
The Design of Bug Fixes

Emerson Murphy-Hill
Department of Computer Science
North Carolina State University
Raleigh, North Carolina, USA

emerson@csc.ncsu.edu

Thomas Zimmermann, Christian Bird, and
Nachiappan Nagappan

Microsoft Research
Redmond, Washington, USA

{tzimmer,cbird,nachin}@microsoft.com

Abstract—When software engineers fix bugs, they may have
several options as to how to fix those bugs. Which fix they choose
has many implications, both for practitioners and researchers:
What is the risk of introducing other bugs during the fix? Is the
bug fix in the same code that caused the bug? Is the change fix-
ing the cause or just covering a symptom? In this paper, we in-
vestigate alternative fixes to bugs and present an empirical study
of how engineers make design choices about how to fix bugs.
Based on qualitative interviews with 40 engineers working on a
variety of products, data from 6 bug triage meetings, and a sur-
vey filled out by 326 engineers, we found a number of factors,
many of them non-technical, that influence how bugs are fixed,
such as how close to release the software is. We also discuss sev-
eral implications for research and practice, including ways to
make bug prediction and localization more accurate.

Index Terms — bugs, faults, empirical study, design

I. INTRODUCTION
As the software systems we create and maintain grow in

capability and complexity, software engineers must ensure that
these systems work as intended. When systems do not, soft-
ware engineers fix the “bugs” that cause this unintended behav-
ior.

Traditionally, researchers and practitioners have assumed
that where in the software an engineer fixes a bug is where an
error was made [1]. For example, Endes [2] makes such an
assumption in a study, but cautions the reader that,

There is, of course, the initial question of how we can de-
termine what the error really was. To dispose of this ques-
tion immediately, we will say right away that, in the mate-
rial described here, normally the actual error was equat-
ed to the correction made. This is not always quite accu-
rate, because sometimes the real error lies too deep, thus
the expenditure in time is too great, and the risk of intro-
ducing new errors is too high to attempt to solve the real
error. In these cases the correction made has probably
only remedied a consequence of the error or circumvent-
ed the problem. To obtain greater accuracy in the analy-
sis, we really should, instead of considering the correc-
tions made, make a comparison between the originally in-
tended implementation and the implementation actually
carried out. For this, however, we usually have neither
the means nor the base material.

Although the software engineering community has
suspected that this assumption is sometimes false, there exists
little evidence to help us understand under what circumstances
it is false. The consequences of this lack of understanding are
manifold. Let us provide several examples. For researchers
studying bug prediction [3] and bug localization [4], models of
how developers have fixed bugs in the past may not capture the
true cause of failures, but may instead only capture
workarounds. For practitioners, when a software engineer is
evaluated based on how many bugs they fix, the evaluation
may not accurately reflect that engineer’s effect on software
quality. For educators, without teaching future engineers the
contextual factors that go into deciding which fix to apply, as
engineers, the future engineers may choose inappropriate fixes.

However, to our knowledge, there has been no empirical
research into how bug fixes are designed. In this paper, we
seek to understand the design of bug fixes. We define the de-
sign of bug fixes as the human process of envisioning several
ways to fix the same bug and then judging which of those fix-
es to apply. As with any software change, an engineer must
deal with a number of competing forces when choosing what
change to make. The task is not always straightforward. To
fill this gap, we seek to answer two research questions:

RQ1: What are the different ways that bugs can be fixed?

RQ2: What factors influence which fix an engineer chooses?

Fig. 1. Characterizing the design of bug fixes

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

332

This paper’s primary contribution: The first systematic
characterization of the design of bug fixes. It analyzes the de-
sign space of bug fixes and describes how developers navigate
that design space, to understand the decisions that go into
choosing a bug fix (see Fig. 1).

