
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID 1

The Design Space of Bug Fixes
and How Developers Navigate It

Emerson Murphy-Hill, Thomas Zimmermann, Christian Bird, and Nachiappan Nagappan

Abstract— When software engineers fix bugs, they may have several options as to how to fix those bugs. Which fix they
choose has many implications, both for practitioners and researchers: What is the risk of introducing other bugs during the fix?
Is the bug fix in the same code that caused the bug? Is the change fixing the cause or just covering a symptom? In this paper,
we investigate alternative fixes to bugs and present an empirical study of how engineers make design choices about how to fix
bugs. We start with a motivating case study of the Pex4Fun environment. Then, based on qualitative interviews with 40
engineers working on a variety of products, data from 6 bug triage meetings, and a survey filled out by 326 Microsoft engineers
and 37 developers from other companies, we found a number of factors, many of them non-technical, that influence how bugs
are fixed, such as how close to release the software is. We also discuss implications for research and practice, including how to
make bug prediction and localization more accurate.

Index Terms—Design concepts, human factors in software design, maintainability

—————————— ——————————

1 INTRODUCTION
s the software systems we create and maintain grow
in capability and complexity, software engineers must

ensure that these systems work as intended. When systems
do not, software engineers fix the “bugs” that cause this
unintended behavior.

Traditionally, researchers and practitioners have as-
sumed that the location in the software at which an engi-
neer fixes a bug is the location at which the error was made
[1]. For example, Endres [2] makes such an assumption in
a study, but cautions the reader that,

There is, of course, the initial question of how we can deter-
mine what the error really was. To dispose of this question
immediately, we will say right away that, in the material
described here, normally the actual error was equated to the
correction made. This is not always quite accurate, because
sometimes the real error lies too deep, thus the expenditure
in time is too great, and the risk of introducing new errors
is too high to attempt to solve the real error. In these cases
the correction made has probably only remedied a conse-
quence of the error or circumvented the problem. To obtain
greater accuracy in the analysis, we really should, instead of
considering the corrections made, make a comparison be-
tween the originally intended implementation and the im-
plementation actually carried out. For this, however, we
usually have neither the means nor the base material.

Although the software engineering community has sus-
pected that this assumption is sometimes false, there exists

little evidence to help us understand under what circum-
stances it is false. The consequences of this lack of under-
standing are manifold. Let us provide several examples.
For researchers studying bug prediction [3] and bug local-
ization [4], models of how developers have fixed bugs in
the past may not capture the true cause of failures, but may
instead only capture workarounds. For practitioners,
when a software engineer is evaluated based on how many
bugs they fix, the evaluation may not accurately reflect that
engineer’s effect on software quality. For educators, with-
out teaching future engineers the contextual factors that go
into deciding which fix to apply, the future engineers may
choose inappropriate fixes.

However, to our knowledge, there has been no empiri-
cal research into how bug fixes are designed. In this paper,
we seek to understand the design of bug fixes. We define
the design of bug fixes as the human process of envisioning
several ways to fix the same bug and then judging which
of those fixes to apply. As with any software change, an

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————
• E Murphy-Hill is with North Carolina State University, Raleigh, NC

27603. E-mail: emerson@csc.ncsu.edu.
• T. Zimmermann is with Microsoft Research, Redmond, WA 98052. E-mail:

tzimmer@microsoft.com.
• C. Bird is with Microsoft Research, Redmond, WA 98052. E-mail:

cbird@microsoft.com.
• N. Nagappan is with Microsoft Research, Redmond, WA 98052. E-mail:

nachin@microsoft.com.

A

Refactoring

Error
Surfacin g

Behavioral
Alternatives

Functionality
Removal

Data
Propagation

Internal Vs
External

Accuracy

Hardcoding

Methodology: 40 interviews, 6 triage meetings, 363 survey responses

Navigating Design Space

Interface
Breakage

Risk
Management

User
Behaviour

Consistency

Cause
Understanding

Social Factors

Design Space

Fig. 1. Characterizing the design of bug fixes

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

engineer must deal with a number of competing forces
when choosing what change to make. The task is not al-
ways straightforward.

An earlier version of this paper appeared as a confer-
ence paper [5], which originally had one primary contribu-
tion: the first systematic characterization of the design of
bug fixes. It analyzed the design space of bug fixes and de-
scribed how developers navigate that design space, to un-
derstand the decisions that go into choosing a bug fix (see
Figure 1). The present paper expands on this work, by add-
ing the following three contributions:

• A study of the Pex4Fun game that motivates our
work (Section 3).

• A replication of our original survey of Microsoft
developers with an additional 37 developers
from other companies (Section 4.5).

• Additional vignettes of the design dimensions
(Section 5.1) and design navigation choices (Sec-
tion 5.2), drawn from the original interviews.

• Findings about why developers avoid refactor-
ing (Section 5.1), how they subvert policies im-
plemented to reduce regression bugs, how they
decide which analysis methods to use to deter-
mine bug frequencies, and who decides on which
bug fix design to implement (Section 5.2), drawn
from our original survey.

2 RELATED WORK
Several researchers have investigated bug fixes. Perhaps
the most relevant research Leszak, Perry, and Stoll’s [6]
study of the causes of defects, in which the authors classi-
fied bug reports by ‘real defect location’:

‘Real’ location characterizes the fact that… some defects are
not fixed by correcting the ‘real’ error-causing component,
but rather by a… ‘work-around’ somewhere else.

While the authors collected real defect locations, the
data was not analyzed or reported. Our work explains why
one fix would be selected over another; or in other words,
why an engineer might choose a workaround instead of a
fix at a “real location.”

Ko and Chilana studied 100 contentious open-source
bug reports, focusing on argumentation in open source
bug fixing, such as the rationale for fixes and the need for
moderation when end users were involved in the debate
[7]. In contrast, we focus on the design of the bug fix itself,
rather than process by which the decision was made. Our
study also complements this study by improving our un-
derstanding of the decision making process when fixing
bugs, specifically for commercial software and for deci-
sions made outside of the bug report itself.

Breu and colleagues observed in a study of 600 bug re-
ports that 25.3% of discussions in bug reports are spent on
the fix itself, discussions involving suggestions, feedback
requests, and understanding files [8]. Our study comple-
ments this work by exploring the design space of bug fixes.

Several other researchers have investigated bug fixing.
In a manual inspection of bug fixes, Lucia and colleagues

found that some fixes are spread over many lines of code
[4]. Bird and colleagues found that bug fixes reported in
bug databases are different from fixes not reported in da-
tabases [9]. Gu and colleagues investigated the belief that
bug fixes themselves are the source of errors and found
that bad fixes comprise approximately 9% of bugs [10]. Yin
and colleagues investigated why bugs are fixed incor-
rectly, that is, require a later bug fix to the source code
changed by the original fix [11]. Aranda and Venolia inves-
tigated 10 closed bugs and surveyed 110 engineers about
bug coordination patterns at Microsoft [12]. Spinellis and
colleagues attempted to correlate code metrics, such as
number of bugs fixed, to evaluate the quality of open
source software [13]. Storey and colleagues investigated
the interaction of bugs and code annotations [14]. Anvik
and colleagues investigated which engineers get assigned
to fix bugs [15]. In contrast to these papers, our paper seeks
to understand in what way bug fixes differ, and why one
fix is chosen over another.

3 MOTIVATION
What evidence is there that the same bug can be fixed in
multiple ways? To explore this question and to provide
motivation for the rest of this paper, we turn to a browser-
based learning environment called Pex4Fun where pro-
grammers try to solve programming challenges [16]. Pro-
grammers are given some code, a method with parameters
and a default return value, and are asked to modify the
program until it produces the same output as a secret so-
lution originally created by a puzzle creator.

Although playing Pex4Fun is not a bug fixing task, both
are activities where an existing program is not behaving as
expected and the programmer’s task is to modify the pro-
gram so that it conforms to a specification that the devel-
oper understands only gradually. And although Pex4Fun
is a significantly more limited programming context with
fewer environmental constraints than bug fixing in the
wild, we argue that if variation in solutions is present in
Pex4Fun, then even more variation likely exists in bug fix-
ing in the wild.

Let us explore the solutions to an arbitrary Pex4Fun
puzzle (Figure 2). Before viewing other programmers’ so-
lutions, the curious reader can try the puzzle herself at the
following webpage: http://aka.ms/Pex4Fun_BugFixExample.
In the data used for this paper, 475 self-selected players at-
tempted to solve the puzzle and submitted 5,612 attempts.
A total of 260 different people were successful in submit-
ting a correct solution. The median time to solve the puzzle
was 12.25 minutes.

In browsing the 260 submitted solutions to the problem,
we found that no two appeared exactly alike. Many have
at least minor differences in whitespace and comments. Yet
there are also substantial design differences between many
solutions.

Several solutions appear similar to the original hidden
solution, as a simple algebraic formula:

using System;
public class Program {
 public static int Puzzle(int x) {

http://aka.ms/Pex4Fun_BugFixExample

MURPHY-HILL ET AL.: THE DESIGN SPACE OF BUG FIXES AND HOW DEVELOPERS NAVIGATE IT 3

 return x * (x-1) / 2;
 }
}

Other solutions showed slightly refactored versions of this
formula (below, showing just the method body):

return (x*x-x)/2;

Some solutions were imperative, and sometimes included
special cases:

if (x == 0)
{
 return 0;
}
int t_x = (x * (x / 2));
if ((x & 0x1) == 0)
{
 t_x -= (x / 2);
}
return t_x;

Some programmers’ special cases (and comments) appar-
ently arose from their problem solving process, coding
against the input-output pairs provided by the Pex4Fun
environment:

if (x==0) return 0;
if (x==1) return 0;
if (x==2) return 1;
if (x==3) return 3;
// if (x==4) return 6;
// if (x==14) return 91;
// if (x==47) return 1081; //23
// if (x==79) return 3081; //39
return (x-1)*x/2;

Other programmers submitted iterative solutions:

int sum = 0;
for (int i = x-1; i >=0; i--)
{
 sum += i;

}
return sum;

Other programmers solved the problem with a while loop
instead of a for loop:

int i = 0;
int z = 0;
while (x > 0 && ++i <= x)
{
 z = z+i-1;
}
return z;

Similarly, several programmers solved the problem recur-
sively:

return x == 0 ? 0 : (x-1) + Puzzle(x-1);

Finally, one programmer submitted this clever solution:

return Enumerable.Range(0, x).Sum();

Although we expected to find diversity in Pex4Fun an-
swers, we were surprised with how much diversity in
these “bug fixes” we found. This is especially notable be-
cause programmers had no incentive to produce diverse
solutions because (a) they were only rewarded for produc-
ing a working solution and (b) they could not see each oth-
ers’ solutions. Although we did not quantitatively assess
the diversity, the qualitative diversity in people’s Pex4Fun
solutions is readily apparent.

The diversity of Pex4Fun solutions alludes to the diver-
sity that may exist in bug fixes. Indeed, as our data in Sec-
tion 5.1 suggests, programmers in our study estimated that
about half of the bugs that they fix in the wild have multi-
ple possible solutions. In the remainder of this paper, we
explore both the diversity in real bug fixes, and the ra-
tionale for that diversity. Specifically, we seek to answer
two research questions:

RQ1: What are the different ways that bugs can be fixed?

