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Abstract—We study the vulnerability reports in the Common
Vulnerability and Exposures (CVE) database by using topic
models on their description texts to find prevalent vulnerability
types and new trends semi-automatically. In our study of the
39,393 unique CVEs until the end of 2009, we identify the
following trends, given here in the form of a weather forecast:
PHP: declining, with occasional SQL injection.
Buffer Overflows: flattening out after decline.
Format Strings: in steep decline.
SQL Injection and XSS: remaining strong, and rising.
Cross-Site Request Forgery: a sleeping giant perhaps, stirring.
Application Servers: rising steeply.
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I. INTRODUCTION

Security is often viewed as an arms race between crackers,
who try to exploit flaws in deployed systems, and security
people, who wish to make that impossible. It is therefore
desirable to know of emerging trends in security in order
to be able to think about countermeasures before these
emerging trends become large-scale problems.

One large and publicly available source of vulnerabil-
ity reports is the Common Vulnerabilities and Exposures
database (CVE) hosted at MITRE1. According to the CVE’s
FAQ2, “CVE is a list of information security vulnerabilities
and exposures that aims to provide common names for pub-
licly known problems. The goal of CVE is to make it easier
to share data across separate vulnerability capabilities (tools,
repositories, and services) with this ‘common enumeration.’”
This seems largely to be true: vulnerability databases often
contain CVE identifiers whenever they reference a vulnera-
bility that is also in the CVE.

The only large trend study on publicly available data has
been done on the CVE in 2007 [1]. This study relied on
a manual classification of entries, helped by a classification
system called Common Weakness Enumeration (CWE) 3.
The CWE aims to be a complete dictionary for software
weaknesses.

One problem with the CVE is that the CWE classification
system is far too detailed: there are simply too many CWEs
to choose from. Therefore, a small set of 19 CWEs was

1http://cve.mitre.org/
2http://cve.mitre.org/about/faqs.html
3http://cwe.mitre.org/

chosen for the user interface to avoid overwhelming the
person making the CVE entry. Steven Christey from MITRE
told us in an email of August 2009: “[MITRE] worked with
the NVD team at NIST to come up with a set of identifiers
that was fairly small but still gave broad coverage for most
vulnerabilities. (You don’t want to have to train people to
map 700+ CWE names, nor do you want to write the user
interface for building up a menu of that size ;-)”.

This will lead to coarse-grained classification and con-
sequently to loss of information. Also, keeping the list
fixed will cause emerging trends to be buried in related but
irrelevant classifiers. The same problem arises when using
supervised learning techniques, since the topics are fixed in
advance and are not allowed to emerge by themselves. In
addition, even though the classification system is already
coarse-grained, many CVE entries do not have any CWE
classification at all. That holds especially for the earlier
entries. Therefore, to analyze trends for CVE data, there
is a lot of manual work involved; work that will include the
exercise of discretion and good taste.

In this paper, we follow a different approach, not based
on CWEs or any other fixed classification system. Instead
we use Latent Dirichlet Allocation (LDA), an unsupervised
learning technique, on the description texts of CVE entries
in order to come up with our own classification system,
called a topic model. This allows us to identify prevalent
topics, but also emerging trends, in an automated fashion.

Our contributions to the analysis of corpora of vulnera-
bility data in general and to the CVE in particular are:
• We have conducted the first independent study on the

whole body of the CVE database outside of MITRE.
• Since we used a completely different methodology than

the original study, we offer an independent way to
validate the results periodically published by MITRE.
While most of our findings agree with theirs, the inde-
pendence in methodology gives a greater confidence in
the results.

• We offer a mostly automated approach to analysing
large corpora of vulnerability texts such as the CVE.
Topic models will automatically find the prevalent top-
ics in the CVE and researchers are not limited to man-
ual and potentially error-prone labeling, for example by
CWEs or supervised learning techniques. Overall, the



topics identified by our automated analysis are in good
agreement with the manual CWE classification in the
CVE database.

• Related to the previous point, this work can be the basis
of a recommendation system that suggests possible
topics to people entering new CVEs into the CVE
database. This could solve the problem of the relative
coarse-grainedness of CVE classifications.

• We show how topic analysis helps to identify emerging
trends. We found one trend (vulnerabilities involving
application servers) for which we offer evidence of
growing importance, but which has gone unnoticed in
the original MITRE study.

The remainder of this paper is organised as follows: First,
we describe our methodology (Section II). Then we present
our results (Section III) and describe potential threats to
validity of this study (Section IV). We finish the paper with
a discussion of related work (Section V), as well as conclu-
sions and future work (Section VI). We also provide a step-
by-step guide on how to replicate our study (Appendix A).

This paper contains some large tables, which we present
at the end of the paper rather than in-line.

II. METHODOLOGY

A. Data Gathering and Corpus Preparation

An annotated version of the CVE database is offered
by NIST, and there known as the National Vulnerability
Database (NVD)4. MITRE creates the CVE descriptions and
adds the relevant references. The NVD team at NIST then
receives this basic information from MITRE (and through
the public CVE site). NIST then adds other information such
as structured product names and versions, and also maps the
entries to CWE names.

NIST offers files named nvdcve-2.0-year.xml for down-
load, where year is a number from 2002 to 2010 inclusive.
The file for 2002 contains entries from 1988 through 2002,
and the file for 2010 is necessarily incomplete. Since there
is usually a period of consolidation when a new CVE entry
(called a candidate) might be changed or rejected, we only
looked at entries that were published up to 2009, inclusive.

