
Change Bursts as Defect Predictors

Nachiappan Nagappan∗ Andreas Zeller† Thomas Zimmermann‡ Kim Herzig§ Brendan Murphy¶

Abstract—In software development, every change induces a
risk. What happens if code changes again and again in some
period of time? In an empirical study on Windows Vista, we
found that the features of such change bursts have the highest
predictive power for defect-prone components. With precision
and recall values well above 90%, change bursts significantly
improve upon earlier predictors such as complexity metrics,
code churn, or organizational structure. As they only rely on
version history and a controlled change process, change bursts
are straight-forward to detect and deploy.

Keywords-Process metrics; product metrics; software quality
assurance; version control; change history; defects; developers;
software mining; empirical studies

I. INTRODUCTION

Software development can be seen as a sequence of
changes—a constant stream of activities that add new value
to software, adapt it to a changing environment, delete
features no longer required, or improve its structure for
better maintenance. All of these activities are ultimately
conducted by humans, and as humans make mistakes, it is
unavoidable that some of these changes will induce defects.

The aim of quality assurance is to find and fix these
defects before release—using testing, code reviews, and
more. To make quality assurance effective, one must direct
its efforts to those components that are the most likely to
contain defects. Such predictions can draw on a variety of
sources. A high number of defects found before release, a
low test coverage, dependency on specific (“hard”) compo-
nents, code complexity, a large extent of changes (“code
churn”), or organizational complexity (e.g., the number of
engineers involved) have all been related to the defect-
proneness of components. If one applies these predictors on
the components of Windows Vista (Table I), their precision
varies between 74% and 86% (i.e., 74%–86% of the com-
ponents classified as defect-prone actually are defect-prone);
their recall varies between 54% and 84% (i.e., 54%–84%
of the defect-prone components are actually classified as

∗Nachiappan Nagappan 〈nachin@microsoft.com〉 is with Microsoft Re-
search, Redmond, Washington.
†Andreas Zeller 〈zeller@cs.uni-saarland.de〉 is with Saarland University,

Saarbrücken, Germany. He was a visiting researcher with the Software
Engineering Group at Microsoft Research in the Summer of 2009 when
this work was carried out.
‡Thomas Zimmermann 〈tzimmer@microsoft.com〉 is with Microsoft

Research, Redmond, Washington.
§Kim Herzig 〈herzig@cs.uni-saarland.de〉 is with Saarland University,

Saarbrücken, Germany.
¶Brendan Murphy 〈bmurphy@microsoft.com〉 is with Microsoft Re-

search, Cambridge, UK.

Table I
COMPARING PREDICTORS FOR DEFECT-PRONE VISTA COMPONENTS [1]

Predictor Precision Recall
Pre-Release Defects 73.8% 62.9%
Test Coverage 83.8% 54.4%
Dependencies 74.4% 69.9%
Code Complexity 79.3% 66.0%
Code Churn 78.6% 79.9%
Organizational Structure 86.2% 84.0%
Change Bursts (this paper) 91.1% 92.0%

such). The predictors also vary in their requirements. For
instance, the organizational structure (the best predictor so
far) requires employee data [1].

There is a common denominator to all these predictors,
though. In earlier studies [2], Śliwerski et al. had observed
that some changes apparently were hard to get right—that
is, they led to further errors and subsequent fixes. The
ECLIPSE resolveClasspath() method, for instance,
was changed nine times, and all of these changes were fixes,
including a “fallback fix” reverting the method to an earlier
revision. Only after multiple attempts did the method reach
a stable state—and still, it is very risky to change.

In this paper, our conjecture is that over the development
time of a system, such multiple attempts would manifest
themselves in consecutive code changes over a period of
time. Such change bursts could be indicators for various
problems, including those traditionally detected by earlier
predictors:

• Incomplete or changing requirements. Requirements
may only become stable after multiple implementation
attempts—for instance, because of conflicting organi-
zations involved.

• Hairy bugs. Defects may only be tentatively fixed
without knowing the exact cause, making them re-occur
again and again—that is, the code or task is overly
complex.

• Insufficient quality assurance. Quality assurance may
not detect all issues in the first place, thus requiring
constant fixing of newly discovered defects—improving
test coverage over time.

Problems like these would not be addressed by code fixes
alone; instead, they are likely to persist until after the release
date. This implies that a component with such problems
will undergo a higher amount of maintenance, and be
more defect-prone than others. We therefore investigate how

change bursts would fare as predictors for defect-prone
components. To make a long story short, they fare among the
best. Despite having little requirements (i.e., relying solely
on the change history), change bursts yield very good pre-
dictive power—for Windows Server 2003, they rank among
the best predictors; and for Windows Vista, they even bring
both precision and recall above 90%, the highest such values
ever measured. However, we also found that to distinguish
bursts from regular activity, one needs a controlled change
process, where changes are committed only when considered
“ready”, i.e., expected to keep the product stable. This
becomes evident when applying the predictors to ECLIPSE,
where anyone can commit any change at any time—and
where change bursts are “only” as good as regular change
activity. We assume, though, that most industrial software
projects follow a controlled change process.

The remainder of this paper is organized as follows: In
Section II, we introduce the concept of change bursts and
how to extract them from a series of changes. Section III
discusses the metrics we have applied on change bursts—
metrics such as number of developers involved, the size of
the burst, or the number of lines changed. In Section IV, we
show how to leverage these metrics to predict defect-prone
components. Section V discusses our experiments, where we
evaluate and compare the predictive power of change bursts.
After discussing the related work in Section VI, Section VII
closes with contributions and future work.