RQ2: What factors influence which fix an engineer chooses?

Table 1
METHODOLOGY SUMMARY

© Microsoft Corporation

interviews

firehouse
interviews

triage
meetings

survey +
replication

goal
qualitative,
minimally
obtrusive

qualitative,
in

qualitative,
collaborative

decisions

quantify
observations

protocol

pick engineers
in a building

be available

pick engineers
in a building

a bug report

take notes
and observe

in silence

limited value
because teams

15-20 minute
anonymous

survey

questions
informed by
qualitative
findings.

most recent bug: software,

symptoms, causes, more than one
way to fix; if yes, explain in detail

32 participants
(8 each for four
product groups)

8 participants
from a fifth

product group

324 Microsoft
responses +

37 other
responses

data coding with
Atlas.TI

coding with
Atlas.TI read notes descriptive

statistics

Fig. 2. The Pex4Fun user interface.

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

4 METHODOLOGY
To answer our two research questions, we conducted a
mixed-method study. We used several research methods,
rather than a single one, both to study our research ques-
tions in as broad a way as possible and to triangulate the
answers to improve their accuracy [17]. While we feel that
our methods are thorough and rigorous, some threats still
exist as we discuss in Section 6. We now discuss our four
research methods: opportunistic interviews, firehouse in-
terviews, triage meeting observations, a survey, and a rep-
lication of that survey. For each method, we discuss the
goal of using that method, how we recruited participants,
the protocol we used, how we analyzed data, and a brief
summary of the shape of the data we collected. Table 1
summarizes our methodology.

4.1 Opportunistic Interviews
With our first method, we asked engineers about a recent
bug they had been involved in fixing.

Goal. Our goal in performing opportunistic interviews
was to rapidly obtain qualitative answers to our research
questions in a way that was minimally obtrusive to inter-
viewees.
Protocol. We conducted these interviews by having the
first author go to a building that housed a particular prod-
uct group. Armed with a list of office numbers for software
engineers, the interviewer walked to each engineer’s office.
If the engineer was wearing headphones, was talking to
someone else, or had the door closed, the interviewer went
to the next office. Otherwise, the interviewer introduced
himself, said that he was doing a study, and asked if the
interviewee had 10 to 15 minutes to talk. If the engineer
consented, the interviewer asked a series of semi-struc-
tured questions [17] regarding the last bug that the engi-
neer was involved in fixing. Although interviewees were
not offered an incentive, before the interviewer left, inter-
viewees were compensated with a $10 gift card for lunch.

We performed pilot interviews to identify potential
problems and rectify them prior to the main study. In do-
ing so, we noticed that pilot interviewees could remember
the fix they made, but had difficulty recalling the alterna-
tive fixes that they did not make. Some pilot interviewees
stated that they fixed the bug the only way that it could
have been fixed, even though there clearly were other fixes,

even from our perspective as outsiders. We sought to re-
duce this ‘hindsight bias’ [18] in our interviews using two
different techniques. For every odd-numbered interview
(the first, the third, and so on), we gave the interviewee an
example of three bugs and multiple ways of fixing each
bug. For the other half of the interviews, we presented a
small program containing a simple bug, and then asked the
interviewee to talk us through how she might fix the bug;
interviewees typically mentioned several alternative fixes.
Comparing the results obtained after starting interviews
with these two methods, we noticed no qualitative differ-
ences in the responses received, suggesting that both meth-
ods were about equally effective. Comparing pilot inter-
view results against real interview results, we feel that this
technique significantly helped interviewees think broadly
about the design space.

After this introductory exercise, the interviewer asked
the interviewee about the most recent bug that they fixed.
The interviewer asked about the software that the bug ap-
peared in, the symptoms, the causes, and whether they
considered more than one way to fix the bug. If an inter-
viewee did consider multiple fixes, we asked them to
briefly explain each one, and justify their final choice. The
full interview guide can be found in our companion tech-
nical report [19].

Participants. To sample a wide variety of engineers, we re-
cruited interviewees using a stratified sampling technique,
sampling across several dimensions of the products that
engineers create. We first postulated what factors might in-
fluence how engineers design fixes; we list those factors in
Table 2.

Using these factors, we selected a cross section of Mi-
crosoft products that spanned those factors. We chose four
products from which to recruit engineers, because we esti-
mated that four products would balance two competing
requirements: that we sample enough engineers from each
product team to get a good feeling for what bug fixing is
like within that team, and that we sample enough product
teams that we could have reasonable generalizability. The
four product teams that we selected spanned each of the
values in Table 2. For example, one team we talked to
worked on desktop software, one on web applications, an-
other on enterprise/backend, and the last on embedded
systems.

Within each product team, we aimed to talk to a total of
8 software engineers: six were what Microsoft calls “Soft-
ware Development Engineers” (developers for short) and
two were “Software Development Engineers in Test” (test-
ers for short). We interviewed more developers, as devel-
opers spend more time fixing bugs than testers. Once we
reached our quota of engineers in a team, we moved on to
the next product team. In total, we completed 32 opportun-
istic interviews with engineers.

Data Analysis. We prepared the interviews for analysis by
transcribing them. We then coded the transcripts [20] using

Table 2
FACTORS FOR SELECTING PRODUCT GROUPS

Factor Values
Domain Desktop, web application, en-

terprise/backend, embedded
Product Type Boxed, service
Bug fix types Pre-release, post-release
Number of versions
shipped

0 to continuous release

Phase Planning and milestone qual-
ity, main development, stabili-
zation, and maintenance

MURPHY-HILL ET AL.: THE DESIGN SPACE OF BUG FIXES AND HOW DEVELOPERS NAVIGATE IT 5

the ATLAS.ti1 software. Before beginning coding, we de-
fined several base codes, including codes to identify symp-
toms, the fix that was applied, alternative fixes, and rea-
sons for discriminating between fixes. The first author did
the coding. Additionally, our research group, consisting of
7 full time researchers and 7 interns, analyzed the coded
transcripts again, to determine if any other notable themes
emerged. Each person in the group analyzed 2 to 4 tran-
scripts over ½ hour. We regard the first author’s coding as
methodical and thorough, while the team’s analysis was
brief and serendipitous. This was because the team’s anal-
ysis was significantly more time-restricted and less struc-
tured than the first authors’ coding. We derived most of
the results described in this paper from the first author’s
coding. We use the codes about fixes to describe the design
space (Section 5.1) and codes about discriminating be-
tween fixes to describe how engineers navigate that space
(Section 5.2). Our technical report contains a list of codes
and examples [19].

Data Characterization. Overall, we found software engi-
neers very willing to be interviewed. To obtain 32 inter-
views, we visited 152 engineers’ offices. Most offices were
empty or the engineers appeared busy. In only a few cases,
engineers explicitly declined to be interviewed, largely be-
cause the engineer was too busy. Interviews lasted be-
tween 4 and 30 minutes. In this paper, we refer to partici-
pants as P1 through P32.

Most participants reported multiple possible fixes for
the bug that they discussed. In a few cases, participants
were unable to think of alternative solutions; however, the
interviewer, despite being unfamiliar with the bug, was
able to suggest an alternative fix. In these cases, the engi-
neer agreed that the fix was possible, but never consciously
considered the alternative fix, due to external project con-
straints.

Interestingly, this opportunistic methodology allowed
us to interview three engineers who were in the middle of
considering multiple fixes for a bug.

4.2 Firehouse Interviews
Using the firehouse research method [21], we interviewed en-
gineers immediately after they fixed a bug. Firehouse re-
search is so called because of the unpredictable nature of
the events under study; if one wants to study social dy-
namics of victims during and immediately after a fire, one
has to literally live in the firehouse, waiting for fires to oc-
cur. Alternatively, one can purposefully set fires, although
this research methodology is generally discouraged. In
our case, we do not know exactly when an engineer is con-
sidering a fix, but we can observe a just-completed fix in a
bug tracker and “rush to the scene” so that the event is
fresh in the engineer’s mind.

Goal. Our goal was to obtain qualitative answers to our
research questions in a way that maximized the probability
that engineers could accurately recall their bug fix design
decisions.

Protocol. We first picked one product group at Microsoft,

1 http://atlasti.com/

went into the building where most development for that
product takes place, and monitored that group’s bug
tracker, watching for bugs an engineer marked as “fixed”
within the last ten minutes. If the engineer was not located
in the building, we moved on to the next most recently
closed bug. Otherwise, the interviewer went immediately
to the engineer’s office.

When approaching engineers for this study, we were
slightly more aggressive than in the opportunistic inter-
views; if the engineer’s door was closed, we knocked on
the door. If the engineer was not in her office by the time
we arrived, we waited a few minutes. These interviews
were the same as the opportunistic interviews, except that
the interviewer insisted that the discussion focus on the
bug that they had just closed.

Participants. Our options for choosing a product group to
study was fairly limited, because we needed a personal
contact within that team that was willing to give us live,
read-only access to their bug tracker. We chose one prod-
uct, which will remain anonymous; the product group was
different from any of those chosen in the opportunistic in-
terviews.

We aimed to talk to 8 software engineers in total for
these interviews. While we interviewed fewer people than
with the opportunistic interviews, these firehouse inter-
views tended to take much longer to orchestrate, mostly
because we wanted to talk to specific people. In retrospect,
we did not notice any qualitative differences in engineers’
responses to the two interview types, so for the remainder
of the paper, we do not distinguish between these two
groups of participants. Nonetheless, you may do so if you
wish; participants in the firehouse interviews are labeled
P33 through P40.

Data Analysis. We analyzed data in the same way as with
the opportunistic interviews.

Data Characteristics. Again, we found engineers to be re-
ceptive to being interviewed, although they were usually
surprised we asked about a bug they had just fixed. We
reassured them that we are from Microsoft Research, and
were there to help.

In total, we went to 16 offices, and were able to inter-
view 10 engineers. Two of these we interviewed in error,
one because his officemate actually closed the bug, and one
because the interviewer misread the bug report. We com-
pensated these engineers for their time with gift cards, but
we exclude them from analysis.

4.3 Triage Meetings
We hypothesized that not only do individual engineers
make decisions about the design of bug fixes, but perhaps
that bug fix design happens during bug triage meetings as
well. In a bug triage meeting, a team reviews newly re-
ported or reopened bugs and assign a priority and person
for working on them. The teams also review and approve
bug fixes completed since the last meeting.

Goal. Our goal was to obtain qualitative answers to our

http://atlasti.com/

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

research questions with respect to how engineers work to-
gether to find good bug fix designs.

Protocol and Participants. We attended six bug triage
meetings across four product groups. Three of these
groups were the same groups that we did interviews with.
To ensure engineers were comfortable, we did not record
these meetings; rather, we took notes and observed in si-
lence.

Data Analysis and Data Characteristics. It became clear
that there was very little data we could gather in these tri-
age meetings, for two reasons. The first is that participants
rarely discussed how to fix a bug beyond whether to fix it
and when to do so. Second, when participants did discuss
how to fix bugs, the team was so tightly knit that very little
explanation was needed; this terseness made bug fix deci-
sions basically impossible for us to understand without the
context that the team members had. As a result, we were
able to glean few insights from the meetings. For the few
observations that we could make, we label these meetings
as T1 through T6. Because there was little usable data from
these meetings, we did not perform any data analysis be-
yond reading through our notes.