I order to build timelines of topics, we need to know
when the problem described in a CVE was discovered (first
identified as a problem), disclosed (made available to the
developers or the public), or published (entered into the
CVE corpus). This is a notoriously difficult problem, since
discovery or disclosure dates are by their very nature hard
to come by. For our purposes, we need to date a CVE
entry only to within a year, but while each CVE entry
contains a date field called published-datetime, this
field cannot be used to date a CVE reliably, according to
information from MITRE. Therefore, we use the disclosure

4http://nvd,nist.gov
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Figure 1. Stemmed word list for CVE 2002-1621

date of the corresponding OSVDB5 entry. The OSVDB is
an open vulnerability database that is comparable to CVE
in scope.

From each CVE entry, we extracted the CVE ID (a
unique identifier) and the summary text. We then subjected
the words in the summary text to the Porter stemming
algorithm [2], which attempts to find word stems so that
for example the words ‘programming’, ‘programmed’, and
‘programs’ would all be mapped to their stem ‘program’.
Next, we removed a number of stop words, i.e., words that
are so common that they do not help differentiate between
CVEs; see Table I.6 Finally we counted the occurrence of
each stem in the summary text. After these operations, we
therefore had, for each CVE, a list of word stems and the
number of times they occurred in that CVE. For example,
Figure 1 shows the list for CVE 2002-1621, clearly a buffer
overflow.

B. Topic Models

We subjected these stemmed CVEs to Latent Dirichlet
Allocation (LDA), an unsupervised learning technique [3].

In the LDA model, a CVE is generated by first picking a
distribution over topics. Given this distribution, the topic of
each specific word is picked, and finally, words are generated
given their topics.

For example, the LDA model of the CVE data has topics
for “buffer overflow” and “directory traversal”. The topic for
buffer overflow will contain words like ‘buffer’, ‘overflow’,
‘code’ and ‘execut’ with high probability, whereas the topic
for directory traversal will have words like ‘directori’, ‘dot’,
and ‘travers’. Words like ‘vulner’ will appear in both topics.

5http://www.osvdb.org
6Seemingly nonsensical stop words like ‘a’, ‘e’, ‘g’, ‘k’, or ‘mc’ come

about by breaking words like “e.g.”, “a.k.a.”, or “MC/ServiceGuard” at
word separators like the period ‘.’ or the slash ‘/’.



In LDA, documents are considered to be bags of words,
and words are considered to be independent given the topics
(i.e., word order is irrelevant). When LDA is run, the various
distributions are learned using Bayesian inference. In effect,
the generative model just described is run backwards and the
distributions are updated from their priors using the actual
documents.

We let LDA identify 40 topics, starting from random topic
assignments.7 If there are m unique stemmed words in the
entire CVE corpus, and if there are n CVEs, the result of
LDA contains, among other things, a file that assigns the
word with index k (1 ≤ k ≤ m) in document c (1 ≤ c ≤ n)
a topic z (1 ≤ z ≤ 40), meaning that word k in document c
is about topic z. Note that the same word can be assigned
to different topics in different documents. Another result of
the LDA software is a list of the most frequent words in a
topic, together with their frequencies.

First, we define the probability that a given document c
is about a given topic z:

p̂(z | c) =
∑
w∈c

w is about z

#occurrences of w in c

#words in c
. (1)

This formula can lead to fractional (or fuzzy) assignments.
For example, CVE 1999-1471 is about the passwd program;
the description reads “Buffer overflow in passwd in BSD
based operating systems 4.3 and earlier allows local users
to gain root privileges by specifying a long shell or GECOS
field.” After stemming and removing stop words, 18 words
remain, 12 of which (‘bsd’, ‘earlier’, ‘gain’, ‘gecos’, ‘local’,
‘oper’, ‘passwd’, ‘privileg’, ‘specifi’, ‘system’, ‘user’, and
‘root’) are assigned to topic 40 (manually labeled “Privilege
Escalation”), four (‘buffer’, ‘long’, ‘overflow’, and ‘shell’)
to topic 12 (“Buffer Overflow”), and one each (‘base’ and
‘field’) to topics 34 (“Linux”) and 30 (“Message Boards”),
respectively. The assignment (about 67% privilege escala-
tion, 22% buffer overflow, 11% wrong assignments) is quite
accurate.

We also give an indication of the overall importance of a
topic, which is given by

p̂(z) =
1

#CVEs

∑
c

p̂(z | c). (2)

LDA cannot leave a topic unassigned; therefore, when
LDA is run on a corpus as large as the CVE with a
comparatively large number of topics, it can happen that
some of the topics are really the same and should be
combined. This topic equivalence can be detected through
a large overlap in the set of words that appear in different
topics. For example, the most common words in topic 8

7Automatically finding the best number of topics when doing unsuper-
vised learning is at this point an unsolved problem. It has been solved for
supervised learning [4], and there are some ideas for unsupervised learning,
but at the time of writing, there is no solid theory. The number 40 seemed
to be a good value with good topic separation.

are ‘overflow’, ‘buffer’, ‘code’, ‘execut’, and ‘arbitrari’,
whereas the most common words in topic 12 are ‘command’,
‘execut’, ‘arbitrari’, ‘buffer’, and ‘overflow’. When k topics
z1, . . . , zk are combined into a topic z, a that topic will have
the joint probability

p̂(z) =
∑

1≤j≤k

p̂(zj), (3)

where p̂(zj) is given by Equation (2).
One result of the LDA software is a list of the most

frequent words in a topic, together with their probabilities.
Again, when k topics are combined, a word w will have the
joint probability

p̂(w | z) =
∑

1≤j≤k

p̂(w | zj)
p̂(zj)

p̂(z), (4)

where p̂(z) is given by Equation (3).

C. Trend Analysis

LDA does not measure changes over time. One alternative
is to use Dynamic Topic Models [5], which would change
the topic distributions and the word distributions within a
topic from one year to the next. Topics over Time [6] works
the other way around, assuming that a CVE has a time stamp
depending on a topic-specific beta distribution.