II. DETECTING CHANGE BURSTS

Let us start by describing how we identify change bursts.
As stated in the introduction, a change burst is a sequence
of consecutive changes. But what does “consecutive” mean?
When do two changes follow each other, and when not?

We assume that we can split the history of a system into
a series of events at which we would assume there could
be some change or not. Such an event could be a calendar
day, for instance—but then, we would find that weekends
and holidays have a high chance of breaking a consecutive
series. We therefore restrict ourselves to those days that some
change is committed to the system code. For Windows, these
are the build days, as every working day, a new build is
derived from the version archive. We thus see a system S
as a sequence of builds S = 〈s1, s2, . . . 〉 where each build
differs from the previous one si 6= si−1.

We assume that each build is created out of individual
components—that is, classes, packages, modules or other
constituents. (For Windows, the components are binaries—
that is, .exe, .sys, or .dll files.) A component C of S
also has a history across builds, and thus comes in a series
of individual component versions ci; we thus define C =
〈c1, c2, . . . , c|S|〉. If ci 6= ci−1 holds, then the component C
has changed in build si.

For each component, we now determine its change bursts
as sequences of consecutive changes. These change bursts

Gap
Size

Burst
Size

1 1
1 2
2 1
2 4
3 4

Changes
Bursts

Builds

Figure 1. How gap size and burst size determine change burst detection
from a sequence of changes.

are determined by two parameters:
• Gap size. We would like to permit short gaps in these

sequences, such that a one-day distraction will not
break the burst. We therefore introduce the gap size G,
which determines the minimum distance between two
changes. If two changes have a distance that is smaller
than G, they will be part of the same burst.

• Burst size. On the other hand, we would like to
consider only bursts of a certain significance—that
is, a certain length. The burst size B determines the
minimum number of changes in a burst. If the number
of changes in a burst b is smaller than B, it will not be
considered.

As an example, consider Figure 1. The arrow at the
top shows the sequence of builds; the builds in which
a component c has changed are marked with a dot. The
rectangles below show the change bursts. If we set the gap
size and the burst size to 1, then all directly consecutive
changes will be merged to bursts. Increasing the gap size
yields longer bursts; increasing the burst size eliminates
shorter bursts.

Formally, given a sequence C = 〈c1, c2, . . . 〉, a change
burst is a sequence B = 〈ci1 , ci2 , . . . 〉 with indices
i1, i2, . . . , i|B| ∈ {1, . . . , |C|} such that
• cik

6= cik+1 (each element has changed),
• |B| ≥ B (the length is at least the burst size), and
• for all 1 ≤ k < |B|, we have ik − ik+1 ≤ G (there is

no gap larger than the gap size).
The sequence bursts(C) = 〈B1, B2, B3, . . . 〉 of all

change bursts for C consists of the longest non-overlapping
change bursts; i.e.,

∑|bursts(C)|
i=1 |Bi| is maximal, and bi∩bj =

∅ holds for all bi, bj ∈ bursts(C) with bi 6= bj . The
computation is deterministic; there is only one possible
sequence bursts(C) for a given C.

III. CHANGE BURST METRICS

We want to characterize change bursts by a number of
features, such that we can leverage these very features to
predict defect densities. For each component C, we therefore
determine change metrics, temporal metrics, people metrics,
and churn metrics. In their formal definitions, we identify
a component history as C = 〈c1, c2, . . . 〉 and its bursts as
bursts(C) = 〈B1, B2, . . . 〉.

A. Change Metrics

We start with a few basic metrics for a component C
concerning the size and extent of its change bursts.

• NumberOfChanges. This is the number of builds in
which the component C has changed, i.e., |{k | ck 6=
ck+1}|.
Rationale: We assume that the more a component is
changed, the more likely it is to have defects.

• NumberOfConsecutiveChanges. This is the number of
consecutive builds for a given gap size G—in other
words, |bursts(C)| with B = 0.
Rationale: This measure takes into account all consec-
utive changes, not just bursts exceeding a given size.

• NumberOfChangeBursts. This is the number of change
bursts for a given gap size G and burst size B, i.e.,
|bursts(C)|.
Rationale: As stated in the introduction, we would
assume that change bursts are risky; thus, the number
of change bursts may be predictive for defect-prone
components.

• TotalBurstSize. This is the number of changed builds
in all change bursts, i.e.,

∑
B∈bursts(C) |B|.

Rationale: Assuming that change bursts indicate risky
activities, a high number of changes during these bursts
could be particularly risky.

• MaximumChangeBurst. This is the maximum num-
ber of changed builds in all change bursts, i.e.,
max{|B| |B ∈ bursts(C)}.
Rationale: As in TotalBurstSize, but looking for ex-
tremes.

• Early and late metrics. We also compute the
above metrics for early periods (80% of the project’s
lifetime), resulting in NumberOfChangesEarly, Num-
berOfChangeBurstsEarly, and so on, as well as for
the late periods (the last 20% before release), result-
ing in metrics such as NumberOfChangesLate, Num-
berOfChangeBurstsLate and likewise.
Rationale: We assume that late activities right before
release might be very different from the early activities,
and thus deserve to be independently measured.

All these metrics are straight-forward to compute from
a given version history, given the change burst definitions
from Section II.

B. Temporal Metrics

As activities change during a project’s time line, the
time when change bursts occurred may be predictive for
defects. We therefore introduce a set of temporal metrics,
highlighting when change bursts occurred.

• TimeFirstBurst. We determine when the first burst
occurred, normalized to the total number of builds, i.e.,
min{i | Ci ∈ B1}/|C|.