4.4 Survey
Goal. Our goal was to quantify our observations made
during the interviews and triage meetings.

Protocol. After we performed the interviews and triage
meetings, we sent a survey to software engineers at Mi-
crosoft. As in the interviews, the survey started by giving
examples of bugs that could be fixed using different tech-
niques, where the examples were drawn from real bugs de-
scribed by interviewees. As suggested by Kitchenham and
Pfleeger [22], we constructed the survey to use formal no-
tations and limit responses to multiple-choice, Likert
scales, and short, free-form answers.

At the beginning of the survey, we suggested that the
respondent browse bugs that they had recently closed to
ground their answers. In Section 5, we discuss these ques-
tions and engineers’ responses. After piloting the survey,
we estimate that it took respondents about 15-20 minutes
to fill out the survey. The full text of this survey can be
found in our technical report [19].

Participants. We sent the survey to 2000 randomly selected
recipients from a pool of all employees of Microsoft who
had “development” in their job title, and were not interns
or contractors. This followed Kitchenham and Pfleeger’s
advice to understand whether respondents had enough
knowledge to answer the questions appropriately [22]. We
incentivized participation by giving $50 Amazon.com gift
certificates to two respondents at random.

Data Analysis. We analyzed our data with descriptive sta-
tistics (for example, the median), where appropriate. We
did not perform inferential statistics (for example, the t-
test) because our research questions do not necessitate
them. When reporting survey data, we omit “Not Applica-
ble” question responses, so percentages may not add up to
100%.

Data Characteristics. 324 engineers completed the survey.
The response rate of about 16% is within the range of other
software engineering surveys [23]. Respondents were from
all eight divisions of Microsoft. Respondents reported the
following demographics.

Years
Experience

Minimum 0.8
Maximum 39...

Median 9.5
Median at Microsoft 5...

Role currently in Developer 65%
Tester 34%

Also, one respondent reported being a product manager.

4.5 Replicated Survey
Goal. Our goal was to replicate our quantified findings
outside of Microsoft.

Protocol. We ported the survey we used inside of Mi-
crosoft to a web server at North Carolina State University,
then generalized a few of the Microsoft-specific questions.
For example, rather than asking a question about “Peer
SDETs” as we did at Microsoft, we instead asked about
“Peer Testers,” a more generally accepted term referring to
roughly the same role. We recognized that participants
may fix most of their bugs in either open source projects or
in closed-source projects at companies, so we adjusted ex-
perience questions accordingly. The survey is included in
the Appendix.

Participants. We posted the survey as an advertisement on
Facebook, a popular social networking site. The advertise-
ment featured a graphic and solicitation to participate in a
study about bug fixing, in exchange for the change to win
a $50 Amazon.com gift certificate. We targeted the ad spe-
cifically at users in the US and Canada of age 21-64 who
spoke English, with interests in software development and
a job title related to software development. The potential
audience of the advertisement was estimated by Facebook
as 86,000 people. After we observed a low click-through
rate for Right Column ads, we limited our campaign to ads
in the Facebook News Feed.

Data Analysis. We analyze the replicated data in the same
manner as the original survey. Additionally, we compare
data from Microsoft developers to this broader population,
and use inferential statistics to evaluate whether differ-
ences between the populations exist for specific question
responses. Specifically, we use Mann–Whitney U tests to
evaluate differences between Likert responses, then use a
Benjamini-Hochberg correction for false discovery on the
resulting p-values [24]. In the remainder of the paper, to
separate results of when we refer to a numerical result
from this replicated survey, we will put it in a curly brack-
ets (for example, {32%}).

Data Characteristics. In total, the advertisements reached
10,972 developers at a cost of $67.84. From that, we ob-
tained 183 website clicks and 80 survey responses. After
removing surveys that were mostly empty, we analyzed
data from 37 complete or almost-complete surveys. Over-

MURPHY-HILL ET AL.: THE DESIGN SPACE OF BUG FIXES AND HOW DEVELOPERS NAVIGATE IT 7

all, 31 developers who work on closed source software re-
sponded, and 6 developers who work on open source soft-
ware responded. Below, we summarize the demographics
for each group.

 Open
Source

Closed
Source

Years’
Experience

Minimum 0.5 1
Maximum 13... 32

Median 8.5 8
Median in Current

Project or Company
3... 4

All participants but two reported being in the role of “de-
veloper”; one reported being in a research role, one in a
cross-functional software role.

In the results section, we do not treat open-source de-
velopers separately from closed-source developers for this
survey. From a theoretical perspective, we treat the two the
same because the main effect of interest is not differences
between open and closed source, but to what extent Mi-
crosoft developers’ differ from all other developers. From
a practical perspective, the main phenomena of interest
(measured in terms of the answer to the question “Of the
bugs that you fix, what percentage are there multiple po-
tential fixes?”) did not vary significantly between closed
and open-source developers (Mann-Whitney U-test,
p=.226). Overall, the replication showed just two statisti-
cally significant differences between Microsoft developers’
responses and other developers’ responses in the repli-
cated survey.

5 RESULTS
We next characterize the design options that engineers
have when selecting a bug fix (Section 5.1), and then de-
scribe how engineers choose which fix to implement (Sec-
tion 5.2).

5.1 Description of the Design Space
In our interviews, we asked participants to estimate what
percentage of their bugs had multiple possible solutions.
The median was 52%, with a wide range of variance, with
individual responses ranging from 0% to 100%. Similarly,
62% of interviewees indicated that of their bugs they fix,
“more than one fix will satisfy all stakeholders.” Although
these numbers should be interpreted as a rough estimate,
it suggests that many bugs can be fixed in multiple ways.

With respect to the dimensions of the design space, we
obtained answers to this research question by asking inter-
viewees to explain the different fixes that they considered
when fixing a single bug. In bold below, we present sev-
eral dimensions on which bugs may be fixed, a description
of each dimension, and example vignettes from our inter-
views. Note that a single fix can be considered a point in
this design space; for example, a fix may have low error
surfacing and high refactoring, and simultaneously be
placed in the other dimensions. Figure 3 shows an example
of a single, hypothetical bug that has two different fixes
that illustrate the concept.

We expect that the dimensions are likely not com-
pletely independent, and further research is necessary to
determine the kind and degree of interdependence. The di-
mensions are also not intended to be exhaustive, yet we
believe that the number of interviews we performed sug-
gests that this list represents a solid foundation on which
to build a theory of bug fix design.

Data Propagation Across Components. This dimension
describes how far information is allowed to propagate
across a piece of software, where the engineer has the op-
tion of fixing the bug by intercepting the data in any of the
components. At one end of the dimension, data is corrected
at its source, and at the other, just before it is displayed at
its destination, such as the user interface.

For example, P15 described a bug that manifest as an
exception that was erroneously reported to the end user.
He could have placed a try-catch block anywhere between
where the exception was originally thrown and the user
interface. Placement of the block at any of these locations
would have fixed the bug from the end-user’s perspective
by eliminating the exception being thrown.

As another example, P25 worked on software with a
layered architecture, with at least four layers, the top-most
being the user interface. The bug was that the user interface
was reporting disk space sizes far too large, and the engi-
neer found that the problem could be traced back to the
lowest-level layer, which was reporting values in kilobytes
when the user interface was expecting values in mega-
bytes. The interviewee could have fixed the bug by correct-
ing the calculation in the lowest layer, or by transforming
the data (dividing by a thousand) as it is passed through
any of the intermediate layers.

Error Surfacing. This dimension describes how much er-
ror information is revealed to users, whether that infor-
mation is for end users or other engineers. At one end of
the dimension, the user is made aware of detailed error in-
formation; at the other, the existence of an error is not re-
vealed.

P28 described a bug in which the software he was de-
veloping crashed when the user deleted a file. When fixing
the bug, the engineer decided to catch the exception to pre-
vent the crash, but also considered whether or not the user

© Microsoft Corporation

data propagation (across components):
how far is information allowed to propagate? fix at source away from source

error surface:
how much information is revealed to users? error not revealed detailed error

behavioral alternatives:
is a fix perceptible to the user? no change must change behavior

functionality removal:
how much of a feature is removed during a bug fix? nothing everything

refactoring:
degree to which code is restructured. no restructuring significant

internal vs. external:
how much internal/external code is changed? only internal only external

accuracy:
degree to which the fix utilizes accurate information. accurate heuristics

hardcoding:
degree to which a fix hardcodes data. data generated data specified

same bug: fix A fix B

Fig. 3. Two fixes for the same hypothetical bug plotted in our design space.

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

should be notified that an exceptional situation had oc-
curred. A similar example is P18, who described a bug in
which a crash occurred in one process whenever another
process stopped generating data. P18 considered whether
part of the fix should be to let the user know that the pro-
cess had stopped generating data.

As another example, P6 described a bug in which she
was calling an API that returned an empty collection,
where she expected a non-empty collection. The problem
was that she passed an incorrect argument to the API, and
the empty collection signified an error. However, an empty
collection could also signify “no results.” While fixing the
bug, the engineer considered changing the API so that it
threw an error when an unexpected argument was passed
to the API. She anticipated that this would have helped fu-
ture engineers avoid similar bugs.

Behavioral Alternatives. This dimension describes
whether a fix is perceptible to the user. At one end of the
dimension, the fix does not require the user to do anything
differently; at the other end, she must significantly modify
her behavior.

One example is P11, who described a bug in which the
back button in a mobile application was occasionally not
working. As part of the fix, he made the back button work,
but had to simultaneously disable another feature when
the application first loads. P11 stated that having both the
back button and the other feature working at the same time
was simply not possible; he had to choose which one
should be enabled initially.

Another example is P21, who was porting a Linux ap-
plication to Windows. The application originally used in-
put files that contained colons as path separators, but co-
lons are reserved characters in Windows, and could not be
used in a straight-forward manner. P21 had to devise an
alternative to the problem, and the alternative ultimately
required the end user to adjust her behavior, depending on
how he fixed the bug.

Functionality Removal. This dimension describes how
much of a feature is removed during a bug fix. At one end
of the dimension, the whole software product is elimi-
nated; at the other, no code is removed at all.

As an example, P18 described a bug in which a crash
occurred. Rather than fixing the bug, P18 considered re-
moving the feature that the bug was in altogether. We were
initially quite surprised when we heard this story, because
the notion that an engineer would remove a feature just to

fix a bug seems quite extreme. However, removal of fea-
tures was mentioned repeatedly as a fix for bugs during
our interviews. For instance, when P39’s web application
was occasionally not downloading files, he considered
eliminating that portion of the application entirely.

To quantify functionality removal, we asked survey re-
spondents to estimate how often they remove or disable
features, rather than fixing the bug itself. About 75% {76%}
of respondents said they had removed features from their
software to fix bugs in the past.

Refactoring. This dimension describes the degree to which
code is restructured in the process of fixing a bug, while
preserving its behavior. A bug may be fixed with a simple
one-line change, or it may entail significant code restruc-
turing.