Both approaches have restrictions, however: dynamic
topic models penalise large changes in word distributions
for any particular topic from one year to the next, whereas
topics-over-time distributions are rather inflexible.

Therefore, we follow Hall et al. [7] and study only the post
hoc empirical probabilities that a randomly selected CVE in
a given year y is about topic z.

p̂(z | y) =
∑

c:t(c)=y

p̂(z | c) p̂(c | y)

=
∑

c:t(c)=y

p̂(z | c) 1
#CVEs in year y

=
1

#CVEs in year y

∑
c:t(c)=y

p̂(z | c), (5)

where p̂(z | c) is given by Equation (1) and t(c) is the
year in which CVE c was published. This formula is simple
to compute, since p̂(z | c) is a result of the LDA model
estimation process.

Plotting p̂(z | y) against y will then give an indication
about the relative importance of topic z in year y: if p̂(z1 | y)
is twice as high a p̂(z2 | y), then twice as many CVEs were
about z1 than about z2 in year y.

In addition to a graphical display, it is also interesting to
know how much a topic has changed in importance, both
since measurements began and in the last year. In general,
we compute the change from year y to year y + n as the
average annual change:



Actually is x Is not x
Classified as x true positive (TP) false positive (FP)
Classified as not x false negative (FN) true negative (TN)

precision =
#TP

#TP + #FP
recall =

#TP
#TP + #FN

Figure 2. Assessing the quality of a classifier.

change =
( p̂(z | y + n)

p̂(z | y)

)1/n

− 1, (6)

The intuition behind this is that this number will give
the relative change that the initial level of importance will
have to undergo every year to arrive at the final level of
importance. For example, if this number is 0.1, then that
means that the importance of the topic has risen by 10%
per year on average.

D. Causes and Impacts

During exploratory analysis of the CVE corpus we noticed
a curious feature, namely that most (72.9%) were of the
form “x allows remote attackers to y” or similar forms. For
example, CVE 2008-0895 reads, “BEA WebLogic Portal
10.0 and 9.2 through MP1, when an administrator deletes
a single instance of a content portlet, removes entitlement
policies for other content portlets, which allows attackers
to bypass intended access restrictions.” This separates the
description of the CVE into two parts, the first of which
describes the cause of the problem and the second the
impact. For those CVEs for which we found such a division,
we subjected them to the same LDA process in the hope of
finding out trends in both causes and impacts.

E. Alignment with CWEs

One problem is that topic models, being an unsupervised
learning technique, do not give indications of goodness-of-
fit, so we usually have no quantitative indication on how
well the classification works. In this case, however, many
CVEs do have an independent classification in the form of
CWE assignments, so we can compare the CWE value with
the topic that was assigned by running LDA. We will discuss
the question of what it means for LDA and CWE topics to
be in agreement below, in Section III-E.

Usually, the quality of a classifier is determined by using
the false-positive and false-negative rates, or equivalently
the related measures of precision and recall. High precision
values mean that classifications are often correct, and high
recall values mean that many documents will be correctly
classified; see Figure 2. We cannot use precision and recall
directly, however, since our topic assignment based on
LDA is probabilistic. Remember that a document can be
about multiple topics, which is captured by the probability
p̂(z | c). We therefore need to transform our probabilistic
topic assignments into crisp ones, where each document is

assigned exactly one topic. We do this for a given document
c by taking the topic z for which p̂(z | c) is largest.

We compute precision and recall values separately for
each topic. This helps us identify topics that are aligned
particularly well with CWEs. Let cwe(c) be the CWE value
for a document c and let ẑ(v) be a mapping that maps a
CWE v onto a topic. (For simplicity, we assume that ẑ is
single-valued.) Then we count for each document c with
topic z:
• a true positive for z if z = ẑ

(
cwe(c)

)
;

• a false positive for z and a false negative for ẑ
(
cwe(c)

)
if z 6= ẑ

(
cwe(c)

)
.

The intuition is that if the CWE topic and the LDA topic
are the same for a document, i.e., z = ẑ

(
cwe(c)

)
, then that

should count as a true positive. If they are not, however, it
should be counted as a false positive for the LDA topic z
and as a false negative for the true CWE topic ẑ

(
cwe(c)

)
.

We do not count true negatives because they are not needed
for the computation of precision and recall (see Figure 2).

III. RESULTS

A. Overview

The earliest CVE has an OSVDB disclosure date of
August 1, 1982 (CVE 1999-0531, a candidate that is
now rejected). By contrast, the CVE with the earliest
published-datetime field in the CVE database is
CVE 1999-0095, reporting the sendmail DEBUG hole that
was exploited by the Morris worm [8]). The latest are from
December 31, 2009, comprising a total of 39,749 entries.
After removing duplicates, 39,393 unique CVEs remained.8

After removing stop words and stemming, the CVE
summaries could be as short as a single word (for example
for CVE 1999-0657, for which the entire summary reads
“WinGate is being used”, which after removing stop words
and stemming reduces simply to “wingat”), but also as long
as 99 words (for CVE 2007-0018, which describes fairly
completely a stack-based buffer overflow in an ActiveX
control). The distribution is shown in Figure 3 (left). It
is clearly a unimodal distribution, having a median of 18
words, a mean of 18.85 words, and a standard deviation of
6.49 words. But it is not a symmetric distribution (skewness
1.51, kurtosis 5.91)9.