Rationale: We assume that early change bursts may
have the longest impact during the project.

• TimeLastBurst. As TimeFirstBurst, but looking at the
last burst instead, i.e., min{i | Ci ∈ B|bursts(C)|}/|C|.
Rationale: We assume that the last activities before
release define the final shape of the component and
thus may be particularly predictive.

• TimeMaxBurst. As TimeFirstBurst, but looking at the
greatest burst instead. Let Bmax be the burst with the
most changes, i.e., ∀B ∈ bursts(C) : |Bmax| ≥ |B|
holds. Then, TimeMaxBurst is the time min{i | Ci ∈
Bmax}/|C|.
Rationale: Again, we are looking for extremes, and
check when the greatest change burst occurred—early
or late.

To extract these metrics from a version history, all one
needs is the timestamp of the individual changes.

C. People Metrics

In the following definitions, let people(ci) be the set of
developers who committed the changes to the component
revision ci. By extension, let us also apply people to sets,
as in people(C) =

⋃
ci∈C people(ci).

• PeopleTotal. The number of people who ever commit-
ted a change to the component C, i.e., |people(C)|.
Rationale: “Too many cooks spoil the broth”: The
number of developers working on a component may
be related to defects [3].

• TotalPeopleInBurst. Across all bursts, the number of
people involved, i.e., |people(bursts(C))|.
Rationale: We see change bursts as defining moments;
hence, the number of people involved may be particu-
larly predictive.

• MaxPeopleInBurst. Across all bursts, the maximum
number of people involved, i.e., max{|people(B)||B ∈
bursts(C)}.
Rationale: Again, we are looking for extremes, and
check for the greatest change burst in terms of people.

To extract these metrics from a version history, all one
needs is the name of the developer who committed the
individual change. The only risk to be aware of is that some
developers may change their user IDs over time, or may
be working from multiple IDs [2]. This is not the case for
Windows, though.

D. Churn Metrics

In the following definitions, let churn(ci) be the number
of lines that were added, deleted, or modified during the
changes to the component ci. By extension, let us also apply
churn to sets, as in churn(C) =

∑
ci∈C churn(ci).

• ChurnTotal. The total churn over the lifetime of a
component C, i.e., churn(C).
Rationale: We assume that the more has changed, the
higher the likelihood defects will be introduced.

Figure 2. How the Windows development process works. Changes are
first committed in project branches, and then subsequently merged and
integrated into the Windows main branch.

• TotalChurnInBurst. The total churn in all change
bursts, i.e., churn(bursts(C)).
Rationale: Again, we see change bursts as defining
moments; hence, the amount of change involved may
be particularly predictive.

• MaxChurnInBurst. Across all bursts, this is the max-
imum churn, i.e., max{|churn(B)| |B ∈ bursts(C)}.
Rationale: Again, we are looking for extremes across
change bursts.

All these metrics require is the set of changed lines—a
standard feature for every version repository.

IV. PREDICTING DEFECT-PRONE COMPONENTS

In order to determine if the change burst metrics defined
in Section III are effective indicators of defect-prone com-
ponents, we use them as predictors in a logistic regression
equation to classify components as defect-prone or not.

A. The Subject

We ran our initial experiments on the Windows Vista op-
erating system, consisting of 3,404 Windows Vista binaries
exceeding 50 million LOC. For Vista, a significant defect
and change history was available, and it had been the subject
of other defect prediction studies before (Table I); hence, we
would be able to compare the predictive power against the
state of the art.

As our metrics all assess the change process, let us
illustrate how the Windows development process works. As
shown in Figure 2, the Windows software development takes
place in various branches of the version control system
with tightly integrated schedules for code integration and
comprehensive builds. There are several individual features
of Windows each of which are developed in individual
project branches (An example feature could be “sound” in
the component “DirectX” in the area “Multimedia”). Each
of these individual project branches assume the rest of the
code base to be frozen, except for their evolving features.
Engineers check-in their code to the project branches. To

ensure that the newly developed code, in the project branch,
maintains compatibility with the other changes committed
to the main branches, the project branches continually syn-
chronizes with the main branch.

After passing quality gates (ranging from code coverage
to static analysis clean) the code in these branches moves to
a component branch. Once the project code is checked into
the main branch then it is automatically synced with the rest
of the code base to ensure that other code being developed
within the other project branches are compatible with these
changes. This process ensures that there is stability in the
main Windows branch, with a working version of Windows
always available for system test and other purposes.

B. The Dataset

Our dataset for the initial experiments consisted of 3,404
Windows Vista binaries exceeding 50 million LOC where
each binary has its change burst metrics and post-release
defects mapped. Defect-proneness is the probability that a
particular software component (such as a binary) will fail
in operation in the field—and hence exhibit a defect. The
higher the defect-proneness, the higher the probability of
experiencing a post-release defect. To classify the binaries
in Vista in two categories, not defect-prone and defect-prone,
we define a statistical lower confidence bound (LCB) on all
defects [1].

C. Stepwise Regression

An important question to address is whether all change
burst metrics would be required in building a predictive
model. For this purpose, we use stepwise regression [4]. The
initial regression model consists of the predictor having the
single largest correlation with the dependent variable. Sub-
sequently, new predictors are selected for addition into the
model based on their partial correlation with the predictors
already in the model. With each new set of predictors, we
evaluate the model—and predictors that do not significantly
contribute towards statistical significance in terms of the F-
ratio are removed. Thus, in the end, the best set of predictors
explaining the maximum possible variance is left.

