsICon-
tent.h, and nsContentUtils.h, 34 are vulnerable, while only one is not. This may mean one of two things:
either the component is invulnerable or the vulnerability just has not been found yet. At the present time, we
are unable to tell which is true. However, the component in question is nsObjectLoadingContent. It is a base
class that implements a content loading interface and that can be used by content nodes that provide func-
tionality for loading content such as images or applets. It certainly cannot be ruled out that the component
has an unknown vulnerability.

4 Predicting Vulnerabilities from Imports

In order to predict vulnerabilities from imports, we need a data structure that captures all of the important in-
formation about components and imports (such as which component has which imports) and vulnerabilities
(such as which component has how many vulnerabilities), but abstracts away information that we consider
unimportant (such as the component’s name). If there are m components and n imports, we write each
component as a n-vector of imports: xk = (xk1, . . . , xkn), where for 1 ≤ k ≤ m and 1 ≤ j ≤ n,

xk j =

{
1 if component i imports import j,
0 otherwise.

We combine all components into X = (x1, . . . , xm)t , the project’s import matrix. Entities that cannot import
or that cannot be imported, such as documentation files, are ignored.
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Figure 4: The import matrix X and the vulnerability vector v. The rows of X contain the imports of a certain
component as a binary vector: xik is 1 if component i imports import k. The vulnerability vector contains the
number of vulnerability-related bug reports for that component.

In addition to the import matrix, we also have the vulnerability vector y = (y1, . . . , ym), where y j is the
number of vulnerability-related bug reports associated with component j ; see also Figure 4.

Now assume that we get a new component, xm+1. Our question, “How vulnerable is component m +1?”
is now equivalent to asking for the rank of ym+1 among the values of y, given xm+1; and our other question,
“Is component m + 1 vulnerable?” is now equivalent to asking whether ym+1 > 0.

As we have seen in the preceding sections, imports are correlated with vulnerabilities. How can we use
this information to predict whether a new component will be vulnerable or not? And how can we predict
whether a component will be more vulnerable than another so that we can better direct testing effort?

Both questions can be posed as machine-learning problems. In machine learning, a parameterized func-
tion f , called a model, is trained using training data X and y, so that we predict ŷ = f (X). The parameters
of f are usually chosen such that the error, that is, the difference between y and ŷ, is minimized.

The question, “Is this component vulnerable?” is called classification (because it classifies components
as vulnerable or not vulnerable), and “Is this component more or less vulnerable than another component?”
can be answered with regression: by predicting the number of vulnerabilities and then ranking the compo-
nents accordingly.

In our case, X would be the project’s import matrix, and y would be the vulnerability vector v. If we
now train a model and feed it with a new component x ′ and if it classifies it as vulnerable, this means that
this component has imports that were associated with vulnerabilities in other modules.

4.1 Validation Setup

To test how good imports work as predictors for vulnerabilities, we simply use our import matrix both to
train and to assess the model. For this purpose, we randomly select a number of rows from X and the corre-
sponding elements from v—collectively called the training set—and use this data to train f . Then we use
the left-over rows from X and elements from y—the validation set—to predict whether the corresponding
components are vulnerable and to compare the computed prediction with what we already know from the
bug database. It is usually recommended that the training set be twice as large as the validation set, and we
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Figure 5: Precision and recall explained. Precision is TP/(TP + FP); recall is TP/(TP + FN).

are following that recommendation. We are not using a dedicated test set because we will not be selecting a
single model, but will instead be looking at the statistical properties of many models and will thus not tend
to underestimate the test error of any single model [13, Chapter 7].

One caveat is that the training and validation sets might not contain vulnerable and neutral components
in the right proportions. This can happen when there are so few vulnerable components that pure random
splitting would produce a great variance in the number of vulnerable components in different splits. This
problem is solved by stratified sampling, which samples vulnerable and neutral components separately.

4.2 Evaluating Classification

For classification, we can now compare ŷ with y and count how many times our prediction was correct. This
gives rise to the measures of precision and recall, as shown in Figure 5:

• The precision measures how many of the components predicted as vulnerable actually have shown to
be vulnerable. A high precision means a low number of false positives; for our purposes, the predictor
is efficient.