II. RELATED WORK
Several researchers have investigated bug fixes. Perhaps the

most relevant research is that of Leszak, Perry, and Stoll’s [5]
study of the causes of defects, where the authors classified bug
reports by ‘real defect location’:

‘Real’ location characterizes the fact that… some defects
are not fixed by correcting the ‘real’ error-causing com-
ponent, but rather by a… ‘work-around’ somewhere else.

While the authors collected real defect locations, the data was
not analyzed or reported. Our work explains why one fix would
be selected over another; or in other words, why an engineer
might choose a workaround instead of a fix at a “real location.”

Ko and Chilana studied 100 contentious open-source bug re-
ports, focusing on argumentation in open source bug fixing,
such as the rationale for fixes and the need for moderation
when end users were involved in the debate [6]. In contrast, we
focus on the design of the bug fix itself, rather than process by
which the decision was made. Our study also complements this
study by improving our understanding of the decision making
process when fixing bugs, specifically for commercial software
and for decisions made outside of the bug report itself.

Breu and colleagues observed in a study of 600 bug reports
that 25.3% of discussions in bug reports are spent on the fix
itself, discussions involving suggestions, feedback requests,
and understanding files [7]. Our study complements this work
by exploring the design space of bug fixes.

Several other researchers have investigated bug fixing. In a
manual inspection of bug fixes, Lucia and colleagues found
that some fixes are spread over many lines of code [4]. Bird
and colleagues found that bug fixes reported in bug databases
are different from fixes not reported in databases [8]. Gu and
colleagues investigated the belief that bug fixes themselves are
the source of errors and found that bad fixes comprise approx-
imately 9% of bugs [9]. Yin and colleagues investigated why
bugs are fixed incorrectly, that is, require a later bug fix to the
source code changed by the original fix [10]. Aranda and
Venolia investigated 10 closed bugs and surveyed 110 engi-
neers about bug coordination patterns at Microsoft [11]. Spinel-
lis and colleagues attempted to correlate code metrics, such as
number of bugs fixed, to evaluate the quality of open source
software [12]. Storey and colleagues investigated the interac-
tion of bugs and code annotations [13]. Anvik and colleagues
investigated which engineers get assigned to fix bugs [14]. In
contrast to these papers, our paper seeks to understand in what
way bug fixes differ, and why one fix is chosen over another.

III. METHODOLOGY

To answer our two research questions, we conducted a
mixed-method study. We used several research methods,
rather than a single one, both to study our research questions
in as broad a way as possible and to triangulate the answers to
improve their accuracy [15]. While we feel that our methods
are thorough and rigorous, some threats still exist as we
discuss in Section V. We now discuss our four research
methods: opportunistic interviews, firehouse interviews, triage
meeting observations, and surveying. For each method, we
discuss the goal of using that method, how we recruited
participants, the protocol we used, how we analyzed data, and
a brief summary of the shape of the data we collected.

A. Opportunistic Interviews
With our first method, we asked engineers about a recent

bug they had been involved in fixing.

Goal. Our goal in performing opportunistic interviews was
to rapidly obtain qualitative answers to our research questions
in a way that was minimally obtrusive to interviewees.

Protocol. We conducted these interviews by having the first
author go to a building that housed a particular product group.
Armed with a list of office numbers for software engineers, the
interviewer walked to each engineer’s office. If the engineer
was wearing headphones, was talking to someone else, or had
the door was closed, the interviewer went to the next office.
Otherwise, the interviewer introduced himself, said that he was
doing a study, and asked if the interviewee had 10 to 15
minutes to talk. If the engineer consented, the interviewer
asked a series of semi-structured questions [15] regarding the
last bug that the engineer was involved in fixing. Although
interviewees were not offered an incentive, before the inter-
viewer left, interviewees were compensated with a $10 gift
card for lunch.