We performed a stepwise regression using the change
burst measures as the predictor variables and post-release
defects as the dependent variable. The regression did not
yield any reduction in the number of predictor variables
(retaining all change burst measures)—indicating that all
metrics contributed towards explaining the variance in ac-
counting for the post-release defects.

D. Random Splits

We use the technique of random data splitting to measure
the ability of the change burst metrics to predict defect-
proneness. The data splitting technique is employed to get
an independent assessment of how well the defect-proneness
could be estimated from a population sample. We randomly

Table II
RESULT CLASSIFICATION

Predicted as Predicted as
defect-prone not defect-prone

Actually defect-prone true positive false negative
Actually not defect-prone false positive true negative

select two thirds (2,268) of the Windows Vista binaries to
build the prediction model (i.e., the training set) and use the
remaining one third (1,136) to verify the prediction accuracy
(the testing set). If the predicted defect-proneness probability
is > 0.5, we predict the binary to be defect-prone, otherwise
not defect-prone.

E. Precision and Recall

To evaluate the predictive power, we compared the pre-
dicted defect-proneness with the actual defect-proneness for
all components in the testing set. We then group the compo-
nents into four categories, shown in Table II. True positives
and negatives are correctly classified, false positives and
negatives are mismatches.

Of course, one would want to have as many true results
and as little false results as possible. To capture the relation-
ship between these numbers, and to evaluate the predictive
power, we use the well-established measures of precision
and recall.
• Precision. The precision P tells how many of the

components predicted to be defect-prone actually are
defect-prone:

P =
true positives

false positives + true positives

A precision P = 1.0 implies no false positives: Every
component predicted to be defect-prone is defect-prone.

• Recall. The recall R indicates how many of the defect-
prone components actually are predicted as such:

R =
true positives

false negatives + true positives

A recall R = 1.0 means no false negatives: Every
defect-prone component is correctly predicted to be
defect-prone.

A perfect prediction has P = R = 1.0, meaning neither
false positives nor negatives. While it is easy to achieve
either P = 1.0 or R = 1.0 (just predict no or all components
to be defect-prone), the goal is to maximize both values.

To ensure the validity of our measures, we measured
precision and recall in 50 random split experiments, as
detailed in Section IV-D.

V. EXPERIMENTS

A. Can change bursts predict defect-prone components?

In our first experiment, we evaluated the precision and
recall of change burst metrics as defect predictors as laid out

in the previous section. We obtained a precision P = 91.1
and a recall R = 92.0.

With precision and recall well above 90%, change burst
metrics make excellent defect predictors.

B. How do change bursts compare against other predictors?

Table I compares the results against precision and recall
values observed in earlier studies on Windows Vista. Change
burst metrics provide by far the highest precision and recall:
• Compared to code churn metrics, which use the same

data source, they improve precision and recall by more
than 10 percentage points. In practice, this means that
the number of false positives or false negatives is
reduced by 50%.

• Compared to organizational metrics, which showed the
best predictive power so far, they improve by 5 percent-
age points, reducing the number of false positives and
negatives by 30%.

One could assume that by combining code bursts with other
metrics, one could further improve the predictive power.
For instance, one could examine the complexity of the code
being changed; or the number or distance of organizations
involved. Keep in mind, though, that such metrics require
additional data sources and that having too many metrics
brings the risk of overfitting. Also, it is hard to argue why
one still would want to improve on this predictive power.

On Vista, change burst metrics have the highest predictive
power for defect-prone components ever observed.

C. How do gap size and burst size influence the results?

For our experiments, we used exhaustive evaluation, i.e.,
we tried out all possible gap and burst size combinations
(with G ∈ {1, . . . , 10} and B ∈ {1, . . . , 10}); the change
burst results shown in Table I were obtained with a gap size
G = 3 and B = 3.

In Figure 3(a), we see how the precision changes for
different values of burst size B (from top left, B = 1, to
bottom right, B = 9) and gap size G (on the X axis for each
graph). We see that while indeed G = 3 and B = 3 bring a
maximum, the precision never incurs large drops; it almost
always remains better than the state of the art as shown in
Table I. Similar effects are observed for recall, shown in
Figure 3(b).

On Vista, change bursts retain their high predictive
power even as gap and burst size vary.

D. How are change bursts distributed?

Interestingly, a gap size G = 3 and a burst size B = 3
not only yield the best precision and recall; they also are
precisely those values where we could determine a maximum
number of change bursts.