The right part of Figure 3 shows how the CVE database
grew over the years. Apparently, the number of CVE entries
peaked in 2006 with 6,885 submissions in that year, and
has been slightly declining in 2007 (to 6,393) and more
drastically in 2009 (by a massive third to 4,446). We assume
that the people creating CVE entries have a large backlog,
and that over time, more CVE entries that are published in

8We have checked 53 duplicate CVE IDs manually to confirm that they
were indeed duplicate entries having identical fields and not different entries
with the same CVE ID.

9Skewness and kurtosis have been computed with methods compatible
with SAS and SPSS.
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Figure 3. Length of CVE summary text after stemming and stop word removal (left) and number of CVEs issued per year between 1988 and 2009 (right).

2010 will turn out to have been disclosed in 2009, so that
this number will probably rise.

B. Topic Models on the Entire Corpus

Combining topics, we arrived at 28 unique topics. Topics
for which we could not find a good name are simply labeled
“Topic x”, where x is the topic number produced by LDA.

The first main result is a table with all 28 unique topics
(Table IV). The first column contains the topic name z.
The second column contains a sparkline, showing the trend
of that topic. Sparklines are wordlike summaries of data,
invented by Edward Tufte [9]. This particular version of
sparklines shows a diamond at the beginning and end of
the sparkline, and also a diamond at the maximum value.
The remaining columns contain relative frequency p̂(w | z)
of that topic in the years from 2000 to 2009, according to
Equation (4).

The table contains all the expected topics such as
buffer overflows, format string vulnerabilities, SQL injec-
tion, cross-site scripting, cross-site request forgery and so
on, and roughly in the order that we would intuitively expect
them to be from following the security press.

However, there are also a few surprises:
• There are topics just for Linux kernel issues, Microsoft

Office and Microsoft Windows. The reason is that with
partial/fuzzy assignments, LDA will not try to find
mutually exclusive topics, since a document can be
partly about one topic and partly about another.

• The proportion of resource management issues is very
high. This is due to the combination of denial-of-service
topics with more traditional resource management top-
ics such as memory leaks. This was done because
manual inspection of respective CVEs showed that
these topics were not really separable: a CVE that had
words assigned to resource management issues usually
also had words assigned to a denial-of-service topic.

• CVE Management issues (disputed entries and rejects)
make up almost 3% of the CVE corpus. We will return
to this topic when discussing the changes in topic
importance below.

• The word “PHP” appears in four of the 28 topics, SQL
injection and cross-site scripting, implicating PHP in
these vulnerabilities. However, the proportion of PHP-
specific vulnerabilities has been declining since 2007,
especially for arbitrary code executions due to PHP.
One reason might be that support for PHP 4 was
finally discontinued in August 2007, forcing web site
operators to upgrade to the more secure PHP 5. See
also Section III-C below.

• For the topic labeled “Cross-Site Request Forgery”, the
strings “cross-sit” and “forgeri” appear only beyond the
10 most frequent words (stemming reduces “cross-site”
to “cross-sit” and “forgery” to “forgeri”).10

C. Trend Analysis

The second main result is a graphical display of p̂(z|y)
for the 28 topics since 2000 (the sparklines in Table IV).
The main findings are:

• Well-known vulnerabilities like buffer overflows and
format strings are declining, though perhaps not as
steeply as one would wish. It seems that buffer over-
flows are harder to exploit now than they were in the
past, and therefore that effective protective measures
have finally found their way into operating systems,
compilers, and libraries.

• Resource management issues are also generally declin-
ing. This puts the high percentage of this topic in
Table IV into perspective: the situation was bad, but
it is getting better.

• Privilege escalation and link resolution issues are also
going down, perhaps indicating better compartmentali-
sation and secure-by-default configurations.

• Perhaps surprisingly, the importance of exploits allow-
ing arbitrary code execution is also going down slightly
in recent years (but see the section on causes and
impacts below).

10Due to space constraints, we cannot show the most frequent words in
this paper. Interested readers are invited to peruse the Replication Guide in
Appendix A to get a copy of the data and scripts or to contact the authors.



• SQL injection and cross-site scripting have dents in
their growth curves of the last few years.

The third main result is Table II, which shows more
quantitatively the change in importance for the 28 unique
topics identified by LDA from 2000 to 2009 and from 2008
to 2009, according to Equation (6).

The table is sorted in decreasing order of combined
change11; the “since 2000” column can be used to see
whether the change from 2008 to 2009 was in accordance
with or against the general trend since 2000. For example,
application server-related vulnerabilities have risen by 20.6%
annually since 2000, and by 83.2% from 2008 to 2009.

The comparatively unimportant Topic 35 appears rela-
tively high up the list because it rose from a mere 0.33%
in 2008 to 1.5% in 2009. We believe this to be a random
fluctuation, not a new trend.

Above we mentioned that incomplete or disputed CVE
entries make up about 3% of CVE entries. Looking now
at the changes in importance, we can see that this quality
has been eroding since 2000, but apparently some quality
measures have taken effect. In fact, when one looks at the
plot of that topic in Table IV, one can see that after a sharp,
almost exponential increase until 2006, the topic has been
falling.

D. Causes and Impacts

The CVE corpus contains 28,699 unique entries of the
form “x, allows attackers to y” or similar forms, 72.9% of
all unique entries.

Tables V and VI show causes impacts respectively, anal-
ogous to Table IV. What can be seen from the table
is that the four most frequent causes are responsible for
two thirds of all CVEs; after the top four, topics fall off
sharply in importance. PHP is identified as one of the four
major causes, making it a prime candidate for improvement.
For the impact data, the situation is even more clear-cut:
arbitrary script and code executions make up almost 58% of
all impacts. This suggests that research on the prevention
of such vulnerabilities could have major impact (no pun
intended). While it is true that adding denial of service
and information leaks would make the figure rise to 92%,
preventing such attacks is in our opinion more difficult than
preventing arbitrary code execution.