We performed pilot interviews to identify potential prob-
lems and rectify them prior to the main study. In doing so, we
noticed that pilot interviewees could remember the fix they
made, but had difficulty recalling the alternative fixes that they
did not make. Some pilot interviewees stated that they fixed the
bug the only way that it could have been fixed, even though
there clearly were other fixes, even from our perspective as
outsiders. We sought to reduce this ‘hindsight bias’ [16] in our
interviews using two different techniques. For every odd-
numbered interview (the first, the third, and so on), we gave the
interviewee an example of three bugs and multiple ways of
fixing each bug. For the other half of the interviews, we pre-
sented a small program containing a simple bug, and then
asked the interviewee to talk us through how she might fix the
bug; interviewees typically mentioned several alternative fixes.
Comparing the results obtained after starting interviews with
these two methods, we noticed no qualitative differences in the
responses received, suggesting that both methods were about
equally effective. Comparing pilot interview results against real
interview results, we feel that this technique significantly
helped interviewees think broadly about the design space.

After this introductory exercise, the interviewer asked the in-
terviewee about the most recent bug that they fixed. The inter-

333

viewer asked about the software that the bug appeared in, the
symptoms, the causes, and whether they considered more than
one way to fix the bug. If an interviewee did consider multiple
fixes, we asked their to briefly explain each one, and justify
their final choice. The full interview guide can be found in our
companion technical report [17].

Participants. To sample a wide variety of engineers, we re-
cruited interviewees using a stratified sampling technique,
sampling across several dimensions of the products that engi-
neers create. We first postulated what factors might influence
how engineers design fixes; we list those factors in Table I.

TABLE I. FACTORS FOR SELECTING PRODUCT GROUPS

Factor Values
Domain Desktop, web application, enter-

prise/backend, embedded
Product Type Boxed, service
Bug fix types Pre-release, post-release
Number of ver-
sions shipped

0 to continuous release

Phase Planning and milestone quality, main
development, stabilization, and mainte-
nance

Using these factors, we selected a cross section of Microsoft
products that spanned those factors. We chose four products
from which to recruit engineers, because we estimated that four
products would balance two competing requirements: that we
sample enough engineers from each product team to get a good
feeling for what bug fixing is like within that team, and that we
sample enough product teams that we could have reasonable
generalizability. The four product teams that we selected
spanned each of the values in Table I. For example, one team
we talked to worked on desktop software, one on web applica-
tions, another on enterprise/backend, and the last on embedded
systems.

Within each product team, we aimed to talk to a total of 8
software engineers: six were what Microsoft calls “Software
Development Engineers” (developers for short) and two were
“Software Development Engineers in Test” (testers for short).
We interviewed more developers, as developers spend more
time fixing bugs than testers. Once we reached our quota of
engineers in a team, we moved on to the next product team. In
total, we completed 32 opportunistic interviews with engineers.

Data Analysis. We prepared the interviews for analysis by
transcribing them. We then coded the transcripts [18] using the
ATLAS.ti1 software. Before beginning coding, we defined sev-
eral base codes, including codes to identify symptoms, the fix
that was applied, alternative fixes, and reasons for discriminat-
ing between fixes. The first author did the coding. Additionally,
our research group, consisting of 7 full time researchers and 7

1 http://atlasti.com/

interns, analyzed the coded transcripts again, to determine if
any other notable themes emerged. Each person in the group
analyzed 2 to 4 transcripts over ½ hour. We regard the first
author’s coding as methodical and thorough, while the team’s
analysis was brief and serendipitous. We derived most of the
results described in this paper from the first author’s coding.
We use the codes about fixes to describe the design space (Sec-
tion IV.A) and codes about discriminating between fixes to
describe how engineers navigate that space (Section IV.B). Our
technical report contains a list of codes and examples [17].

Data Characterization. Overall, we found software engi-
neers very willing to be interviewed. To obtain 32 interviews,
we visited 152 engineers’ offices. Most offices were empty or
the engineers appeared busy. In only a few cases, engineers
explicitly declined to be interviewed, largely because the engi-
neer was too busy. Interviews lasted between 4 and 30 minutes.
In this paper, we refer to participants as P1 through P32.