• The recall measures how many of the vulnerable components are actually predicted as such. A high
recall means a low number of false negatives; for our purposes, the predictor is effective.

Achieving a maximum precision is easy—just predict zero components to be vulnerable. This implies maxi-
mum efficiency, but also a minimum recall. Likewise, achieving a maximum recall can be done by predicting
all components to be vulnerable, which is effective, but not efficient, as the precision is minimal. The key is
therefore in achieving a balance between precision and recall, or between efficiency and effectiveness.

4.3 Evaluating Ranking

When we use a regression model, we predict the number of vulnerabilities in a component. To assess the
quality of the prediction, we want to know whether the ranks of the predicted and actual values correlate.
This is because we will allocate our quality assurance resources to a component according to its rank:
components that are ranked higher will get more resources.

To measure the quality of our rank prediction, we took the actual top 1% components and computed
their predicted ranks; see Figure 6. We then used Spearman’s rank correlation coefficient to measure the
rank correlation. This is a real number between −1 and +1, where +1 means that the ranks agree perfectly,
zero means that there is no correlation and −1 means that the ranks are in reverse order; see Figure 7.
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Figure 6: Rank correlation is computed for the top 1% of predicted values only. In this case, the rank
correlation would be 0.94, which is very high. In the case of ties (equal values), we take the average rank.

4.4 Prediction using Support Vector Machines

For our model f , we chose support vector machines (SVMs) [34] over other models such as k-nearest-
neighbors [13, Chapter 13] because they have a number of advantages:

• When used for classification, SVMs cope well with data that is not linearly separable.7

• SVMs come with plug-in kernels that can be used to achieve better effectiveness. Kernels add addi-
tional dimensions to the training data to achieve greater separability.

• SVMs have parameters that can be automatically tuned to achieve better effectiveness.

5 Case Study: Mozilla

To evaluate Vulture’s predictive power, we applied it to the code base of Mozilla [32]. Mozilla is a large
open-source project that has existed since 1998. It is easily the second most commonly used Internet suite
(web browser, email reader, and so on) after Internet Explorer and Outlook.

5.1 Data Collection

We examined Mozilla as of January 4, 2007. Vulture imported the CVS and the MFSAs into a database,
mapped vulnerabilities to components, and then created the input matrix and vulnerability vector as de-
scribed in Sections 2.3 and 3.3.

Table 3 reports approximate running times for Vulture’s different phases when applied to Mozilla. The
only phases that would occur in a production environment would be the creation of the input matrix and
vulnerability vector, and the computation of the SVM. Most of the time in importing the CVS into the

7Two sets of n-dimensional points are said to be linearly separable if there exists an n−1-dimensional hyperplane that separates
the two sets.
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Figure 7: Rank correlation explained. Figure (a) has rank correlation +1, Figure (b) has rank correlation near
0, and Figure (c) has rank correlation −1.

Phase Time

Importing CVS into database 24 h
Importing MFSAs into database, including download 5 m
Mapping vulnerabilities to components 1 m
Finding imports 2 m
Writing input matrix/vulnerability vector 5 m
Creation of SVM 15 m
Regression on validation set 3 m
Classification on validation set 2 m

Table 3: Approximate running times for Vulture’s different phases.

database is spent reconstructing transactions, i.e. the logical coupling of check-ins of individual files. This
step only occurs in CVS; it is not needed in more advanced configuration management systems such as
Subversion, because they already support the concept of transactions. Also, importing the version archive
and vulnerability information into a database would not occur in a production environment because either
the source code control system or the vulnerability information would be already database-based or could
be added to the database incrementally.

The 10,452 × 9,481 import matrix takes up 280 MB of disk space. From the import matrix and the
vulnerability vectors, we created 40 random splits using stratified sampling. This ensures that vulnerable
and neutral components are present in the training and validation sets in the same proportions. The training
set had 6,968 entries and was twice as large as the validation set with 3,484 entries. Finally, we assessed
these SVMs with the 40 validation sets.