When looking at the most frequent words in the “cause”
topics, one disappointing element is the appearance of
the word “unspecifie[d]” in various topics. Looking at the
corresponding CVEs, one finds that the phrase “unspecified
vulnerabilities” or “unspecified vectors” is responsible for
this. For example, CVE 2007-0114 reads, “Sun Java System
Content Delivery Server 5.0 and 5.0 PU1 allows remote
attackers to obtain sensitive information regarding ‘content

11We used a weighted geometric average, weighing the change since
2000 ten times as high as the change since 2008.

details’ via unspecified vectors.” Entries like these simply
mean that the source cannot or will not disclose the actual
cause of the vulnerability. That will in turn mean that the
CVE entry will be incomplete, rendering it less useful.

There is an apparent discrepancy in the cause/impact data
versus the entire data as seen in Table IV. For example, in
Table V, we see that 19% of all CVEs are about cross-
site scripting, whereas the corresponding column sum in
Table IV gives only about 9.7%. The reason for this effect is
that sometimes a given cause may allow different impacts.
For example, a buffer overflow may at one time allow the
execution of arbitrary code, at another it may lead to a crash
and therefore to a denial of service. So LDA might assign
a document to either the cause (buffer overflow) or to the
impact topic (arbitrary code or denial of service), or partly to
both, depending on which part dominates in the description.
As soon as the document is split into cause and impact,
however, assignments can be made more clearly.

Tables V and VI show graphs of the unique cause and
impact topics analogous to Table IV. For both data sets, the
important information is that the graphs follow the same
general curves as the corresponding ones in Figure IV. For
example, cross-site scripting and SQL injection are rising,
whereas buffer overflows, denial of service and privilege
escalation are falling and PHP seems to have had its peak
in 2006 or 2007.

E. Alignment with CWEs

Next, we looked at how well the 28 topics found by LDA
aligned with the 19 pre-assigned CWEs that are available
to someone who enters a new CWE. To do that, we first
needed to map LDA topics to CWEs. We ended up with
the assignment shown in Table III, but not all topics were
assigned a CWE or vice versa. The reason for this is that
an LDA topic might not coincide naturally with an available
CWE or only with an CWE that is not used in the NVD. For
example, Topic 23 was labeled “Privilege Escalation”, and
CWE 269 (improper privilege management) exists for just
such a case. But this CWE is not one of the 19 CWEs offered
for CVE entries. This is not a problem for LDA, since partial
assignments are possible (“this document is 50% about topic
1 and 50% about topic 2”), but the CVE does not allow such
partial assignments. That said, we were able to map 12 of
the 24 LDA topics directly to CWEs.12

Table III shows the precision and recall values according
to Figure 2. These show that the performance of LDA
is very good when it comes to standard categories like
cross-site scripting, directory traversals, link resolution or
SQL injection (precision of 80% or more and recall of

12Of the 19 CWEs used in the NVD, we could not map seven CWEs to
LDA topics; they are: CWE 16 (configuration/insecure defaults), CWE 20
(improper input validation), CWE 78 (OS command injection), CWE 189
(numeric errors), CWE 255 (credentials management), CWE 310 (crypto-
graphic issues), and CWE 362 (race conditions).



Table II
TOPICS SORTED ACCORDING TO THEIR CHANGE IN IMPORTANCE SINCE 2008. THE COLUMN MARKED “SINCE 2000” CONTAINS THE AVERAGE

CHANGE PER YEAR SINCE 2000 IN PERCENT, AND THE COLUMN MARKED “SINCE 2008’ CONTAINS THE CHANGE FROM 2008 TO 2009 IN PERCENT.
LONG-TERM CHANGES WEIGH MORE THAN SHORT-TERM CHANGES.

since since since since
Name 2000 2008 Name 2000 2008

Cross-Site Scripting +46.6 +3.8 Firewalls −0.7 +44.1
SQL Injection +45.7 −39.6 Resource Management −1.4 +36.1
Arbitrary Code (PHP) +37.7 −23.0 Linux −2.6 +50.0
PHP +29.9 −8.7 Arbitrary Code +2.6 −16.1
Application Servers +20.6 +83.2 Directory Traversal +1.9 −19.6
Topic 35 +15.6 −8.7 Format String +1.9 −23.1
Microsoft Office +7.9 +37.6 Buffer Overflow −4.3 +37.7
Mozilla +5.3 +68.8 Message Boards +0.4 −22.7
Information Leak +10.6 −5.7 Topic 17 −10.4 +45.2
Microsoft Windows −2.6 +139.0 Credentials Management −7.4 −12.8
Topic 7 +1.0 +65.6 Arbitrary Code (IE) −11.2 +5.1
Java +7.0 −13.1 Cryptography −10.6 −2.4
CVE Issues +5.7 −9.5 Privilege Escalation −17.8 −8.5
Cross-Site Request Forgery +5.5 −17.6 Link Resolution −14.5 −51.3

Table III
PRECISION AND RECALL FOR MAPPABLE CVES. THE FIRST COLUMNS ARE FOR PRECISION (‘P’) AND RECALL (‘R’).