Most participants reported multiple possible fixes for the
bug that they discussed. In a few cases, participants were una-
ble to think of alternative solutions; however, the interviewer,
despite being unfamiliar with the bug, was able to suggest an
alternative fix. In these cases, the engineer agreed that the fix
was possible, but never consciously considered the alternative
fix, due to external project constraints.

Interestingly, this opportunistic methodology allowed us to
interview three engineers who were in the middle of consider-
ing multiple fixes for a bug.

B. Firehouse Interviews
Using the firehouse research method [19], we interviewed

engineers immediately after they fixed a bug. Firehouse re-
search is so called because of the unpredictable nature of the
events under study; if one wants to study social dynamics of
victims during and immediately after a fire, one has to literally
live in the firehouse, waiting for fires to occur. Alternatively,
one can purposefully set fires, although this research method-
ology is generally discouraged. In our case, we do not know
exactly when an engineer is considering a fix, but we can ob-
serve a just-completed fix in a bug tracker and “rush to the sce-
ne” so that the event is fresh in the engineer’s mind.

Goal. Our goal was to obtain qualitative answers to our re-
search questions in a way that maximized the probability that
engineers could accurately recall their bug fix design decisions.

Protocol. We first picked one product group at Microsoft,
went into the building where most development for that prod-
uct takes place, and monitored that group’s bug tracker, watch-
ing for bugs an engineer marked as “fixed” within the last ten
minutes. If the engineer was not located in the building, we
moved on to the next most recently closed bug. Otherwise, the
interviewer went immediately to the engineer’s office.

When approaching engineers for this study, we were slightly
more aggressive than in the opportunistic interviews; if the
engineer’s door was closed, we knocked on the door. If the
engineer was not in her office by the time we arrived, we wait-
ed a few minutes. These interviews were the same as the op-
portunistic interviews, except that the interviewer insisted that
the discussion focus on the bug that they had just closed.

334

Participants. Our options for choosing a product group to
study was fairly limited, because we needed a personal contact
within that team that was willing to give us live, read-only ac-
cess to their bug tracker. We chose one product, which will
remain anonymous; the product group was different from any
of those chosen in the opportunistic interviews.

We aimed to talk to 8 software engineers in total for these
interviews. While we interviewed fewer people than with the
opportunistic interviews, these firehouse interviews tended to
take much longer to orchestrate, mostly because we wanted to
talk to specific people. In retrospect, we did not notice any
qualitative differences in engineers’ responses to the two inter-
view types, so for the remainder of the paper, we do not distin-
guish between these two groups of participants. Nonetheless,
you may do so if you wish; participants in the firehouse inter-
views are labeled P33 through P40.

Data Analysis. We analyzed data in the same way as with
the opportunistic interviews.

Data Characteristics. Again, we found engineers to be re-
ceptive to being interviewed, although they were usually sur-
prised we asked about a bug they had just fixed. We reassured
them that we are from Microsoft Research, and were there to
help.

In total, we went to 16 offices, and were able to interview 10
engineers. Two of these we interviewed in error, one because
his officemate actually closed the bug, and one because the
interviewer misread the bug report. We compensated these
engineers for their time with gift cards, but we exclude them
from analysis.

C. Triage Meetings
We hypothesized that not only do individual engineers

make decisions about the design of bug fixes, but perhaps that
bug fix design happens during bug triage meetings as well.

Goal. Our goal was to obtain qualitative answers to our re-
search questions with respect to how engineers work together
to find good bug fix designs.

Protocol and Participants. We attended six bug triage
meetings across four product groups. Three of these groups
were the same groups that we did interviews with. To ensure
engineers were comfortable, we did not record these meetings;
rather, we took notes and observed in silence.