As an example, P12 described encountering a piece of
code that implemented the double-checked locking pattern
that was not implemented correctly in one code location.
On one hand, he considered the low-refactoring solution:
fix the pattern so that it is implemented correctly. But he
also considered a fix that entailed significant refactoring:
replace the locking pattern with simple synchronization.
As an example, P5 considered refactoring to remove some
copy-and-paste duplication, so “you're not only fixing the
bug, but you also are kind of improv[ing the code].”

In our survey, we asked respondents to report on refac-
toring frequency when fixing bugs, as shown in Table 3.
Respondents from Microsoft are at left and other develop-
ers from the replicated survey are at right. Higher numbers
correspond to darker cells, compared to cells in the same
row and survey. In the table, “Should be refactored” indi-
cates how often participants “notice code that should be
refactored when fixing bugs.” For example, 29% of Mi-
crosoft respondents indicated that they usually notice code
that should be refactored. The “Is refactored” row indi-
cates how often participants “refactor this code that should
be refactored”. For example, 26% reported rarely refactor-
ing code that should be refactored. These results suggest
that, although engineers appear to regularly encounter
code that should be refactored, much of this code remains
unchanged.

To determine why, in the survey we asked “If you do
not always refactor code that should be refactored, why
not?” We received a response by 203 respondents {24},
some giving multiple reasons for not refactoring. Manually
coding these responses, we estimate that respondents gave
332 {35} non-unique reasons for avoiding refactoring. We

Table 3
SURVEY RESPONDENTS’ REFACTORING BEHAVIOR

 Microsoft

Other Developers

 N
ev

er

Ra
re

ly

So
m

et
im

es

U
su

al
ly

Al
w

ay
s

 N
ev

er

Ra
re

ly

So
m

et
im

es

U
su

al
ly

Al
w

ay
s

Should be refactored 1% 7% 56% 29% 5% 0% 8% 35% 49% 5%

Is refactored 4% 26% 44% 21% 3% 0% 16% 46% 24% 11%

MURPHY-HILL ET AL.: THE DESIGN SPACE OF BUG FIXES AND HOW DEVELOPERS NAVIGATE IT 9

could not analyze 22 {2} of the reasons because we did not
understand them.

Many respondents cited the risk of accidentally intro-
ducing regression bugs into code when refactoring (n=52)
{5}. This suggests that either these developers either were
not using refactoring tools or were using tools that they did
not trust. Indeed, Vakilian and colleagues’ have found that
trust influences the use of refactoring tools [25]. Similarly,
respondents reported that refactoring is sometimes risky
(n=37) {3} and that there may not be enough tests to expose
regression bugs (n=21) {1}. Respondents reported that
these regression fears were exacerbated by the develop-
ment phase (n=30); if software is near release, the cost of a
regression bug increases. Three Microsoft respondents
noted that the reasons for not refactoring parallel the rea-
sons for choosing different bug fix designs (Section 5.2).

Several respondents noted that refactoring takes a sig-
nificant amount of time (n=74) {15} and that they have
tasks of higher priority (n=11) {1}. One respondent implied
that refactoring is an unending task, noting that “it can be
like draining an ocean with a thimble.” A few respondents
(n=7) {3} went even further, saying that refactoring some-
times lacks value, with one respondent noting that refac-
toring sometimes has “no clear benefits for the cost in-
volved.”

A few respondents noted that one reason to avoid re-
factoring is for social reasons. For example, in the Mi-
crosoft survey, refactoring with too many changes makes
code review difficult, so that refactored code “will be re-
quested to be reverted.” Three respondents {1} indicated
that version control systems get confused by refactoring,
making it difficult for developers to understand the history
of the code. In the replicated survey, four participants
noted that their managers were averse to refactoring, due
to, for instance, difficulty explaining the value of refactor-
ing to management.

Internal vs. External. This dimension describes how much
internal code is changed versus external code is changed
as part of a fix. On one end of this dimension, the engineer
makes all of her changes to internal code, that is code for
which the engineer has a strong sense of ownership. On the
other end, the bug is fixed by changing only code that is
external, that is, code for which the engineer has no own-
ership. The developer defines this ownership subjectively;
a developer may be allowed to commit to a codebase, but
may feel stronger ownership of certain areas, such as
where she has made significant contributions in the past.

While most fixes reported in the interviews were inter-
nal, some interviewees mentioned that fixes that involved
changes to external code were desirable. One example was
P37, who was fixing a bug in which his web application
occasionally did not work correctly when the user entered
information with an on-screen keyboard. One way to fix
this would be to change the way a web browser worked
with web applications and on-screen keyboards.

Another example is P33, who maintained a testing
framework for devices used by several other teams. The
bug was that many devices were not reporting data in a
preferred manner, causing undesirable behavior in P33’s

framework. Part of the fix was immediate and internal
(changing the testing framework), but part of it was de-
ferred and external (changing each of the other teams’ de-
vice code).

Accuracy. This dimension captures the degree to which a
fix introduces program logic that utilizes accurate infor-
mation. On one end of this dimension, the fix uses highly
accurate information, and on the other, the fix uses heuris-
tics.

One example of this was P23, who was fixing a race con-
dition bug between two threads, and had two options to
fix the problem. An accurate fix would be to introduce
some explicit synchronization construct between the two
threads. The heuristic approach would be to simply have
one thread wait a few seconds until the other thread has
probably completed.

Another example is P29, who was working on a bug in
which web browser printing was not working well. An ac-
curate fix would be one where his print driver retrieves the
available fonts from the printer, then modifies the
browser’s output based on the available fonts. A less accu-
rate fix was to use a heuristic that produces better, but not
optimal, print output.

Hardcoding. This dimension captures to what degree a fix
hardcodes data. On one end of the dimension, data is spec-
ified explicitly, and on the other, data is generated dynam-
ically.

One example of fixes on this dimension is P24, who was
writing a test harness for a system that received database
queries. The bug was that some queries that his harness
was generating were malformed. He considered a com-
pletely hardcoded solution to the problem, removing the
query generator and using a fixed set of queries instead. A
more dynamic solution he considered was to modify the
generator itself to either filter out malformed queries, or
not to generate them at all.

Another example is P6, who was fixing a bug related to
incorrect address information in a database. One hard-
coded solution to the problem was to modify the records
in the data-base. She also considered two dynamic solu-
tions. One was a stored procedure that could translate in-
correct information to correct information. The other dy-
namic solution was to modify the original code that pro-
duced that data in the database.

5.2 Navigating the Design Space
While the previous section described the design space of
bug fixes, it said nothing about why engineers implement
particular fixes within that design space. For instance,
when would an engineer refactor while fixing a bug, and
when would she avoid refactoring? In an ideal world, we
would like to think that engineers make decisions based
completely on technical factors, but realistically, a variety
of external factors come into play as engineers navigate
this bug fixing design space. In this section, we describe
those external factors.

Risk Management by Development Phase. A common
way that interviewees said that they choose how to design
a bug fix is by considering the development phase of the

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

project. Specifically, participants noted that as software ap-
proaches release, their changes become more conservative.
Conversely, participants reported taking more risks in ear-
lier phases, so that if a risk materializes, they would have
a longer period to compensate. Two commonly mentioned
risks were the risk that new bugs would be introduced and
the risk that spending significant time fixing one bug
comes at the expense of fixing other bugs.

P12 provided an example of taking a more conservative
approach, when he had to fix a bug by either fixing an ex-
isting implementation of the double checked locking pat-
tern, or replace the pattern with a simpler synchronization
mechanism. He eventually chose to correct the pattern,
even though he thought the use of the pattern was ques-
tionable, because it was the “least disruptive” way to fix
the bug. He noted that if he had fixed the bug at the begin-
ning of the development cycle, he would have removed the
pattern altogether.

As another example, P28 fixed a bug in which error
messages would queue up before being shown to the user,
and the engineer considered implementing a process to
watch the queue to reorder the error messages within it.
He stated that reordering these messages may have
yielded a better user experience, but that making this
change would have been too high a risk.

In our survey, we asked engineers several questions re-
lating to risk and development phase, as shown in Table
4A. Here we asked engineers “How often do the following
factors influence which fix you choose?”, where each factor
is listed at left. The table lists the percentage of respondents
who choose that frequency level, for both the original Mi-
crosoft survey and the replicated one. Note that the factors
are not necessarily linked; for instance, an engineer could
choose to change very few lines of code for a reason other
than the product is late in development. However, our
qualitative interviews suggested that these factors are typ-
ically linked together, and thus we feel justified in present-
ing these four factors as a whole. These results suggest that,

for most respondents, risk mitigation usually plays an im-
portant role in choosing how to fix a bug.

One of the findings that emerged from our interviews
is that if engineers are frequently making conservative
changes, then they may be incurring technical debt. As P15
put it,

I wish to do it better, but I'm doing it this way because blah,
blah, blah. But then I don't know if we ever go back and
kind of “Oh, okay, we had to do this, now we can change it.”
And I feel that code never goes away, right?

We verified this statement by asking survey respond-
ents how often they think bugs that are initially fixed
“suboptimally” should be reconsidered for a more optimal
fix in the future. We asked how many of these bugs actu-
ally are fixed optimally after the initial fix. Table 5 displays
the results. These results suggest that engineers often feel
that optimal fixes should be reconsidered in the future, but
that those bugs rarely get fixed optimally. As one respond-
ent noted, “although we talk about the correct fix in the
next version, it never happens.”

One way that Microsoft has dealt with fixing bugs too
late in the development process is by instituting “bug
caps” in some software teams. A bug cap is a number X
such that once a developer is assigned X bugs, she must fix
one of her assigned bugs before she can continue any other
development work. Bug caps have analogous concepts in
other parts of software development, such as “bug bars” in
the Microsoft Security Development Lifecycle [26]. The in-
tuition here is that bug caps should ensure that bugs are
being fixed continuously throughout the development
process and that developers are not waiting until the prod-
uct is near release to fix bugs. While this intuition seems
reasonable, we had heard informally that some developers
have subverted the bug cap policy by reducing the number
of bugs assigned to them without actually fixing bugs.

We set out to determine how developers subvert bug
caps by asking Microsoft survey respondents, “have you

Table 4
FACTORS THAT INFLUENCE ENGINEERS’ BUG FIX DESIGN

 Microsoft Other Developers

 N
ev

er

Ra
re

ly

So
m

et
im

es

U
su

al
ly

Al
w

ay
s

 N
ev

er

Ra
re

ly

So
m

et
im

es

U
su

al
ly

Al
w

ay
s

(A)

Phase of the release cycle 2% 6% 17% 35% 37% 14% 11% 27% 22% 16%
Changes few lines of code 3% 10% 32% 38% 17% 5% 3% 27% 54% 11%

Requires little testing effort 3% 12% 31% 37% 16% 5% 24% 30% 30% 11%
Takes little time to implement 3% 10% 43% 30% 13% 3% 14% 35% 30% 19%

(B) Doesn't change interfaces or
break backwards compatibility 0% 2% 8% 36% 53% 0% 0% 14% 32% 54%

(C) Maintains the integrity of
the original design 1% 5% 16% 50% 28% 0% 5% 24% 32% 35%

(D) Frequency in practice 2% 17% 39% 33% 8% 3% 27% 43% 22% 5%

MURPHY-HILL ET AL.: THE DESIGN SPACE OF BUG FIXES AND HOW DEVELOPERS NAVIGATE IT 11

taken any actions to artificially reduce the number of bugs
that you were assigned? If yes, what were those actions?”