P[%] R[%] LDA Topic Name CWE CWE Name

97.8 94.6 SQL Injection 89 Improper Sanitization of Special Elements used in an SQL Command (‘SQL Injection’)
98.1 85.4 Cross-Site Scripting 79 Failure to Preserve Web Page Structure (‘Cross-site Scripting’)
93.1 85.6 Directory Traversal 22 Path Traversal
57.6 80.1 Link Resolution 59 Improper Link Resolution Before File Access (‘Link Following’)
51.8 75.3 Format String 134 Uncontrolled Format String
60.1 57.6 Buffer Overflow 119 Failure to Constrain Operations within the Bounds of a Memory Buffer
29.7 49.3 Resource Management 399 Resource Management Errors
24.9 54.5 Cross-Site Request Forgery 352 Cross-Site Request Forgery (CSRF)
33.1 18.6 Information Leak 200 Information Leak (Information Disclosure)
28.0 18.0 Cryptography 310 Cryptographic Issues
12.1 38.7 Credentials Management 255 Credentials Management
14.2 8.7 Arbitrary Code 94 Failure to Control Generation of Code (‘Code Injection’)

80% or more). Other categories fare much worse, among
them the buffer overflow. This is surprising at first glance,
since buffer overflow reports ought to have the two words
“buffer” and “overflow” occurring somewhere. However,
this need not be the case; for example, CVE 2008-0090
reads, “A certain ActiveX control in npUpload.dll in DivX
Player 6.6.0 allows remote attackers to cause a denial of
service (Internet Explorer 7 crash) via a long argument
to the SetPassword method.”, so possible CWEs would
include 20 (input validation), 399 (resource management),
or 255 (credentials management), yet the CVE was assigned
CWE 119 (buffer overflow), something that is not apparent
from the description.

False positives and false negatives in the assignment of
LDA topics to CWEs can exist for multiple reasons.

1) In practice a CVE can be about multiple CWEs;
while LDA accounts for this with its probabilistic
assignment, the actual CWE assignment of in the NVD
database does not.

2) Ambiguous entries in the CVE database. For example
if a buffer overflow allows the injection of arbitrary

code, should the CVE entry be classified as CWE 119
(buffer overflow) or CWE 94 (code injection)?

3) The assignment of a CWE to a CVE is to some degree
arbitrary, too, as the example for CVE 2008-0090 and
buffer overflow shows.

Overall, we believe that our approach shows that the
current CWE assignment system is too strict and too opaque.
It should be possible to tag CVEs using a more flexible
system, one that allows to assign more than one tag.

IV. THREATS TO VALIDITY

We let LDA seed topics randomly. On the one hand,
this is precisely the point of using an unsupervised learning
technique. On the other hand, random topic seeding could
yield different topics on different runs. While not having
conducted a systematic investigation, we ran LDA a num-
ber of times with different random seeds and, apart from
different topic numbers, got the same topics that we report
in this study.

The CVE database is uneven when it comes to the quality
of the vulnerability descriptions, ranging from meaningless
entries such as “WinGate is being used” (CVE 1999-0657;



see above) to complete analyses of the problem, including
the root cause. This could lead LDA to skew its analysis
towards those CVEs that are better reported.

Different vendors may have different terminologies when
describing vulnerabilities. This may lead to essentially iden-
tical vulnerabilities being assigned different topics. This
threat is to some extent mitigated by manually assigning
labels to topics and combining topics.

Different vendors may also have different disclosure
strategies, which could skew the trends we publish. There is
evidence for this because December 31 has an unusually
high number of CVEs: 7.7% of all CVEs (3051) were
published on that day (according to their OSVDB disclosure
dates), where publishing CVEs more regularly would give
only 1/365, or 0.28%,. (Other end-of-month dates do not
have such a disproportionately high publishing frequency).
This threat is mitigated by aggregating CVEs by year, while
at the same time introducing the threat that trends within a
year or trends spanning adjacent years will be obscured.

It is always dangerous to make predictions, especially
about the future.13 The mere fact that we are seeing trends
does not mean that we can extrapolate them into the future.
However, through our knowledge of software security, we
are confident that the trends we see are real, and that they
will indeed continue in the ways we have described.

V. RELATED WORK

The study that is closest to this work is of course the
paper by Christey et al., also on CVE trends [1]. The main
differences to our study are:

1) They analysed the data up to and including 2007,
whereas we analysed the data up to 2009.

2) They used manual classification of CVE entries, also
using information that is not public, even though it is
not clear from the report text how they categorised
the CVEs and exactly what non-public information
was being used. The categories appear associated with
CWE numbers, but some of the CVE numbers used
in the report are not in the 19 CWE numbers that are
provided for CVE entry, such as CWE 415 (double-
free vulnerability). A request for clarification by email
seems to indicate largely manual classification based
on indicator words, phrases in the text (like manual
topic models), or non-public information.

3) We did not differentiate between open vs. closed
source or between different operating systems.

Mainly, our findings agree with this report: buffer over-
flows are still high on the list, but in decline when compared
to web application attacks like cross-site scripting or SQL
injection; a low number of causes are responsible for the
majority of CVE entries; and decline in link following and
directory traversal; regular appearance of information leaks.

13Variously attributed to Niels Bohr, Groucho Marx, and Yogi Berra.

However, we disagree on the interpretation of cross-site
request forgery. Christey et al. state that it is a sleeping giant
(emphasis on “sleeping”) and use the low prevalence of 0.1%
in 2006 as an argument. We measure 1.8% prevalence in
2006, and also the growth rate, while negative in the last
year, is by no means negligible. Given the ease with which
CSRF might be exploited, we should definitely keep an eye
on this sleeping giant, lest he wake up.

We seem also to have uncovered a category of attacks on
application servers that seems to be rising faster than any
other attack category. This category does not appear in the
CWEs and hence is missing from the MITRE study.

Another large-scale study is regularly done by Microsoft;
the most recent example is the Microsoft Security Intelli-
gence Report for H1 2009 [10]. The report uses a vast array
of data sources, ranging from online sources like Bing and
Windows Live Hotmail to programs collecting data such as
the Malicious Software Removal Tool or various filters in
Internet Explorer. Overall, the report tends to focus more on
malware and browser exploits.

Woo et al. characterise Web browser vulnerabilities in
order to build a vulnerability discovery model [11].