Vista

Gap

P
re

ci
si

on

0.84

0.86

0.88

0.90

● ●

●

●

●

●

●

●
●

●

 : Burst { 1 }

2 4 6 8 10

● ●

●

●

●

●

●

●
●

●

 : Burst { 2 }

●

● ●

●

●

●
●

● ●
●

 : Burst { 3 }

●

●

●

●

●

●

●
●

●

●

 : Burst { 4 }

●
●

●

● ●
● ●

●

●

●

 : Burst { 5 }

0.84

0.86

0.88

0.90

●

●

●

●

●
●

●

●

●

●

 : Burst { 6 }

0.84

0.86

0.88

0.90

2 4 6 8 10

● ●

●

●

●

●

●

●

●

●

 : Burst { 7 }

● ●

●

●

●
●

●

●

●

●

 : Burst { 8 }

2 4 6 8 10

●
●

●

●

●

●

●
●

● ●

 : Burst { 9 }

(a) Precision

Vista

Gap

R
ec

al
l

0.88

0.89

0.90

0.91

0.92

0.93
●

● ●
●

●

●
●

●

●

●

 : Burst { 1 }

2 4 6 8 10

●

● ●
●

●

●

●
●

●

●

 : Burst { 2 }

●

●

●

●

●
● ●

●

●

●

 : Burst { 3 }

●
● ●

● ●
●

●

●

●

●

 : Burst { 4 }
●

●

●

●
●

●
●

●

●

●

 : Burst { 5 }

0.88

0.89

0.90

0.91

0.92

0.93

●

●

●
●

●

●
● ●

●

●

 : Burst { 6 }

0.88

0.89

0.90

0.91

0.92

0.93

2 4 6 8 10

●

●

●

●

●
●

●
●

●

●

 : Burst { 7 }

●

●

● ●
● ● ●

●

●

●

 : Burst { 8 }

2 4 6 8 10

●
●

●

●

● ●

●

●

●

●

 : Burst { 9 }

(b) Recall
Figure 3. Predictor precision and recall in Vista for varying gap sizes and burst sizes. The upper right panel shows precision (left) and recall (right) for
a given burst size B = 3 and a varying gap size G; the values for G = 3 are the values reported in Table I (precision 91.1, recall 92.0).

Gap Size

C
ou

nt

5 10 15 20 25

Vista

Figure 4. How gap size influences the number of change bursts in Vista.
As the gap size G increases, changes first become consecutive, increasing
the number of bursts. As G > 3, change bursts are merged, decreasing
their number again.

Figure 4 shows how the gap size influences the number
of change bursts in Vista:
• As the gap size increases, more changes become con-

secutive, increasing the number of bursts. In Vista, this
happens up to a gap size G of 2–3.

• As the gap size increases further, existing change bursts
will be merged, decreasing the number of bursts. In
Vista, the number of bursts thus constantly decreases
as soon as G > 3.

On Vista, a gap size G = 3 and a burst size B = 3 yields
a maximum in change bursts and predictive power.

E. Are these results specific to Vista?

To get insight on how the change process influences the
results, we have replicated this study on a different system.

Windows 2003 Server has a similar staged change propa-
gation mechanism as Vista, but is even stricter: Developers
and teams would be allowed to commit their changes only
on designated days, each followed by weeks of testing and
quality assurance. In this setting, multiple change attempts
would only manifest themselves in the developer’s private
history, but no longer in the project history. Despite these
constraints, for Windows 2003 Server, our approach yields
a precision of 74.4% and a recall of 88.0% (G = 10 and
B = 2)—again, an excellent result that is on par with the
best predictions made for this system.

Even with a strictly controlled change process, change
bursts remain among the best defect predictors.

F. When does this not work?

The concept of change bursts assumes that changes are
committed whenever the developer considers them ready for
release. This is how the Windows change process works: A
change can only be committed to the Windows kernel after
an extensive series of tests and reviews. This is why change
bursts are particular—changes had to be applied again and
again despite all these checks.

What happens if such checks are not present—or not as
much enforced? ECLIPSE is an open-source programming
environment written in JAVA by paid IBM developers as well
as contributors from all over the globe. Its code, version
history, and defect database, are all open to the public; in
particular, the ECLIPSE defect distribution, as mined from its
defect database, is available as a dataset from the PROMISE
repository [5].

Table III
COMPARING PREDICTORS FOR DEFECT-PRONE ECLIPSE 2.0 PACKAGES.

Predictor Precision Recall
Dependencies [6] 58.7% 79.6%
Code Complexity [5] 74.2% 73.5%
Change Metrics [7] n/a1 81.0%
Change Bursts (this paper) 67.0% 51.0%

The ECLIPSE and Windows product differ in several
features, including the programming language, the domain,
and the degree at which the source code is available to
the public. As it comes to change bursts, though, it is the
difference in process that matters:
• In ECLIPSE, almost all changes are committed imme-

diately to the main branch. There are few branches,
if any; and there is no similarity to the Windows
staged development and integration process as shown
in Figure 2.

• The Windows process assumes the existence of a daily
build where only tried-and-tested changes are commit-
ted. As laid out in Section II, it is this daily build that
we use to identify change bursts.

• In ECLIPSE, there is no notion of a daily build or
anything similar where we would assume that there is
a specific commitment in terms of reliability or quality.
There are releases, of course, where we can safely
assume such a commitment, but these are not applicable
to change bursts.

When measuring change bursts on ECLIPSE, we therefore
assumed that every day with any change committed would
be a build day, too. Otherwise, our experiment exactly
replicated the study as previously conducted on Vista and
Windows Server 2003.

Table III shows our results with G = 2 and B = 1,
again comparing them against other predictors. While the
precision of 67.0% is on par with previously reported pre-
dictors, the recall of 51.0% for change bursts is lower. This
means that while change bursts in Eclipse indeed indicate
a higher defect-proneness, not every defective component is
characterized by change bursts—or at least not in the way
we have modeled them in this paper.

The differences between the Windows and Eclipse devel-
opment processes is best illustrated by again investigating
how the number of bursts changes with varying gap size.
Figure 5 shows the equivalent of Figure 4 for Eclipse:
Again, with increasing gap size G, we see an increase in
the number of bursts as more changes become consecutive.
We don’t see any decrease due to merging of change bursts,
though. Hence, in Eclipse, change bursts are much more
isolated events than in Vista—and thus are more like small
disturbances in a steady stream of changes, rather than

1Moser et al. [7] report the percentage of correctly predicted files PC =
82%, and a false positive rate FP = 11%.