5.2 Classification

For the statistical calculations, we used the R system [23] and the SVM implementation available for it [9].
It is very easy to make such calculations with R; the size of all R scripts used in Vulture is just about 200
lines. The calculations, however, used up to 11 GB of RAM.
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Figure 8: (a) Scatterplot of precision/recall values for the 40 experiments. (b) Plot of the empirical cumula-
tive distribution function for the Spearman rank correlation coefficients of the 40 random splits. The x axis
shows the Spearman rank correlation and the y axis shows the fraction of random splits where the correlation
coefficient was less than that number.

Figure 8 (a) reports the precision and recall values for our 40 random splits. The recall has an average of
0.65 and standard deviation of 0.04, which means that two thirds of all vulnerable components are correctly
classified:

Of all vulnerable components, Vulture flags 65% as vulnerable.

The precision has a mean of 0.45 and a standard deviation of 0.04, which means that a little less than
half of the predictions turn out to affect components that have known vulnerabilities:

Of all components flagged as vulnerable, 45% actually are vulnerable.

5.3 Ranking

The rank correlation coefficients are shown in Figure 8 (b). The average rank correlation is +0.50 with a
standard deviation of 0.12. The probability that the rank correlations are as high as they are, even when in
fact there is no correlation, is less than 0.01 in 32 out of 40 cases, and less than 0.10 in all cases. This makes
the results statistically significant.

There is a statistically significant fairly strong positive correlation
between actual and predicted vulnerability ranks.

5.4 A Ranking Example

Let us illustrate the ranking correlation by an actual example. As a quality assurance manager, you want
to focus extra efforts on the top ten new components that Vulture predicts as vulnerable. Table 4 shows
such a prediction as produced in one of the random splits.8 Within the validation set, these would be the
components to spend extra effort on.

8We spent no effort in specifically selecting one of these splits.
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Prediction Validation set

Rank Component Bug reports Actual rank

# 1 NsDOMClassInfo 10 # 3
# 2 SgridRowLayout 1 # 95
# 3 xpcprivate 7 # 6
# 4 Jsxml 11 # 2
# 5 nsGenericHTMLElement 6 # 8
# 6 Jsgc 10 # 3
# 7 NsJSEnvironment 4 # 12
# 8 Jsfun 15 # 1
# 9 NsHTMLLabelElement 3 # 18

# 10 NsHttpTransaction 2 # 35

Table 4: The top ten most vulnerable components from a validation set, as produced by Vulture.

Your effort would be well spent, because all of the top ten components actually turn out to be vulnerable.
(SgridRowLayout and NsHttpTransaction are outliers, but still vulnerable.) Furthermore, in your choice of
ten, you would recall the top four most vulnerable components.

Focusing on highly ranked components further improves the hit rate.

5.5 Discussion

Our case study shows three things. First of all, allocating quality assurance efforts based on a Vulture
prediction achieves a reasonable balance between effectiveness and efficiency. It is effective because two
thirds of all vulnerable components are actually flagged. At the same time, Vulture is efficient because
directing quality assurance efforts on flagged components yields a return of 45%—almost every second
component is a hit. Focusing on the top ranked components will give even better results.

Furthermore, these numbers show that there is empirically an undeniable correlation between imports
and vulnerabilities. This correlation can be profitably exploited by tools like Vulture to make predictions
that are correct often enough so as to make a difference when allocating testing effort. Vulture has also
identified imports that always (or very often) lead to vulnerabilities when used together and can so point out
areas that should perhaps be redesigned in a more secure way.

Best of all, Vulture has done all this without the need to resort to intuition. This gives programmers and
managers much-needed objective guidelines when it comes to allocating testing effort.

5.6 Threats to Validity

We have identified the following circumstances that could affect the validity of our study:

Study size. The correlations we are seeing with Mozilla could be artifacts that are specific to Mozilla. They
might not be as strong in other projects, or the correlations might disappear altogether. From our own
work analyzing Java projects, we think this is highly unlikely.