Respondents provided several creative methods that
they had used. One described the methods of many of the
respondents:

Yes, of course. Combine multiple bugs into a single bug; re-
solve bugs as won't fix and then reactivate them later; tem-
porarily assign bugs to another developer who has room in
their cap.

Other respondents called the first method of combining
bugs “coagulation,” using “umbrella reports”, or using
“bug buckets.” Some respondents used unorthodox bug
reporting techniques to subvert bug caps:

Pushing bugs to future milestones to keep them out of the
management query

Track bugs by email to myself instead of product studio

Yes, we've parked bugs in different paths in our database or
kept them on the side in an Excel sheet until bug count is
reduced. (this is annonymous, right? :))

A few developers reported other ways of gaming the pol-
icy as well. This suggests that the bug cap mechanism may
not be working as designed. Researchers in other domains
have suggested that workarounds are both indications of
poorly designed policies and of positive opportunities for
change [27]. How to implement this change, however, re-
mains an open question.

Equally interesting is that several developers appeared
to be morally outraged that we even asked this question:

I've never heard of this happening... My perspective on this
is "Wow, that's just evil. Who the heck does that?"

Never, artificially lowering the bug count that is lying or
cheating (it's unethical). The key is to not inject bugs

Yes, but I was forced to. I did not agree with it. Playing
games with bugs/stats to meet a dashboard goal is not a
good thing.

To investigate if there is a relation between the reaction
of developers towards bug caps and the product that they
worked on, we manually coded the open-text responses
into whether developers had work with bug caps. We then
built a logistic regression model with current product divi-
sion, primary work area (test/dev), years at Microsoft,
years in the software industry as the independent variables
to model whether developers encountered bug caps in
their work. None of the coefficients in the regression model

were statistically significant.

The contrasting reactions between those who readily prac-
tice artificial bug reduction and those who find the practice
abhorrent suggests that bug caps are not widely discussed
in the company.

Interface Breakage. Another factor that participants said
influenced their bug fixes is the degree to which a fix
breaks existing interfaces. If a fix breaks an interface that is
used by external clients, then an engineer may be less in-
clined to implement that fix because it entails changes in
those external clients.

One example comes from P16, who was working on a
bug related to playing music and voice over Bluetooth de-
vices. He said that a better fix for the problem would be to
change the Bluetooth standard, but too many clients al-
ready depend on it. Another example comes from P25,
which we discussed in the Data Propagation section, who
fixed a bug in a multi-layer system where a lower layer was
producing in kilobytes when the upper layers were expect-
ing values in megabytes. Rather than fixing the bug in the
lower layer where the data was being produced, the engi-
neer fixed the bug in a higher layer, because changing in-
terfaces implemented with Microsoft’s Component Object
Model is a discouraged practice [28]. Interestingly, P25 was
very resistant to change the interface, even though he was
confident that no other clients were using it.

We also asked survey respondents how often the fol-
lowing factor influences which fix they choose: “Doesn’t
change external interfaces or breaks backwards compati-
bility.” 89% {86%} reported that “usually” or “always,”
suggesting that external interfaces strongly influence
choosing which bug fix to implement (Table 4B).

Consistency. This factor describes to what degree a fix will
be consistent with the existing software or existing prac-
tices. A fix that is not consistent with the existing code may
compromise the design integrity of that code, leading to
code rot.

One example is from P35, who was fixing a bug in a
web portal in which the new version was not backward
compatible under certain conditions. During the code re-
view in which this bug was discovered, a colleague told
P35 to fix this bug in a way that was consistent with how
similar bugs have been fixed before. Another example is
P10, who fixed a performance bug in his build system. P10

Table 5
SURVEY RESPONDENTS’ OPTIMAL FIX

 Microsoft Other Developers

 N
ev

er

Ra
re

ly

So
m

et
im

es

U
su

al
ly

Al
w

ay
s

 N
ev

er

Ra
re

ly

So
m

et
im

es

U
su

al
ly

Al
w

ay
s

Optimal fix should be reconsidered 1% 17% 38% 29% 14% 0% 16% 35% 24% 24%
Actually are fixed optimally 4% 40% 38% 13% 1% 5% 43% 14% 22% 8%

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

fixed the bug by using the build system in a way consistent
with how it was being used by other teams. However, he
felt that a change that was inconsistent with the way the
build system currently worked would have produced bet-
ter build performance, at least for his product. Table 4C
lists survey respondents’ attitudes towards the importance
of maintaining design consistency when fixing bugs.

User Behavior. This factor describes the effect of how users
of the software behave on the fix. If users have strong opin-
ions about the software, or use a certain part of the soft-
ware heavily, engineers may choose a fix that suits the user
better.

One example is from P32, who was fixing a graphical
processing unit bug, where large images were being dis-
played improperly in his software. P32’s team considered
disallowing images over a certain size, but immediate cus-
tomer feedback suggested that some customers would no
longer use the software if large images were disallowed.

Another example is from T1, where the team discussed
bugs in a code analysis tool. The team wondered how often
users used a certain code pattern in practice. They
acknowledged that their analysis did not work when the
pattern was used, but how they fixed the bug depended on
how often users actually wrote code in that pattern. They
judged, apparently based either on intuition or experience,
that several of these bugs were so unlikely to arise in prac-
tice that the effort to implement a comprehensive fix for
the problem was not justified.

After hearing about T1 and some interviewees talk
about frequency of user behavior, we became interested in
how engineers know what users actually do. Thus, we
asked two questions in the survey. In the first we asked
how often fixes depended on usage frequency (Table 4D).
These results suggest that how frequently a situation oc-

curs in practice sometimes influences how engineers de-
sign fixes. The second question was a multiple-choice
question about how engineers most often determine fre-
quency (Table 6). In this table, SQM refers to a usage data
collector used in a variety of Microsoft products. The most
common follow up to answering “None of the Above” was
to ask the product manager. In Table 6, we were somewhat
surprised to find that so many engineers write queries over
usage data. However, it still appears that many engineers
use ad-hoc methods for estimating user behavior, includ-
ing convenience sampling, estimation, and guessing. The
data in this table revealed two significant differences be-
tween Microsoft developers and other developers (Fisher
Exact Test, p<.05); Microsoft developers less often make es-
timates based on their own experience as users, and more
often make decisions based on convenience samples.

We also asked survey respondents about the ad-
vantages and disadvantages of each method of determin-
ing bug frequency. Overall, respondents reported there be-
ing a major tradeoff between accuracy of the data versus
the time needed to calculate it. For example, using usage
data takes a significant amount of time but accurately re-
flects the customer’s behavior, whereas making estimates
based on a developer’s own experience is quite fast but
may also be inaccurate.

Even if developers have sufficient time, respondents re-
ported several other challenges to analyzing usage data.
First, respondents noted that frequency is only part of the
story because severity matters too; one respondent noted,
frequency “doesn't represent how [angry the user gets
when the] user meets the bug.” Second, even if usage data
is captured, there “there may not be data for the question I
want to answer.” Third, usage data is not useful in situa-
tions where the software has not yet been released. Fourth,
even if usage data exists, “there's still the problem of how
to interpret [it].” Finally, in some cases usage data cannot
be used to “calculate certain metrics due to privacy con-
cerns.”

Cause Understanding. This factor describes how thor-
oughly an engineer understands why a particular bug oc-
curs. In interviews, we were surprised how often engineers
fixed bugs without understanding why those bugs oc-
curred. Without thoroughly understanding a bug, the bug
may re-appear at some point in the future. On the other
hand, gaining a complete understanding of why a bug is
occurring can be an extremely time-intensive task.

P3 provided an example of fixing a bug without a full
understanding of the problem. The symptom of his bug
was that occasionally an error message appeared to the
user whenever his software submitted a particular job. Ra-
ther than understanding why the error was occurring, he
fixed the job by simply resubmitting the job, which usually
completed without error. Rather than understanding the
problem, as he explained it, “my time is better spent fixing
the other ten bugs that I had.”

P39 provided another example, where the engineer was
fixing a web application that exhibited a strange bug,
where a file was being downloaded through the web
browser but the browser was not asking the user whether

Table 6
THE MOST FREQUENT MECHANISMS USED BY ENGINEERS TO

DETERMINE USAGE FREQUENCIES. * INDICATES STATISTICALLY
SIGNIFICANT DIFFERENCES AT P<.05

M
ic

ro
so

ft

 O
th

er

D
ev

el
op

er
s

Guess 4% 3%
Estimate based on my past experience

as a user of the software I develop* 17% 35%

Estimate based on my past experience
interacting with users 16% 11%

Collect data by taking a
quick convenience sample

 (e.g., ask devs on my team)*
19% 3%

Collect data by external polling
(e.g., ask readers of my blog) 2% 5%

Estimate based on existing usage data
that I remember seeing in the past 11% 8%

Write a query over existing usage data 18% 30%

None of the Above 12% 5%

MURPHY-HILL ET AL.: THE DESIGN SPACE OF BUG FIXES AND HOW DEVELOPERS NAVIGATE IT 13

she really wanted to download the file. P39 had to ask two
others teams at Microsoft to assist with finding the prob-
lem, yet the “root cause” of the problem was not found.
P39 eventually fixed the problem with a workaround.

We observe that cause understanding is sometimes de-
pendent on the reproducibility of a bug. However, some of
our findings suggest that the notion of a clear distinction
between reproducible and non-reproducible can some-
times be artificial and appear largely to be a matter of time
and resources available. Joorabchi and colleagues [29] pre-
sented a first characterization of non-reproducible bugs
and more research is needed in this direction.

We asked survey respondents why they do not always
make an optimal fix for a bug; 18% indicated that they have
not had “time to figure out why the bug occurred.” This
suggests that lack of cause understanding is sometimes a
problem.

Social Factors. A variety of social factors appear to play a
role in how bugs are fixed, including mandates from su-
pervisors, ability to find knowledgeable people, and code
ownership.

One example of this was P22, who was fixing a bug in
a database system where records were not sorting in
memory, causing reduced performance. The engineer pro-
posed a fix based on “one week of discussions and bring-
ing new ideas, [and] discussing [it with my] manager.”
Other interviewees discussed their bugs with mentors
(P28), peer engineers (P28), testers (P39), and development
leads (P34).

In the survey we asked how communication with peo-
ple helps inform the bug fix design (Table 7). The results
suggest that peer software development engineers (SDEs)
and the people who originally wrote the code related to
where the fix might be applied usually play important
roles in deciding how a bugs gets fixed. TABLE 8 displays
how participants responded about who decides on which
bug fix design to implement. The results also suggest that
the individual engineers tend to make the final decision
about which fix to implement, and that managers rarely
make the final design suggestions. Agreement with the
statement about communicating with the people who
wrote the code was significantly different between Mi-
crosoft developers and other developers (Mann-Whitney
U Test, p<.05); Microsoft developers tended to communi-
cate with the developers who wrote the code less often.