Gap Size

Co
un

t

2 4 6 8 10

Eclipse 3.0

Figure 5. How gap size influences the number of change bursts in Eclipse.
In contrast to Vista, we see no merges of bursts in Eclipse—the number
of bursts simply increases. This indicates that bursts in Eclipse are much
more isolated events than in Vista.

intense activities focused on a specific task.
Such relative absence of change bursts can also be ex-

plained by the Eclipse architecture: Eclipse comes as a
collection of loosely connected plug-ins which effectively
limit the effects of changes. This is in sharp contrast to
an operating system like Vista which shows a much tighter
integration of modules—but also more widespread effects of
changes.

These results confirm our reservations: Change bursts are
good predictors of issues if each change initially came with
the expectation of maintaining correctness and stability—
and where bursts of such changes thus are clear indicators
of trouble. In environments where arbitrary changes can be
committed at arbitrary times, change bursts will fare just as
good as regular change activity (which still is a very good
predictor). While we assume that most industrial software
projects follow a controlled change process, prospective
users of change burst metrics are advised to first run an
experimental study as set forth in this paper; the appendix
contains all the necessary material for replicating this study.

Change bursts assume a process where changes
are expected to maintain quality and stability.

G. Threats to Validity

As with any empirical study, the interpretation of our
results is subject to several limitations.
• Internal Validity. In our study, internal validity issues

primarily deal with the causal issues of our results.
These concerns are addressed to some extent due to
the fact that the engineers in Windows and ECLIPSE
had no knowledge that this study was being performed
for them to artificially modify their behavior/coding
practices to affect our measurements. Furthermore, the
second and fourth author are not Microsoft employees;
hence, there is no internal motivation to show results
either way to influence Windows.
The experiment does suffer from experimenter bias, that
is, bias towards a result expected by the human exper-

imenters. To minimize this bias, the authors split into
two groups: The last two authors worked independently
to collect and process the Windows and ECLIPSE data,
respectively, and the first three authors independently
analyzed the results.

• Construct Validity. Construct validity issues arise
when there are errors in measurement. This is negated
to an extent by the fact that the entire data collection
process of change burst metrics and defects is auto-
mated. In the light of our results, we have individ-
ually implemented independent evaluation prototypes
and came to the same result. These concerns are also
alleviated to some extent by the large size and diversity
of our datasets.
While the Windows data maps all fixed problems to
defects in the code, the PROMISE ECLIPSE data set
only maps 70% of the fixed problems [8]. Hence, all
research on the ECLIPSE data set only uses a subset of
defects, which may not be representative for all fixed
problems.

• External Validity. External validity issues may arise
from the fact that all the data is from only two software
systems (albeit with many different components) and
that both systems are very large; other systems used
for a similar analysis may not be of comparable size.
In software engineering, any process depends to a
large degree on a potentially large number of relevant
context variables. The differences we observed between
Windows and Eclipse may be due to such confounding
factors.
The large number of factors also means that we cannot
assume a priori that the results of a study general-
ize beyond the specific environment in which it was
conducted [9]. We do not claim that models learned
from one project would be applicable to another; in all
cases, training on existing defects will be required. On
the other hand, existing defects also serve to evaluate
the technique, as we did in this paper. We hope that
our case study contributes to strengthening the existing
empirical body of knowledge in the field.

VI. RELATED WORK

In this section we summarize some of the related work
regarding metrics and defects. Relevant studies on Microsoft
systems are also presented providing context and for com-
parison to our current work. We organize our work based
on the type of metrics that have been studied for defect
prediction.

A. Code Churn

Graves et al. [10] predict fault incidences using software
change history based on a weighted time damp model using
the sum of contributions from all changes to a module,

where large and/or recent changes contribute the most to
fault potential [10].

Ostrand et al. [11] use information of file status such as
new, changed, unchanged files along with other explanatory
variables such as lines of code, age, prior faults etc. as
predictors in a negative binomial regression equation to
successfully predict (high accuracy for faults found in both
early and later stages of development) the number of faults
in a multiple release software system.

Moser et al. [7] use change metrics such as the number of
revisions or refactorings to predict defects in Eclipse classes.
In their paper, they report that cost-sensitive classification
yields > 75% of correctly classified files and a recall of
> 80%.2 Hassan [12] measures the complexity of the change
process by assessing how much modifications are scattered
across space and time. The resulting entropy metrics are
evaluated to be better predictors than prior faults.

B. Code Complexity

Khoshgoftaar et al. [13] studied two consecutive releases
of a large legacy system (containing over 38,000 procedures
in 171 modules) for telecommunications. Discriminant anal-
ysis identified fault-prone modules based on 16 static soft-
ware product metrics. Their model when used on the second
release showed a type I and II misclassification rate of 21.7%
and 19.1%, respectively, and an overall misclassification rate
of 21.0%.

The CK metric suite [14] consist of six metrics, designed
primarily as object oriented design measures: weighted
methods per class (WMC), coupling between objects (CBO),
depth of inheritance (DIT), number of children (NOC),
response for a class (RFC), and lack of cohesion among
methods (LCOM). The CK metrics have also been investi-
gated in the context of fault-proneness:
• Basili et al. [15] studied the fault-proneness in software

programs using eight student projects. They observed
that the WMC, CBO, DIT, NOC and RFC metrics were
correlated with defects while the LCOM metric was not
correlated with defects.

• Further, Briand et al. [16] performed an industrial case
study and observed the CBO, RFC, and LCOM metrics
to be associated with the fault-proneness of a class.

• Within five Microsoft projects, Nagappan et al. [17]
identified complexity metrics that predict post-release
failures and reported how to systematically build pre-
dictors for post-release failures from history.