Bugs in the database or the code. The code that imports the CVS or the MFSAs into the database could
be buggy; the import matrix and vulnerability vector could have been incorrectly calculated; or the
R code that does the assessment could be wrong. All these risks were mitigated either by sampling
small subsets and checking them manually for correctness, or by implementing the functionality a
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second time starting from scratch and comparing the results. For example, the vulnerability matrix
was manually checked for some entries, and the R code was rewritten from scratch.

Bugs in the R library. We rely on a third-party R library for the actual computation of the SVM and the
predictions [9], but this library was written by experts in the field and has undergone cross-validation,
also in work done in our group [27].

Wrong or noisy input data. The Mozilla source files could contain many “noisy” import relations in the
sense that some files are imported but actually never used; or the MFSAs could accidentally or delib-
erately contain wrong information. Our models do not incorporate noise. From manually checking
some of the data, we believe the influence of noise to be negligible, especially since results recur with
great consistency, but it remains a (remote) possibility.

Yet unknown vulnerabilities. Right now, our predictions are evaluated against known vulnerabilities in
the past. Finding future vulnerabilities in flagged components would improve precision and recall;
finding them in unflagged components would decrease recall.

6 Related Work

Previous work in this area tried to reduce the number of vulnerabilities or their impact by one of the following
methods:

Looking at components’ histories. The Vulture tool was inspired by the pilot study by Schröter et al. [27],
who first observed that imports correlate with failures. While Schröter et al. examined general defects,
the present work focuses specifically on vulnerabilities. To our knowledge, this is the first work that
specifically mines and leverages vulnerability databases to make predictions.

Evolution of defect numbers. Both Ozment at al. [21] as well as Li et al. [16] have studied how the num-
bers of defects and security issues evolve over time. Ozment et al. report a decrease in the rate at which
new vulnerabilities are reported, while Li et al. report an increase. Neither of the two approaches allow
mapping of vulnerabilities to components or prediction.

Estimating the number of vulnerabilities. Alhazmi et al. use the rate at which vulnerabilities are discov-
ered to build models to predict the number of as yet undiscovered vulnerabilities [2]. They use their
approach on entire systems, however, and not on source files. Also, in contrast to Vulture, their
predictions depend on a model of how vulnerabilities are discovered.

Miller et al. build formulas that estimate the number of defects in software, even when testing reveals
no flaws [19]. Their formulas incorporate random testing results, information about the input distri-
bution, and prior assumptions about the probability of failure of the software. However, they do not
take into account the software’s history—their estimates would be unchanged no matter how large the
history is.

Tofts et al. build simple dynamic models of security flaws by regarding security as a stochastic pro-
cess [33], but they do not make specific predictions about vulnerable software components. Yin at
al. [37] highlight the need for a framework for estimating the security risks in large software systems,
but give neither an example implementation nor an evaluation.

Testing the binary. By this we mean subjecting the binary of the program in question to various forms of
testing and analysis (and then reporting any security leaks to the vendor). This is often done with
techniques like fuzz testing [18] and fault injection; see the book by Voas and McGraw [36].
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Eric Rescorla argues that finding and patching security holes does not lead to an improvement in
software quality [24]. But he is talking about finding security holes by third-party outsiders in the
finished product and not about finding them by in-house personnel during the development cycle.
Therefore, his conclusions do not contradict our belief that Vulture is a useful tool.

(Statically) examining the source. This usually happens with an eye towards specific vulnerabilities—for
example, buffer overflows. Representative of the many static code scanners, we will briefly discuss
ITS4, developed by Viega at al. [35]. Their requirement was to have a tool that is fast enough to be
used as real-time feedback during the development process, and precise enough so that programmers
would not ignore it. Since their approach is essentially pattern-based, it will have to be extended
as new patterns emerge. Since ITS4 checks local properties, it will also be very difficult for it to
find security-related defects that arise from the interaction between far-away components, that is,
components that are connected through a long chain of def-use relations. Also, ITS4, as it exists now,
will be unable to adapt to programs that for some reason contain a number of pattern-violating but
safe practices, because it completely ignores a component’s history.