Both Li et al. [12] and Ozment et al. [13] studied in
2006 how the numbers of defect and security issues evolved
over time. While Li et al. reported an increase, Ozment
reported a decrease in the rate at which new vulnerabilities
are reported; for our data, we observed an increase in
vulnerabilities until 2006 and since then a decrease. Li et al.
used supervised techniques such as Support Vector Machines
and Naive Bayes to classify software defects; for security
vulnerabilities they used manual classification. In contrast
our work uses LDA, an automated and unsupervised learning
technique for vulnerability data.

Coverity used its static analysis tools to scan a large
number of open-source programs and concluded that the
quality of open source software is increasing [14]. We have
not yet tried to separate our CVE data into entries pertaining
either to open source or to closed source software.

Eric Rescorla looked at the related problem of vulner-
ability discovery and, by modeling the discovery process
and estimating model parameters, concludes that finding
vulnerabilities is often without a clear effect on a its life-
time [15]. Also, he noticed that vulnerability data is very het-
erogeneous. His conclusion was therefore that vulnerability
discovery should be de-emphasized the quality of gathered
data be increased.

VI. CONCLUSIONS AND FUTURE WORK

We studied the Common Vulnerability and Exposures
from the National Vulnerability Database by using topic
models on their description texts. Our results include the
following.
• Eliminating cross-site scripting, SQL injection, and

buffer overflows, and making PHP more secure will



eliminate the majority of all CVEs.
• Application server vulnerabilities have massive growth

rates and are probably the “next big thing” for years to
come.

• Cross-site request forgery is indeed a sleeping giant,
and it is probably already stirring.

• Related to methodology, the possibility to allow that an
entry is partly about one topic and partly about another
allows much better classification.

Our contribution is not intended to replace manual meth-
ods, but rather to complement them: our findings by and
large support the analysis done by MITRE [1]. By providing
a methodically completely independent way, we gain mutu-
ally supporting evidence that the trends that we are seing
are actually real. Also, while the analysis in this paper is
only a snapshot in time, we have shown that our method
is feasible and leads to good results. Since our method is
mostly automated, it can thus be easily repeated. To facilitate
replication, we provide an archive file with all the data and
scripts (see Appendix A).

Another important point is that this work is not another
“Top-n vulnerabilities”-type study such as the CWE/SANS
Top 25 Programming Errors14 ot he OWASP Top 10
Project15. The main difference is that Top-n lists are aware-
ness instruments based on consensus, not necessarily on
actual data, like our study.

Future work will include replication on other corpora like
the SANS Consensus Security Alerts [16], the OSVDB, or
Bugtraq16. Many of these corpora have fewer but longer
documents, so one question that could be investigated is
whether the same trends emerge. In addition, we plan to
distinguish between open-source and closed-source projects.
For open-source projects CVEs often link to specific bug
report, which could help to obtain the actual change that
fixed the vulnerability. Thus another data source that we
plan to tap into are bug databases and version archives.
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APPENDIX A. REPLICATION GUIDE

LDA is a general technique that can be used to analyse
topics for all kinds of corpora. Also, the techniques to
extract graphs like Figure IV are similar for all corpora.
We therefore give a step-by-step guide how to replicate our
results on the CVE data or on other corpora.

1) Gather data. Gather a corpus of n documents describ-
ing vulnerabilities. Each document must carry a time
stamp. Also choose the number of topics N .

2) Stem words, apply stop words (optional). Subject the
words in the documents to a stemming algorithm and
to a list of stop words.

3) Compute vocabulary and word counts. The result of
the previous step(s) is a set of n documents containing
a total of m unique words. Enumerate the unique
words from 1 to m and build a matrix 〈mjk〉 where
mjk is the number of occurrences of word k in
document j. This matrix will generally be sparse.

4) Run LDA. Now run the LDA software on 〈mjk〉. We
used David Blei’s LDA implementation for C [17].
The result will be a matrix 〈zjl〉 (1 ≤ j ≤ n and
1 ≤ l ≤ N ) where zjl is the topic that was assigned
to word l in document j.

5) Compute post-hoc probabilities. Compute the post-hoc
probabilities using Equations (1), (2), (5) and (6).

6) Join topics (optional). If you find that some of the
topics produced by LDA are really equal, join them
using Equations (3) and (4). The order of this and the
previous step can be interchanged; in this case, you
will have to devise a mapping from original topics to
joint topics and adjust 〈zjl〉 accordingly. The result
will however be the same.

7) Plot results. At this point, you have for each unique
topic its overall importance, its average annual change,
its development in importance during the relevant time
period, and a list of the most frequent words in the
topic. We used R [18] and the e1071 package [19]
to make plots like Figure 3, and a number of custom
Perl scripts to create tables like Table IV. We used the
sparklines feature of Microsoft Excel 2010 to create
the sparklines of Tables IV–VI

To facilitate replication of this study, an archive file with
all the data and scripts is available in a technical report [20]
at http://hdl.handle.net/1880/48066.

Table IV
RELATIVE IMPORTANCE, ALL 28 TOPICS. TOPICS ARE ORDERED

ALPHABETICALLY, FOLLOWED BY UNNAMED TOPICS. THE y AXES ARE
ALL EQUAL, TO FACILITATE COMPARISON.