C. Code Dependencies

Schröter et al. [6] showed that import dependencies can
predict defects. They proposed an alternate way of predicting

2Note that these results were obtained from a flawed version of the
Eclipse PROMISE data [5]; we are working on repeating their experiments
on the revised data set.

defects for Java classes. Rather than looking at the complex-
ity of a class, they looked exclusively at the components that
a class uses. For Eclipse, the open source IDE they found
that using compiler packages results in a significantly higher
defect-proneness (71%) than using GUI packages (14%).

Prior work at Microsoft [18] on the Windows Server 2003
system illustrates that code dependencies can be used to
successfully identify defect-prone binaries with precision
and recall values of around 73% and 75% respectively.

D. Organizational Structure

Nagappan et al. [1] observed that organizational metrics
(metrics extracted from how the software development team
is organized hierarchically) had a significantly high predic-
tion accuracy in a case study performed on Windows Vista
with a precision of 86.2% and recall of 84.0%.

E. Combination of Metrics

Denaro et al. [19] calculated 38 different software metrics
(lines of code, Halstead software metrics, nesting levels,
cyclomatic complexity, knots, number of comparison opera-
tors, loops etc.) for the open source Apache 1.3 and Apache
2.0 projects. Using logistic regression models built using the
data collected from the Apache 1.3 they verified the models
against the Apache 2.0 project with high correctness/com-
pleteness.

Khoshgoftaar et al. [20] use code churn as a measure of
software quality in a program of 225,000 lines of assembly
language. Using eight complexity measures, including code
churn, they found neural networks and multiple regression
to be an efficient predictor of software quality, as measured
by gross change in the code.

F. Summary

Across all these studies, precision and recall values are
around 85% on average for the best of studies. We have
not seen a study yet which has both precision and recall in
the 90 percentile, as we have seen for Vista. Of course, the
objective of our research is not to just keep increasing the
prediction accuracy—but to find the reasons and factors that
improve so. In that spirit, this paper presents two different
product families (Windows and Eclipse) to illustrate how the
difference in process can characterize the results obtained.

No other defect predictor has ever had
both precision and recall above 90%.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have made the following contributions:
• We have introduced the concept of change bursts—

consecutive changes over a period of time—and mo-
tivated why they would indicate problems during soft-
ware development.

• We have presented metrics based on change bursts that
can be used to predict defect-prone components.

• We have shown that these metrics yield excellent pre-
dictive power in projects with high-quality changes,
with precision and recall exceeding 90% for Windows
Vista—the highest predictive power ever observed.

Regarding future work, there are several ways to build
on this study. One can further improve the predictive power
(especially for less organized development processes like the
one in ECLIPSE), consider alternate metrics, or build recom-
mendation systems. To enable easy replication of this study,
and to conduct alternate experiments, we have compiled
datasets that contain all the necessary metrics and defect data
for ECLIPSE; Appendix A gives the necessary instructions,
including the R code fragments for building and applying
regression models, running random split experiments, and
computing precision and recall.

For practical purposes (at least within Microsoft), our
results imply that defect prediction has reached a stage
where it is, simply put, good enough. Our future work will
thus concentrate on more qualitative topics: Why is it that
change bursts are so important in predicting defects? What
is so special about these activities? And what can we do to
detect and avoid them? In all their generality, such questions
are sure to keep us busy for several years.

Acknowledgments. We thank the Microsoft Windows prod-
uct group for its cooperation in this study. Yana Mileva and
the anonymous reviewers gave helpful comments on earlier
revisions of this paper.

REFERENCES

[1] N. Nagappan, B. Murphy, and V. Basili, “The influence of
organizational structure on software quality: An empirical
case study,” in ICSE ’08, 2008, pp. 521–530.

[2] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do
changes induce fixes?” in MSR ’05, 2005, pp. 1–5.

[3] E. J. Weyuker, T. J. Ostrand, and R. M. Bell, “Do too many
cooks spoil the broth? using the number of developers to
enhance defect prediction models,” Empirical Softw. Engg.,
vol. 13, no. 5, pp. 539–559, 2008.

[4] D. G. Kleinbaum, L. L. Kupper, and K. E. Muller, Applied Re-
gression Analysis and Other Multivariable Methods. Boston:
PWS-Kent Publishing Company, 1987.

[5] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting de-
fects for Eclipse,” in PROMISE ’07, 2007, p. 9.

[6] A. Schröter, T. Zimmermann, and A. Zeller, “Predicting
component failures at design time,” in ISESE ’06, 2006, pp.
18–27.

[7] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis
of the efficiency of change metrics and static code attributes
for defect prediction,” in ICSE ’08, 2008, pp. 181–190.

[8] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein,
V. Filkov, and P. Devanbu, “Fair and balanced?: Bias in bug-
fix datasets,” in ESEC/FSE ’09, 2009, pp. 121–130.

[9] V. R. Basili, F. Shull, and F. Lanubile, “Building knowledge
through families of experiments,” IEEE Trans. Softw. Eng.,
vol. 25, no. 4, pp. 456–473, 1999.

[10] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting
fault incidence using software change history,” IEEE Trans.
Softw. Eng., vol. 26, pp. 653–661, 2000.

[11] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Where the
bugs are,” in ISSTA ’04, 2004, pp. 86–96.

[12] A. E. Hassan, “Predicting faults using the complexity of
code changes,” in ICSE ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 78–88.

[13] T. M. Khoshgoftaar, E. B. Allen, N. Goel, A. Nandi, and
J. McMullan, “Detection of software modules with high
debug code churn in a very large legacy system,” in ISSRE
’96, 1996, p. 364.