We also asked survey respondents how they communi-
cate with others about bug design. Respondents indicated
that they most often communicate by email (44%) {30%}, in
unplanned meetings (38%) {46%}, planned meetings (7%)
{3%}, and in the bug report itself (6%) {14%}. This behavior
did not differ significantly between Microsoft developers
and other developers (Fisher Exact Test, p>.05). A few re-
spondents also indicated that they discussed design with
instant messaging, video chat, and during online code re-
view. However, in a study run in parallel with this one, we
inspected 200 online code review threads at Microsoft, but
found no substantial discussions of bug fix design [30]. We
postulate that, by the time a fix is reviewed, engineers have

Table 8
WHO DECIDES WHICH FIX TO IMPLEMENT

 Microsoft Other Developers

 N
ev

er

Ra
re

ly

So
m

et
im

es

U
su

al
ly

Al
w

ay
s

 N
ev

er

Ra
re

ly

So
m

et
im

es

U
su

al
ly

Al
w

ay
s

Me 1% 3% 15% 67% 10% 0% 0% 14% 73% 14%
My manager 14% 41% 31% 5% 1% 22% 32% 30% 3% 0%

My team collectively 5% 19% 44% 24% 5% 5% 19% 51% 19% 0%

Table 7
WHO IS HELPFUL TO COMMUNICATE WITH WHEN CHOOSING AN OPTIMAL FIX

 Microsoft Other Developers

 N
ev

er

Ra
re

ly

So
m

et
im

es

U
su

al
ly

Al
w

ay
s

 N
ev

er

Ra
re

ly

So
m

et
im

es

U
su

al
ly

Al
w

ay
s

Peer SDEs 1% 4% 27% 47% 17% 0% 0% 22% 51% 22%

Peer SDETs 4% 15% 37% 30% 8% 5% 30% 27% 19% 3%

My manager 9% 25% 40% 20% 3% 14% 30% 27% 22% 8%

My product manager 22% 30% 29% 9% 1% 14% 38% 19% 8% 0%

The people who wrote the code 2% 10% 36% 40% 9% 5% 0% 27% 30% 22%

Other experts (e.g., architects) 9% 30% 32% 10% 3% 3% 24% 46% 14% 5%

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

already discussed and agreed upon the basic design of that
fix.

We asked survey respondents how many people, in-
cluding themselves, were typically involved in the bug fix-
ing process. Table 9 shows the results. These results sug-
gest that while finding the cause of a bug and implement-
ing a solution are generally 1- or 2-person activities, choos-
ing a solution tends more often to be a collaborative activ-
ity.

One of the more surprising things we heard from some
interviewees was that when they made sub-optimal
changes, they were sometimes hesitant to file new bug re-
ports so that the optimal changes were reconsidered in the
future. The rationale for not doing so seemed to be at least
partly social – respondents were not sure whether other
engineers would find a more optimal fix useful to them as
well. For instance, P2 said the optimal fix to his bug would
be a change to the way mobile applications are built in the
build system, but he was not sure that he would advocate
for this change unless other teams would find it useful as
well. Ideally, this is what “feature enhancement” bug re-
ports with engineer voting should help with. However, P2
didn’t fill out a bug report for this enhancement at all, be-
cause he judged the time he spent filling out the report
would be wasted if other engineers didn’t need it. As he
put it,

If I had more data… that other teams did it,… if I could …

eyeball it quickly… then I'd [say], “Hey, you know, other
teams are doing this. Clearly, it's a [useful] scenario.”

This made us wonder why engineers avoid filing bug re-
ports, so we asked survey respondents to estimate the fre-
quency of several possible rationales that we heard about
during the interviews (Table 10). These results suggest that
survey respondents rarely avoid filing bugs for reasons
that the interviewees discussed. We view these somewhat
contradictory findings as inconclusive; more study, likely
using a different study methodology, is necessary to better
understand how often and why engineers do not file bug
reports.

Demographics. For the Microsoft population, we investi-
gated the effect of different demographics (product divi-
sion, work area, experience at Microsoft, and experience in
software industry) on the survey responses. For each Lik-
ert-style question, we built logistic regression models to
describe whether respondents selected “Usually” or “Al-
ways” (binary dependent variable) with the demographics
(independent variables). For the following statements, we
observed differences that were statistically significant at
.01:
• I notice code that should be refactored.

(Testers were less likely to agree, p=.0023)
• How often do the following factors influence which fix

you choose?

Table 9
HOW MANY PEOPLE ARE INVOLVED IN BUG FIXING ACTIVITIES

 Microsoft Other Developers

 1 2 3 to 5 6 to 10 11+ 1 2 3 to 5 6 to 10 11+
finding the

cause of a bug 49% 38% 11% 0% 0% 54% 30% 16% 0% 0%

choosing a
solution 24% 43% 31% 1% 0% 41% 43% 16% 0% 0%

implementing
the solution 77% 16% 5% 0% 0% 92% 5% 3% 0% 0%

Table 10
FREQUENCY OF REASONS FOR NOT FILING BUGS

 Microsoft Other Developers

 N
ev

er

Ra
re

ly

So
m

et
im

es

 U
su

al
ly

Al
w

ay
s

 N
ev

er

Ra
re

ly

So
m

et
im

es

 U
su

al
ly

Al
w

ay
s

The bug is unlikely to ever be fixed 30% 31% 30% 7% 1% 43% 27% 22% 3% 3%
Whether or not the bug gets fixed has little impact on

the software I’m developing 41% 26% 25% 4% 1% 43% 22% 19% 5% 3%

I don’t know where to file the bug or who to report it
to 52% 27% 13% 6% 0% 46% 19% 22% 5% 5%

Filing this bug dilutes the urgency of bugs I think are
more important to fix 61% 20% 13% 3% 1% 51% 27% 8% 3% 3%

A bug puts pressure on a colleague to fix the problem; I
don’t want to add to his or her workload 72% 16% 8% 1% 0% 65% 22% 5% 0% 0%

Adding another report makes it look like the software is
of poor quality or that the team is behind 80% 12% 5% 1% 0% 68% 16% 14% 0% 0%

MURPHY-HILL ET AL.: THE DESIGN SPACE OF BUG FIXES AND HOW DEVELOPERS NAVIGATE IT 15

o Takes little time to implement
(Testers were more likely to agree, p=.0068)

• How often does communicating with the following peo-
ple help you choose the optimal fix?
o Peer SDETs

(Testers were more likely to agree, p<.0001)
o My product manager

(Respondents with more experience at Microsoft
were less likely to agree, p=.0007)

• When choosing which fix to apply to your bugs, how
often does the decision get made in the following ways?
o I choose the fix.

(Testers were less likely to agree, p=.0048)
o My team collectively chooses the fix.

(Testers were more likely to agree, p=.0087)
For the population of other developers we ran a separate
analysis because the demographics questions were differ-
ent (contributed to OSS, work area, experience in current
company, experience in software industry). We observed
only one difference that was statistically significant at .05:
• How often do the following factors influence which fix

you choose?
o My peers’ opinions of the fix

(Respondents with more experience in software
industry were less likely to agree, p=.0399)

6 LIMITATIONS
Although our study provides a unique look at how engi-
neers fix bugs, several limitations of our study must be
considered when interpreting our results.

An important limitation is that of generalizability be-
yond the population we studied (external validity). While
our results may represent the practices and attitudes at Mi-
crosoft, it seems unlikely that they are completely repre-
sentative of software development practices and attitudes
in general. However, because Microsoft makes a wide va-
riety of software products, uses many development meth-
ods, and employs an international workforce, we believe
that our random and stratified sampling techniques im-
proved generalizability significantly. This interpretation is
strengthened by our replicated survey, where Microsoft
developers only differed in two significant respects from
developers at large.

Three threats are worth noting that specifically affected
the replicated survey. First, although we found few statis-
tically significant differences compared to Microsoft devel-
opers, this may be due to low statistical power. Use of a
power analysis may have helped alleviate this threat, but
such analysis confidently requires a priori knowledge of
effect sizes. Second, some of the participants recruited
through Facebook may have been Microsoft employees, so
there may have been overlap between the two samples. We
believe that overlap is very unlikely or if present has only
a small effect. The potential reach of the Facebook adver-
tisements was 86,000 people, when we restrict that audi-
ence to people with Microsoft as employer, Facebook esti-
mated the reach as “Fewer than 1000 people”; that means
that at most 1.2% of the Facebook sample were employed
by Microsoft. Third, the targeting on Facebook is based on

data that is self-reported by its users. For example, users
may have falsely stated that they their job title was “soft-
ware developer.” This was not a problem with the Mi-
crosoft survey, as we selected participants whose official
job titles indicated that they were developers, based on in-
formation in the official human resources database.

Giving interviewees’ and survey respondents’ example
bugs and multiple-fix examples may have biased partici-
pants towards providing answers that aligned with those
examples, a form of expectancy bias (internal validity).
However, we judged the threat of participants unable to
recall implicit or explicit design decisions outweighed this
threat. Future researchers may be able to confirm or refute
our results by using a research method that is more robust
to expectancy bias.

Still, some interviewees struggled with remembering
the design decisions they made, and were generally unable
to articulate implicit decisions. This type of memory bias is
inherent in most retrospective research methods. How-
ever, we attempted to control memory bias by asking op-
portunistic interviewees to recall their most recently fixed
bugs, asking firehouse interviewees to discuss a bug they
just fixed, and asking survey respondents to look at bugs
they had recently fixed.

Although we talked to firehouse interviewees soon af-
ter they fixed bugs, this may not have been the most rele-
vant time to ask about the different designs they consid-
ered. Since they had implemented one particular fix, they
may be less likely to readily admit to considering design
alternatives, a form of commitment bias [31]. Future fire-
house interviews may be able to find a time closer to the
time when multiple designs are being considered.

In keeping with the wishes of participants in the bug
triage meetings, we did not keep audio recordings of the
meetings. As a consequence, we may have missed infor-
mation that we otherwise would have noticed if we had
been able to analyze audio recordings later.

To meet our goal of not significantly interrupting par-
ticipants’ workdays, we kept our interview and survey
short, which means we were unable to collect contextual
information that may have helped us better explain the re-
sults. For example, in the interviews, we did not ask ques-
tions about gender or team structure, which may have
some effect on bug fix designs.

Similarly, a consequence of keeping the survey short is
that participants may have misunderstood our questions.
For example, in our survey, we asked engineers whether
they ever avoided filing a bug report; this question could
be interpreted conservatively to mean, “when do you not
report software failures?”, when our intent was for “bug
reports” to be interpreted broadly to include enhance-
ments. While we tried to minimize this threat by piloting
our survey, as with all surveys [17], we may still have mis-
communicated with our respondents.

When we asked our research group to code opportun-
istically, the transcripts we provided them with were pre-
coded by the first author. This may have biased partici-
pants to simply confirm the first author’s codings. The re-
search group’s codings did provide some additional value,
as every coder provided additional quotes not originally

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

identified as relevant by the first author.

Finally, the dimensions and navigation constraints we
found may not be complete; there may others out there that
other software developers use when fixing bugs. Future re-
searchers can expand and refine our dimensions and navi-
gation constraints in other contexts and using different
methodologies.

