
24	 I E E E S o f t w a r E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 0 74 0 - 74 5 9 / 0 9 / $ 2 5 . 0 0 © 2 0 0 9 I E E E

C
orporations invest more than 300 billion US dollars annually in software produc-
tion. Although new people are constantly entering the fi eld, some of them aren’t
suffi ciently trained and therefore aren’t prepared to draw on the experience oth-
ers have accumulated. This creates a situation in which every problem is perceived

as new and unique, even though there’s plenty of experience to learn from. Studying and col-
lecting such experience is the goal of empirical software engineering, and its evidence fi nds
its way into textbooks and magazines. Empirical studies tell us, for example, that the later

a problem is discovered, the more effort it takes to fi x it,
and that 80 percent of the defects come from 20 percent
of the code.

Such fi ndings have long been common knowledge, but
the consequences are very unspecifi c. How do we know
where the most effort is spent? How do we know where
the defects are? Which properties of the software or its
development contribute to effort and quality? And, most
important, how do we know whether some empirical or
textbook fi nding applies to the project at hand?

To answer such questions, we need data—about the
product, people, and process. However, collecting such
data manually is expensive and can interfere with the de-
velopment process and cost valuable developer time. If

the data is collected from humans (for example, in sur-
veys), there’s a risk of bias, which we must estimate and
deal with. Interpreting the data (again) requires consider-
able experience, time, and money.

A New Field
We have an alternative to manual collection, though.
Modern programming environments and tools already
collect data automatically. Confi guration management
tools (such as CVS) and bug-tracking systems (such as
Bugzilla) are almost mandatory for systematic software
development and are commonly integrated into modern
programming environments, enabling automated, perva-
sive data collection. At the same time, modern program

Mining
Software
Archives

Nachiappan Nagappan and Thomas Zimmermann, Microsoft Research

Andreas Zeller, Saarland University

focus 1gue s t e d i t o r s ’ i n t r o duc t i on

	 January/February 2009 I E E E S o f t w a r E 	 25

analysis techniques can derive more and more facts
and abstractions from code, going much further
than classical software metrics. All this allows for
the exploration of far larger data bodies then ever
before.

Such data isn’t confined to industry alone. There
are significant industrial projects (such as Mozilla,
Apache, or the Eclipse project) that have gone open
source, making plenty of industrial development
data available for exploration and validation. If a
technique is shown to be applicable to these proj-
ects, chances are that it will work in closed-source
environments, too.

 All this contributes to the rise of a new field,
the mining of software archives, which is concerned
with the automated extraction, collection, and ab-
straction of information from available software
development data. In past years, mining software
archives has become one of the fastest-rising areas
in software development research. Its promise is not
only to provide insights into actual development
processes but also to provide tools and techniques
that let anyone gather such insights with as little
collection and modeling effort as possible.

The Special Issue
In this special issue, we’re proud to present a selec-
tion of the exciting research that’s going on in the
field—a mix of contributions from industry and
academia. In “Change Analysis with Evolizer and
ChangeDistiller,” Harald Gall, Beat Fluri, and Mar-
tin Pinzger describe a platform for mining software
archives and how to answer essential questions
about a project’s evolution. “Mining Software His-
tory to Improve Software Maintenance Quality: A
Case Study,” by Alexander Tarvo, describes how to
access the version history of Windows to predict the
risk of changes. In “Analytics-Driven Dashboards
Enable Leading Indicators for Requirements and
Designs of Large-Scale Systems,” Richard Selby
shows how dashboards track and relate product
and process metrics. The article “Mining Task-
Based Social Networks to Explore Collaboration in
Software Teams,” by Timo Wolf, Adrian Schröter,
Daniela Damian, Lucas D. Panjer, and Thanh H.D.
Nguyen, shows how to mine social networks of de-
velopers, tracking patterns that are related to suc-
cess or failure. In “Tracking Your Changes: a Lan-
guage-Independent Approach,” Gerardo Canfora,
Luigi Cerulo, and Massimiliano Di Penta describe
a tool that tracks the evolution of code fragments.
They use their tool to answer common questions
about code clones and vulnerabilities.

Finally, we’ve invited nine outstanding research-
ers in the field to share their thoughts on the future

benefits of mining repositories—but also on pos-
sible pitfalls and limitations.

W e hope these articles convey an idea
about both the potential and the chal-
lenges of mining software archives.

The sheer amount of data available, the diversity of
sources, the semantic richness of both artifacts and
natural language, and the overall goal of producing
the most helpful insights will keep researchers busy
for a long time.

Further Resources
The Working Conference on Mining Software Repositories (www.msrconf.
org) is the main venue for researchers and practitioners to discuss ongoing
research related to mining software archives. Each year, this conference hosts
a mining challenge in which teams analyze a large open source project such
as Mozilla, Eclipse, or Gnome (GNU Network Object Model Environment).
The team with the best results wins.

The Bibliography on Mining Software Engineering Data (http://ase.csc.
ncsu.edu/dmse) has numerous pointers to papers and other material, includ-
ing a tutorial on mining software repositories.

The IEEE Transactions on Software Engineering (www.computer.org/tse)
published a special issue of seminal papers on mining software repositories
in June 2005.

The PROMISE repository (http://promisedata.org) is a unique collection of
free data sets related to defect prediction, effort estimation, and other soft-
ware development activities.

About the Authors
Nachiappan Nagappan is a researcher at Microsoft Research, where he works in
the Empirical Software Engineering and Measurement area. His research interests include
software reliability, failure prediction, social network analysis, and empirical software
engineering. Nagappan received his PhD in computer science from North Carolina State
University. Contact him at nachin@microsoft.com.

Andreas Zeller is a computer science professor at Saarland University. He researches
large programs and their history, and has developed methods to determine the causes
of failures on open source programs as well as in industrial contexts, including at IBM,
Microsoft, and SAP. His book Why Programs Fail received Software Development Magazine’s
productivity award in 2006. Zeller received his PhD in computer science from the Technical
University of Braunschweig, Germany. Contact him at zeller@acm.org.

Thomas Zimmermann is a researcher at Microsoft Research. His work involves
the evolution of large, complex software systems, conducting empirical studies and building
tools that use data mining to support programmers. Zimmermann received his PhD in
computer science from Saarland University. Contact him at tz@acm.org.