[14] S. R. Chidamber and C. F. Kemerer, “A metrics suite for
object oriented design,” IEEE Trans. Softw. Eng., vol. 20, pp.
476–493, June 1994.

[15] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation
of object-oriented design metrics as quality indicators,” IEEE
Trans. Softw. Eng., vol. 22, pp. 751–761, October 1996.

[16] L. C. Briand, J. Wüst, S. V. Ikonomovski, and H. Lounis,
“Investigating quality factors in object-oriented designs: an
industrial case study,” in ICSE ’99, 1999, pp. 345–354.

[17] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to
predict component failures,” in ICSE ’06.

[18] N. Nagappan and T. Ball, “Using software dependencies and
churn metrics to predict field failures: An empirical case
study,” in ESEM ’07.

[19] G. Denaro and M. Pezzè, “An empirical evaluation of fault-
proneness models,” in ICSE ’02.

[20] T. M. Khoshgoftaar and R. M. Szabo, “Improving code churn
predictions during the system test and maintenance phases,”
in ICSM ’94, 1994, pp. 58–67.

APPENDIX

To facilitate reproduction of this study, Figure 6 documents the
R script we have used to compute precision, recall, and accuracy
as shown in this paper. The script takes a tabulator-separated table
organized as follows:

Module #Defects #Changes #Consecutive Changes
A.dll 0 45 23 . . .
B.dll 2 33 21 . . .

...
...

...
...

. . .

In this table, Module is the name of the module in ques-
tion; NumberOfDefects is the number of defects observed
in that particular module. The columns NumberOfChanges,
NumberConsecutiveChanges, etc., are the individual metrics
as defined in Section III. Thus, to replicate this study:

1) Obtain the defect density for the modules in your study
subject (possibly from a public source, such as [5]).

2) Implement the metrics as defined in this paper. For
ECLIPSE, we have made a full dataset available for down-
load [5].

3) Run the script.
4) Find results in median_precision, median_recall,

and median_accuracy, respectively.

Read the data
thedata ← read.table(” ... ” , header=T, sep=”\t”)

Classify items with at least one defect as defect−prone
fp threshold ← 0
thedata $HasDefect ← thedata$NumberOfDefects > fp threshold

Set a seed to make experiments deterministic .
set . seed(98052)

Initialize result vectors with NA
precision ← rep(NA,N)
recall ← rep(NA,N)
accuracy ← rep(NA,N)

Run 100 random experiments
N ← 100
for (i in 1:N) {

Split the data into training set (2 /3) and testing set (1 /3)
based on random sample idxs
idxs ← sample(1:nrow(thedata), nrow(thedata)∗2/3, F)
train = thedata [idxs ,]
test = thedata [−idxs,]

Build a logistic regression model from the training data .
train . lm ← glm(HasDefect ∼NumberOfChanges

+ NumberConsecutiveChanges + NumberCodeBursts
+ TotalBurstSize + MaximumCodeBurst
+ NumberOfChangesEarly
+ NumberConsecutiveChangesEarly
+ NumberCodeBurstsEarly + TotalBurstSizeEarly
+ MaximumCodeBurstEarly + NumberOfChangesLate
+ NumberConsecutiveChangesLate
+ NumberCodeBurstsLate
+ TotalBurstSizeLate + MaximumCodeBurstLate
+ TimeFirstBurst + TimeLastBurst + TimeMaxBurst
+ PeopleTotal + MaxPeopleInBurst + TotalPeopleInBurst
+ log(ChurnTotal+1) + log(MaxChurnInBurst+1)
+ log(TotalChurnInBurst +1),

data=train , family=”binomial”)

Apply the logistic regression model to the testing data
(cut off 0.50)
test .prob ← predict(train . lm, test , type=”response”)
test .pred ← test .prob>=0.50

Count true negatives , false negatives ,
false positives , and true positives
outcome ← table(factor(test $HasDefect, levels =c(F,T)),

factor (test .pred , levels =c(F,T)))
TN = outcome[1,1]
FN = outcome[2,1]
FP = outcome[1,2]
TP = outcome[2,2]

Compute precision, recall , and accuracy for experiment i
precision [i] ←

if (TP + FP == 0) { 1 } else { TP / (TP + FP) }
recall [i] ← TP / (TP + FN)
accuracy[i] ← (TP + TN) / (TN + FN + FP + TP)

}

Compute median precision, recall , and accuracy
for the 100 experiments
median precision ←median(precision)
median recall ←median(recall)
median accuracy ←median(accuracy)

Figure 6. The R script used for conducting the experiments in this paper.

	I Introduction
	II Detecting Change Bursts
	III Change Burst Metrics
	III-A Change Metrics
	III-B Temporal Metrics
	III-C People Metrics
	III-D Churn Metrics

	IV Predicting Defect-Prone Components
	IV-A The Subject
	IV-B The Dataset
	IV-C Stepwise Regression
	IV-D Random Splits
	IV-E Precision and Recall

	V Experiments
	V-A Can change bursts predict defect-prone components?
	V-B How do change bursts compare against other predictors?
	V-C How do gap size and burst size influence the results?
	V-D How are change bursts distributed?
	V-E Are these results specific to Vista?
	V-F When does this not work?
	V-G Threats to Validity

	VI Related Work
	VI-A Code Churn
	VI-B Code Complexity
	VI-C Code Dependencies
	VI-D Organizational Structure
	VI-E Combination of Metrics
	VI-F Summary

	VII Conclusions and Future Work
	References
	Appendix