Another approach is to use model checking [3, 4]. In this approach, specific classes of vulnerabilities
are formalized and the program model-checked for violations of these formalized properties. The
advantage over other formal methods is that if a failure is detected, the model checker comes up with
a concrete counter-example that can be used as a regression test case. This too is a useful tool, but
like ITS4, it will have to be extended as new formalizations emerge. Some vulnerability types might
not even be formalizable.

Vulture also contains a static scanner—it detects imports by parsing the source code in a very simple
manner. However, Vulture’s aim is not to declare that certain lines in a program might contain a buffer
overflow, but rather to direct testing effort where it is most needed by giving a probabilistic assessment
of the code’s vulnerability.

For other approaches, see for example linear programming [12], data-flow analysis [14], locating func-
tions near a program’s input [8]9, checking against an axiomatization of correct pointer usage [11],
exploiting semantic comments [15], symbolic bounds checking [25] symbolic pointer checking [26],
or computing and checking path conditions [29].

Hardening source or runtime environment. By this we mean all measures that are taken to mitigate a
program’s ability to do damage. Hardening a program or the runtime environment is useful when
software is already deployed. StackGuard is a method that is representative of the many tools that
exist to lower a vulnerability’s impact [6]. Others include mandatory access controls as found in
AppArmor [5] or SELinux [20]. However, Vulture works on the other side of the deployment divide
and tries to direct programmers and managers to pieces of code requiring their attention, in the hope
that StackGuard and similar systems will not be needed.

7 Conclusions and Future Work

We have introduced Vulture, a new tool that predicts vulnerable components by looking at their imports.
It is fast and reasonably accurate: it analyzes a project as complex as Mozilla in about half an hour, and
correctly identifies two thirds of the vulnerable components. Half of its predictions are correct.

9The hypothesis of DeCast et al. that vulnerabilities occur more in functions that are close to a program’s input is not supported
by the present study. Many vulnerable components, such as nsGlobalWindow, lie in the heart of the application.
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The contributions of the present paper can be summarized as follows:

1. A technique for locating past vulnerabilities by mining and combining vulnerability databases with
version archives.

2. A tool that learns from the locations of past vulnerabilities to predict future ones with reasonable
accuracy.

3. An approach for identifying vulnerabilities that automatically adapts to specific projects and products.

4. A predictor for vulnerabilities that needs only import structures, and thus can be applied before the
component is fully implemented.

Despite these contributions, we feel that our work has just scratched the surface of what is possible, and of
what is needed. Our future work will concentrate on the following topics:

Characterizing domains. We have seen that empirically, imports are good predictors for vulnerabilities.
We believe that this is so because imports characterize a component’s domain, that is, the type of ser-
vice that it uses or implements, and it is really the domain that determines a component’s vulnerability.
We plan to test this hypothesis by studies across multiple systems in similar domains.

Fine-grained approaches. Rather than just examining imports at the component level, one may go for more
fine-grained approaches, such as caller-callee relationships. Such fine-grained relationships may also
allow vulnerability predictions for individual classes or even individual methods or functions.

More significant features. Besides imports, there may be further characteristics that make a component
vulnerable. We plan to examine further features, such as complexity metrics, or the usage of specific
data types; and to check whether such features would be applicable to predict vulnerabilities.

Evolved components. This work primarily applies to predicting vulnerabilities of new components. How-
ever, components that already are used in production code come with their own vulnerability history.
We expect this history to rank among the best predictors for future vulnerabilities.

Usability. Right now, Vulture is essentially a batch program producing a textual output that can be processed
by spreadsheet programs or statistical packages. We plan to integrate Vulture into current development
environments, allowing programmers to query for vulnerable components. Such environments could
also visualize vulnerabilities by placing indicators right next to the individual entities (Figure 9).

Vulture is part of the “Mining software archives” project at Saarland University. For more information, see

http://www.st.cs.uni-sb.de/softevo/
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