Topic Trend 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Application Servers 1% 1% 1% 1% 1% 1% 3% 3% 3% 5%

Arbitrary Code 5% 4% 5% 5% 5% 5% 6% 7% 7% 6%

Arbitrary Code (IE) 3% 2% 2% 2% 2% 1% 1% 1% 1% 1%

Arbitrary Code (PHP) 0% 1% 1% 2% 2% 3% 11% 8% 3% 2%

Buffer Overflow 19% 18% 17% 18% 15% 10% 8% 10% 8% 11%

CVE Issues 1% 2% 2% 2% 2% 3% 4% 4% 2% 2%

Credentials Management 5% 6% 6% 5% 4% 4% 3% 3% 4% 3%

Cross-Site Request Forgery 2% 2% 2% 2% 2% 3% 2% 3% 3% 3%

Cross-Site Scripting 0% 1% 6% 6% 8% 13% 13% 9% 10% 10%

Cryptography 2% 2% 2% 2% 1% 2% 1% 1% 1% 1%

Directory Traversal 6% 8% 5% 4% 4% 4% 4% 4% 5% 4%

Firewalls 1% 2% 2% 2% 2% 1% 1% 2% 2% 2%

Format String 2% 3% 2% 2% 3% 2% 1% 1% 1% 1%

Information Leak 2% 2% 3% 3% 3% 3% 5% 4% 4% 3%

Java 3% 1% 2% 2% 2% 2% 2% 2% 3% 3%

Link Resolution 6% 6% 4% 4% 4% 3% 1% 2% 3% 1%

Linux 2% 2% 2% 3% 3% 3% 2% 3% 2% 3%

Message Boards 2% 1% 2% 1% 2% 2% 2% 1% 1% 1%

Microsoft Office 1% 1% 1% 1% 1% 1% 1% 1% 2% 2%

Microsoft Windows 4% 3% 3% 3% 2% 1% 1% 1% 1% 2%

Mozilla 1% 2% 2% 2% 3% 2% 2% 2% 2% 3%

PHP 0% 0% 1% 1% 1% 3% 4% 3% 4% 4%

Privilege Escalation 12% 10% 8% 8% 5% 4% 3% 3% 3% 2%

Resource Management 14% 12% 12% 13% 13% 9% 6% 8% 7% 10%

SQL Injection 1% 1% 2% 2% 4% 11% 10% 8% 17% 10%

N/A 1% 1% 1% 1% 1% 1% 1% 1% 1% 1%

N/A 4% 5% 5% 3% 3% 2% 2% 2% 1% 2%

N/A 0% 0% 1% 1% 2% 1% 2% 2% 2% 2%

Table V
RELATIVE IMPORTANCE OF DISCOVERED CAUSES.

Topic Trend 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

ActiveX 1% 2% 2% 2% 2% 2% 1% 4% 3% 2%

Application Servers 3% 2% 4% 3% 2% 1% 1% 1% 1% 3%

Buffer Overflow 17% 14% 14% 17% 13% 8% 6% 8% 7% 10%

Cisco IOS 3% 4% 5% 3% 3% 2% 1% 2% 1% 2%

Credentials Management 4% 4% 3% 2% 2% 1% 1% 2% 2% 2%

Cross-Site Request Forgery 1% 1% 1% 1% 1% 1% 1% 2% 3% 3%

Cross-Site Scripting 11% 9% 15% 14% 17% 21% 22% 16% 18% 17%

Directory Traversal 6% 12% 7% 6% 5% 5% 6% 6% 7% 5%

Format String 2% 2% 2% 3% 3% 2% 1% 2% 1% 2%

Internet Explorer 2% 3% 3% 4% 3% 3% 4% 3% 2% 2%

Java 1% 1% 1% 2% 2% 2% 2% 2% 2% 2%

Microsoft Office 2% 2% 2% 1% 1% 1% 1% 1% 1% 2%

Mozilla 2% 2% 2% 2% 2% 2% 1% 1% 2% 4%

PHP 5% 6% 6% 8% 8% 10% 19% 17% 10% 8%

SQL Injection 10% 8% 11% 12% 15% 23% 21% 19% 28% 21%

Security Appliances 1% 3% 2% 3% 2% 1% 1% 1% 1% 1%

N/A 4% 2% 2% 1% 2% 2% 1% 2% 1% 1%

N/A 5% 5% 4% 3% 3% 2% 1% 2% 1% 2%

N/A 4% 3% 2% 3% 3% 1% 1% 1% 1% 2%

N/A 2% 3% 3% 2% 2% 2% 1% 2% 2% 2%

N/A 2% 1% 1% 1% 2% 1% 1% 1% 1% 2%

N/A 4% 3% 3% 3% 3% 2% 2% 2% 2% 3%

N/A 4% 2% 3% 2% 2% 2% 2% 2% 2% 2%

N/A 3% 4% 2% 2% 2% 2% 1% 2% 1% 1%

Table VI
RELATIVE IMPORTANCE OF DISCOVERED IMPACTS.

Topic Trend 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Arbitrary Code 15% 18% 20% 25% 22% 17% 23% 24% 17% 24%

Arbitrary Script 17% 17% 20% 21% 24% 39% 37% 31% 43% 35%

CVE Dispute 1% 2% 2% 1% 2% 3% 5% 5% 3% 5%

Denial of Service 30% 23% 21% 22% 21% 13% 8% 12% 9% 11%

Information Leak 22% 23% 18% 13% 14% 13% 14% 16% 17% 15%

Information leak 1% 1% 3% 4% 3% 4% 3% 2% 1% 1%

Privilege Escalation 11% 12% 11% 10% 10% 8% 6% 7% 8% 7%

Resource Abuse 2% 2% 2% 1% 1% 1% 1% 1% 1% 1%

N/A 1% 2% 2% 2% 1% 1% 1% 1% 1% 0%

N/A 0% 0% 0% 0% 0% 0% 1% 1% 0% 0%

N/A 0% 0% 0% 0% 0% 1% 1% 1% 1% 1%

N/A 0% 0% 0% 0% 0% 0% 1% 1% 0% 0%