7 IMPLICATIONS
The findings we present in this paper have several impli-
cations, a handful of which we discuss in this section.

Additional Factors in Bug Prediction and Localization.
Previous research has investigated several approaches to
predicting future bugs based on previous bugs [32] [33],
including our own [3]. The intuition behind these ap-
proaches appears reasonable: how engineers have fixed
bugs in the past is a good predictor of how they should fix
bugs in the future. However, the empirical results we pre-
sent in this paper suggest a host of factors can cause a bug
to be fixed in one way at one point in time, but in a com-
pletely different way at another. For example, a bug fixed
just before release is likely to be fixed differently than a bug
fixed during the planning phase. As a result, future re-
search in prediction and localization may find it useful to
incorporate, when possible, these factors into their models.

Limits of Bug Prediction and Localization. Although in-
corporating some factors, such as development phase, into
historical bug prediction may improve the accuracy of
these models, some factors appear practically outside the
reach of what automated predictors can consider. For ex-
ample, when analyzing past bugs, it seems unlikely that an
automated predictor can know whether or not a past fix
was made with an engineer’s full knowledge of why the
bug occurred.

Refactoring while Fixing Bugs. The results of our study
suggest that engineers frequently see code that should be
refactored, yet still avoid refactoring. One way that this
problem could be alleviated is through wider use of refac-
toring tools, which should help engineers refactor without
spending excessive time doing so and at minimal risk of
introducing new bugs. At the same time, such tools remain
buggy [34] and difficult to use [35], so more research in that
area is necessary.

Usage Analytics. In our study, it appeared that engineers
often made decisions about how to fix bugs without a data-
driven understanding of how real users use their software.
While a better understanding would clearly be beneficial,
gathering and querying that data appears to be time con-
suming. Microsoft, like many companies, has been gather-
ing software usage data for some time, but querying that
data requires engineers to be able to find and combine the
right data sources, and write complex SQL queries. We en-
vision a future where engineers, while deciding the design
of a bug fix, can quickly query existing usage data with an
easy-to-use tool. To build such a tool, research is first
needed to discover what kinds of questions engineers ask

about their usage data, beyond existing “questions engi-
neers ask” studies [36].

Utility Analytics. Not only can it be difficult for develop-
ers to know how users behave, but our results also suggest
that developers have difficulty determining whether a
more sweeping bug fix is going to be useful to other devel-
opers. For instance, participants suggested that, if they
knew a new architecture was useful to more than just their
team, they would be more likely to implement that archi-
tecture.

Fix Reconsideration. Engineers in our study reported
needing to reconsider bug fixes in the future, but some-
times used ad-hoc mechanisms for doing so, such as writ-
ing TODOs in code. Some of these mechanisms may be dif-
ficult to keep track of; for example, which TODOs should
be considered sooner rather than later. Engineers need a
better mechanism to reconsider fixes in the future, as well
the time to do so.

Microsoft Developers and Other Developers. As we men-
tioned earlier, the replication showed only two statistically
significant differences between Microsoft developers’ re-
sponses and other developers’ responses. With respect to
the questions we asked about bug fixing, this suggests that
Microsoft developers are similar to the greater developer
community, and that in some aspects of bug fixing, Mi-
crosoft developers can approximate the greater developer
community. Nonetheless, Microsoft developers are likely
different in some other dimensions that our survey did not
capture.

8 CONCLUSION
In this paper, we have described a study that combined op-
portunistic interviews, firehouse interviews, meeting ob-
servation, and a survey. We had initially assumed that the
design space was dominated by “root-cause fixes” versus
“workarounds,” but as the study wore on, the distinction
between the two became less and less clear. What has be-
come clear, however, is that the design space of bug fixes
is multi-dimensional, and that engineers navigate the
space by, for example, selecting the fix that is least disrup-
tive when a release looms near. While our study has not
investigated a new practice, we have taken the critical first
step towards understanding a practice that engineers have
always engaged in, an understanding that will enable re-
searchers, practitioners, and educators to better under-
stand and improve bug fixes.

ACKNOWLEDGMENT
Emerson Murphy-Hill was a Visiting Researcher at Mi-
crosoft when this work was carried out. Thanks to all par-
ticipants in our study, as well as Alberto Bacchelli, Michael
Barnett, Andy Begel, Nicolas Bettenburg, Rob DeLine, Xi
Ge, Jeff Huang, Brittany Johnson, Ekrem Kocaguneli,
Tamara Lopez, Patrick Morrison, Shawn Phillips, Juliana
Saraiva, Jim Shepherd, Nuo Shi, Jonathan Sillito, Gustavo
Soares, and Yoonki Song.

MURPHY-HILL ET AL.: THE DESIGN SPACE OF BUG FIXES AND HOW DEVELOPERS NAVIGATE IT 17

REFERENCES
[1] Zeller, A. Causes and Effects in Computer Programs.

In Fifth Intl. Workshop on Automated and Algorithmic
Debugging (Sept. 24, 2003).

[2] Endes, A. An analysis of errors and their causes in
system programs. In International Conference on
Reliable Software (1975), 327-336.

[3] Kim, S., Zimmermann, T., Jr., W.J., and Zeller, A.
Predicting Faults from Cached History. In Proceedings
of ICSE (2007), IEEE Computer Society, 489--498.

[4] Lucia, Thung, F., Lo, D., and Jiang, L. Are faults
localizable? In Working Conference on Mining
Software Repositories (june 2012), 74 -77.

[5] Murphy-Hill, E., Zimmermann, T., Bird, C., and
Nagappan, N. The design of bug fixes. In International
Conference on Software Engineering (2013), 332-341.

[6] Leszak, M., Perry, D.E., and Stoll, D. A case study in
root cause defect analysis. In Proceedings of ICSE
(2000), 428 -437.

[7] Ko, A.J. and Chilana, P.K. Design, discussion, and
dissent in open bug reports. In Proceedings of
iConference (2011), ACM, 106--113.

[8] Breu, S., Premraj, R., Sillito, J., and Zimmermann, T.
Information needs in bug reports: improving
cooperation between developers and users. In
Proceedings of the Conference on Computer Supported
Cooperative Work (2010), ACM, 301-310.

[9] Bird, C., Bachmann, A., Aune, E., Duffy, J., Bernstein,
A., Filkov, V., and Devanbu, P. Fair and balanced?:
bias in bug-fix datasets. In Proceedings of ESEC/FSE
(2009), ACM, 121--130.

[10] Gu, Z., Barr, E.T., Hamilton, D.J., and Su, Z. Has the
Bug Really Been Fixed? In The International
Conference on Software Engineering (2011), IEEE.

[11] Yin, Z., Yuan, D., Zhou, Y., Pasupathy, S., and
Bairavasundaram, L. How do fixes become bugs? In
Proceedings of FSE (2011), ACM, 26--36.

[12] Aranda, J. and Venolia, G. The secret life of bugs:
Going past the errors and omissions in software
repositories. In Proceedings of ICSE (2009), IEEE
Computer Society, 298--308.

[13] Spinellis, D., Gousios, G., Karakoidas, V., Louridas, P.,
Adams, P.J., Samoladas, I., and Stamelos, I. Evaluating
the Quality of Open Source Software. Electronic Notes
on Theoretical Computer Science, 233 (Mar. 2009), 5-
-28.

[14] Storey, M.A., Ryall, J., Bull, R.I., Myers, D., and
Singer, J. TODO or to bug. In Proceedings of ICSE
(may 2008), 251--260.

[15] Anvik, J., Hiew, L., and Murphy, G.C. Who should fix
this bug? In Proceedings of ICSE (2006), ACM, 361--
370.

[16] Tillmann, N., De Halleux, J., Xie, T., Gulwani, S., and
Bishop, J. Teaching and Learning Programming and
Software Engineering via Interactive Gaming. In

International Conference on Software Engineering
(2013), 1117-1126.

[17] Shull, F., Singer, J., and Sjoberg, D.I.K. Guide to
Advanced Empirical Software Engineering. Springer-
Verlag New York, Inc., 2007.

[18] Fischhoff, B. and Beyth, R. 'I knew it would happen':
Remembered probabilities of once-future things.
Organizational Behavior & Human Performance, 13
(Feb. 1975), 1--16.

[19] Murphy-Hill, E., Zimmermann, T., Bird, C., and
Nagappan, N. Appendix to the Design of Bug Fixes.
MSR-TR-2013-22, Microsoft Research, 2013.
http://research.microsoft.com/apps/pubs/?id=183985.

[20] Seaman, C.B. Qualitative methods in empirical studies
of software engineering. IEEE Transactions on
Software Engineering, 25 (jul/aug 1999), 557 -572.

[21] Rogers, E.M. Diffusion of Innovations, 5th Edition.
Free Press, 2003.

[22] Kitchenham, B.A. and Pfleeger, S.L. Personal Opinion
Surveys. In Guide to Advanced Empirical Software
Engineering. Springer, 2007.

[23] Punter, T., Ciolkowski, M., Freimut, B., and John, I.
Conducting on-line surveys in software engineering. In
Proceedings of Empirical Software Engineering (sept.-
1 oct. 2003), 80 - 88.

[24] Benjamini, Y. and Hochberg, Y. Controlling the false
discovery rate: a practical and powerful approach to
multiple testing. Journal of the Royal Statistical Society
Series B (1995), 289–300.

[25] Vakilian, M., Chen, N., Negara, S., Rajkumar, B.A.,
Bailey, B.P., and Johnson, R.E. Use, disuse, and misuse
of automated refactorings. Proceedings of the 34th
International Conference on Software Engineering
(2012), 233-243.

[26] MICROSOFT. Security Development Lifecycle.
http://www.microsoft.com/security/sdl/default.aspx.
2013.

[27] Ferneley, E.H. and Sobreperez, P. Resist, comply or
workaround? An examination of different facets of user
engagement with information systems. European
Journal of Information Systems, 15, 4 (2006), 345-356.

[28] MICROSOFT. Changing an Existing Interface.
http://msdn.microsoft.com/en-
us/library/windows/desktop/aa384156(v=vs.85).aspx.
2012.

[29] Joorabchi, M.E., Mirzaaghaei, M., and Mesbah, A.
Works for me! Characterizing non-reproducible bug
reports. In Proceedings of MSR'14: 11th Working
Conference on Mining Software Repositories (2014),
62-71.

[30] Bacchelli, A. and Bird, C. Expectations, Outcomes, and
Challenges of Modern Code Review. In International
Conference on Software Engineering (2013), IEEE.

[31] Staw, B.M. "Knee-deep in the Big Muddy: A Study of
Escalating Commitment to a Chosen Course of Action.

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, MANUSCRIPT ID

Organizational Behavior and Human Performance, 16,
1, 27-44.

[32] Ostrand, T.J., Weyuker, E.J., and Bell, R.M. Predicting
the location and number of faults in large software
systems. IEEE Transactions on Software Engineering,
31 (Apr. 2005), 340--355.

[33] Hassan, A.E. and Holt, R.C. The Top Ten List:
Dynamic Fault Prediction. In Proceedings of the
International Conference on Software Maintenance
(2005), IEEE Computer Society, 263--272.

[34] Soares, G., Gheyi, R., and Massoni, T. Automated
Behavioral Testing of Refactoring Engines. IEEE
Transactions on Software Engineering (2012).

[35] Murphy-Hill, E., Parnin, C., and Black, A.P. How we
refactor, and how we know it. In Proceedings of ICSE
(2009), IEEE Computer Society, 287--297.

[36] Fritz, T. and Murphy, G.C. Using information
fragments to answer the questions developers ask. In
Proceedings of ICSE (2010), ACM, 175--184.

APPENDIX
In the online appendix, the reader will find the survey we
distributed via Facebook.

9/7/2014 Qualtrics Survey Software

https://login.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview&T=3uSbn 1/11

Default Question Block

North Carolina State University
INFORMED CONSENT FORM for RESEARCH

Title of Study:
An Exploration of Bug Fixing

Principal Investigator:
Dr. Emerson Murphy-Hill

What are some general things you should know about research studies?

You are being asked to take part in a research study. Your participation in this study is voluntary. You have the right to be a
part of this study, to choose not to participate or to stop participating at any time without penalty. The purpose of research
studies is to gain a better understanding of a certain topic or issue. You are not guaranteed any personal benefits from being
in a study. Research studies also may pose risks to those that participate. In this consent form you will find specific details
about the research in which you are being asked to participate. If you do not understand something in this form it is your right
to ask the researcher for clarification or more information. A copy of this consent form will be provided to you. If at any time
you have questions about your participation, do not hesitate to contact the researcher named above.

What is the purpose of this study?

The purpose of the research is to assess software developers' attitudes towards bug fixing.

What will happen if you take part in the study?

If you decide to participate, you will complete a 20-minute survey that asks about your attitudes.

Risks

Participation in this study involves minimal risk or discomfort to you. Risks are minimal and do not exceed those of normal
office work. If you experience eyestrain we recommend that you look around the room for about thirty seconds so that your
eyes focus at different distances.

Additionally, you should understand that as an online participant in this research there is always a risk of intrusion, loss of
data, identification, or other misuse of data by outside agents. Though these risks may be minimized by the researcher, you
should understand they exist.

Benefits

It is anticipated you will receive no direct or indirect benefit from participating in this study. Your participation in this study
may help to contribute to the body of knowledge concerning bug fixing.

Confidentiality

The information in the study records will be kept confidential to the full extent allowed by law. Data will be stored securely in a
locked laboratory and on password secure servers. No reference will be made in oral or written reports which could link you to
the study. Your participation is completely anonymous so there is no way for your identity to be linked to any of the comments
you may make.

Compensation

Once you complete the survey, there is a link for a drawing for one of two $50 Amazon.com gift cards.

What if you are a NCSU student?

Participation in this study is not a course requirement and your participation or lack thereof, will not affect your class standing
or grades at NC State.

9/7/2014 Qualtrics Survey Software

https://login.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview&T=3uSbn 2/11

I fix bugs in software

I am 18 years old or older

open-source software

closed-source software

Development

Test

Product Management

Build

Design and UX

Documentation

What if you are a NCSU employee?

Participation in this study is not a requirement of your employment at NCSU, and your participation or lack thereof, and will
not affect your job.

What if you have questions about this study?

Please contact:

Dr. Emerson Murphy-Hill
890 Oval Drive
Campus Box 8206
Raleigh, NC 27695
919-513-0234
emerson@csc.ncsu.edu

 What if you have questions about your rights as a research participant?

If you feel you have not been treated according to the descriptions in this form, or your rights as a participant in research have
been violated during the course of this project, you may contact Deb Paxton, Regulatory Compliance Administrator, Box 7514,
NCSU Campus (919/515-4514).

You may only participate in the following two statements are true about you.

Of all the bugs I fix, most are fixed in...

For this survey, we'd like you to focus only on your work on ${q://QID44/ChoiceGroup/SelectedChoices}.

This survey is only one page long. All questions are optional.

Which best describes your primary work area?

9/7/2014 Qualtrics Survey Software

https://login.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview&T=3uSbn 3/11

Other

How many years have you worked at your current company? (type a number below)

How many years have you worked on your most active open source project? (type a number below)

How many years have you worked in the software industry? (type a number below)

How many years have you contributed to open source? (type a number below)

What percentage of your immediate team works in the same office/location as you? (type a number below)

Bug Fixes
Some bugs can be fixed in multiple ways. For example:

A bug that propagates bad data through several layers may be fixed in any layer between the source and
the user interface.
A bug may be fixed by preventing an exception from being thrown, or by catching that exception before
the user sees it.
A bug may fixed directly or may be refactored first and then fixed.

9/7/2014 Qualtrics Survey Software

https://login.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview&T=3uSbn 4/11

No fix will satisfy all stakeholders.

Only one fix will satisfy all stakeholders.

More than one fix will satisfy all stakeholders.

Never

Rarely

Sometimes

Usually

Always

N/A

Never

Rarely

Sometimes

Usually

Always

N/A

Of the bugs that you fix, approximately what percentage are there multiple potential fixes? (type a number
below)

In the remainder of this survey, we will be asking about only those bugs for which there are multiple fixes.

Of these bugs you fix, which of the following is most common?

How often do you personally feel satisfied with the fix you applied?

Once you've found the bug and there are multiple potential fixes, how often is the appropriate fix immediately
apparent?

(As opposed to you needing to carefully consider the benefits and drawbacks of each potential fix.)

9/7/2014 Qualtrics Survey Software

https://login.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview&T=3uSbn 5/11

Never

Rarely

Sometimes

Usually

Always

N/A

How often do the following factors influence which fix you choose?

 Never Rarely Sometimes Usually Always N/A

Changes few lines of code

Requires little testing effort

Takes little time to implement

Deployment cost is low

Creates code that will be easy
for future developers to
understand

Doesn’t change external
interfaces or breaks backward
compatibility

Maintains the integrity of the
original design

Meets quality standards

Phase of the release cycle my
product in

Whether users are going to find
it intuitive

Whether I’m the most qualified
person to implement this fix

My peers’ opinions of the fix

My manager’s opinion of the fix

There's a standard fix for this
particular type of bug

If there are any other factors that influence what fix you choose, please enter them here.

How often do you apply the “optimal” fix for a bug?

An optimal fix is the one you would implement if you were not limited by time.

9/7/2014 Qualtrics Survey Software

https://login.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview&T=3uSbn 6/11

Never

Rarely

Sometimes

Usually

Always

N/A

Make a mental note

Make a comment in the code (e.g. TODO)

Write a comment on a bug report

Create a new bug report

Keep a private list of the bugs I'd like to see fixed in the future

Other

For those bugs for which you did not apply the optimal fix, which are the following are reasons for you not
doing so?

I didn’t have time to figure out why the bug occurred The documentation of the code was poor

I didn’t have time to implement the fix The bug appeared so rarely that a non-optimal fix will suffice

I didn’t have time to completely understand the APIs I’d have to
use I couldn’t find the right person to help me make the fix

I didn’t know where to find the necessary code The right person to help me make the fix had more important
things to do

I didn’t have permission to modify the code Other (specify below)

The software wasn’t important enough

Reconsidering Fixed Bugs

For bugs that you fix sub-optimally, how often do you think an optimal fix should be reconsidered in the
future?

What is the most common mechanism you use to make sure that the optimal fix is considered in the future?

9/7/2014 Qualtrics Survey Software

https://login.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview&T=3uSbn 7/11

Never

Rarely

Sometimes

Usually

Always

N/A

Never

Rarely

Sometimes

Usually

Always

N/A

Guess

Estimate based on my past experience as a user of the software I develop

Estimate based on my past experience interacting with users

Collect data by taking a quick convenience sample (e.g., ask devs on my team)

What are the advantages and disadvantages of using the mechanism that you selected above?

For bugs that you do not initially fix optimally, how often do they get fixed optimally later?

Bug Fixes and Software Usage

How often is your choice of fix dictated by how often the situation in which the bug was reported actually
occurs in practice?

For example, if the bug is that database files are deleted when updates are applied over a period that includes
midnight, which fix you apply may depend on if users frequently have database files and also install updates
at midnight.

What is the most common mechanism you use to determine the frequency of such situations?

9/7/2014 Qualtrics Survey Software

https://login.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview&T=3uSbn 8/11

Collect data by external polling (e.g., ask readers of my blog)

Estimate based on existing usage data that I remember seeing in the past

Write a query over existing usage data

Other

What are the advantages and disadvantages of using the mechanism that you selected above?

Collaboration

When choosing which fix to apply to your bugs, how often does the decision get made in the following ways?

 Never Rarely Sometimes Usually Always N/A

I choose the fix.

My manager chooses the fix.

My team collectively chooses
the fix.

How often does communicating with the following people help you choose the optimal fix?

 Never Rarely Sometimes Usually Always N/A

Peer Developers

Peer Testers

My manager

My product manager

The people who wrote the code
related to where the fix might
be applied

Other experts (e.g., software
architects)

When discussing which fix to apply with other people, by what means do you most often communicate?

9/7/2014 Qualtrics Survey Software

https://login.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview&T=3uSbn 9/11

In the bug report

By email

Unplanned meetings

Planned meetings

Other

Never

For bugs you fix, including yourself, how many people are typically involved in ...

 1 2 3-5 6-10 11+

finding the cause of the bug?

choosing a solution?

implementing a solution?

Other Questions

How often do you choose not to file a bug report for the following reasons?

 Never Rarely Sometimes Usually Always N/A

I don’t know where to file the
bug or who to report it to

The bug is unlikely to ever be
fixed

Adding another report makes it
look like the software is of poor
quality or that the team is
behind

Whether or not the bug gets
fixed has little impact on the
software I’m developing

A bug puts pressure on a
colleague to fix the problem; I
don’t want to add to his or her
workload; I don’t want to add to
his or her workload

Filing this bug dilutes the
urgency of bugs I think are
more important to fix

How often do you remove or disable the feature that a bug is in, rather than fix the bug itself?

9/7/2014 Qualtrics Survey Software

https://login.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview&T=3uSbn 10/11

Rarely

Sometimes

Usually

Always

N/A

How often do the following situations occur when you are fixing a bug?

 Never Rarely Sometimes Usually Always

I notice code that should be
refactored.

I refactor this code that should
be refactored.

If you do not always refactor code that should be refactored, why not?

In your opinion, what's the biggest challenge developers face when fixing bugs?

If you have any other comments on bug fixing or this survey, please enter them here:

When you are satisfied with your answers, please submit this form. You will not have an opportunity to
change your answers after submitting.

9/7/2014 Qualtrics Survey Software

https://login.qualtrics.com/ControlPanel/Ajax.php?action=GetSurveyPrintPreview&T=3uSbn 11/11

	1 Introduction
	2 Related Work
	3 Motivation
	4 Methodology
	4.1 Opportunistic Interviews
	4.2 Firehouse Interviews
	4.3 Triage Meetings
	4.4 Survey
	4.5 Replicated Survey

	5 Results
	5.1 Description of the Design Space
	5.2 Navigating the Design Space

	6 Limitations
	7 Implications
	8 Conclusion
	Acknowledgment
	References
	Appendix