Data Analysis and Data Characteristics. It became clear
that there was very little data we could gather in these triage
meetings, for two reasons. The first is that participants rarely
discussed how to fix a bug beyond whether to fix it and when
to do so. Second, when participants did discuss how to fix
bugs, the team was so tightly knit that very little explanation
was needed; this terseness made bug fix decisions basically
impossible for us to understand without the context that the
team members had. As a result, we were able to glean few in-
sights from the meetings. For the few observations that we
could make, we label these meetings as T1 through T6. Be-
cause there was little usable data from these meetings, we did
not perform any data analysis beyond reading through our
notes.

D. Survey
Goal. Our goal was to quantify our observations made dur-

ing the interviews and triage meetings.

Protocol. After we performed the interviews and triage
meetings, we sent a survey to software engineers at Microsoft.
As in the interviews, the survey started by giving examples of
bugs that could be fixed using different techniques, where the
examples were drawn from real bugs described by interview-
ees. As suggested by Kitchenham and Pfleeger [20], we con-
structed the survey to use formal notations and limit responses
to multiple-choice, Likert scales, and short, free-form answers.

At the beginning of the survey, we suggested that the re-
spondent browse bugs that they had recently closed to ground
their answers. In Section IV, we discuss these questions and
engineers’ responses. After piloting the survey, we estimate
that it took respondents about 15-20 minutes to fill out the sur-
vey. The full text of this survey can be found in our technical
report [17].

Participants. We sent the survey to 2000 randomly select-
ed recipients from a pool of all employees of Microsoft who
had “development” in their job title, and were not interns or
contractors. This followed Kitchenham and Pfleeger’s advice
to understand whether respondents had enough knowledge to
answer the questions appropriately [20]. We incentivized par-
ticipation by giving $50 Amazon.com gift certificates to two
respondents at random.

Data Analysis. We analyzed our data with descriptive sta-
tistics (for example, the median), where appropriate. We did
not perform inferential statistics (for example, the t-test) be-
cause our research questions do not necessitate them. When
reporting survey data, we omit “Not Applicable” question re-
sponses, so percentages may not add up to 100%.

Data Characteristics. 324 engineers completed the survey.
The response rate of about 16% is within the range of other
software engineering surveys [21]. Respondents were from all
eight divisions of Microsoft. Respondents reported between
0.08 and 39 years of experience in the software industry (medi-
an=9.5), with a median of 5 years of experience at Microsoft.
65% reported being developers, while 34% reported being test-
ers. One respondent reported being a product manager.

IV. RESULTS
We next characterize the design options that engineers have

when selecting a bug fix (Section IV.A), and then describe how
engineers choose which fix to implement (Section IV.B).

A. Description of the Design Space
In our interviews, we asked participants to estimate what

percentage of their bugs had multiple possible solutions. The
median was 52%, with a wide range of variance, with individu-
al responses ranging from 0% to 100%. Although this number
should be interpreted as a rough estimate, it suggests that many
bugs can be fixed in multiple ways.

With respect to the dimensions of the design space, we ob-
tained answers to this research question by asking interviewees

335

to explain the different fixes that they considered when fixing a
single bug. In bold below, we present several dimensions on
which bugs may be fixed, a description of each dimension, and
an example from our interviews. Note that a single fix can be
considered a point in this design space; for example, a fix may
have low error surfacing and high refactoring, and simulta-
neously be placed in the other dimensions. These dimensions
are not intended to be exhaustive, yet we believe that the num-
ber of interviews we performed suggests that this list represents
a solid foundation on which to build a theory of bug fix design.

Data Propagation Across Components. This dimension
describes how far information is allowed to propagate across a
piece of software, where the engineer has the option of fixing
the bug by intercepting the data in any of the components. At
one end of the dimension, data is corrected at its source.

As an example, P25 worked on software with a layered ar-
chitecture, with at least four layers, the top-most being the user
interface. The bug was that the user interface was reporting
disk space sizes far too large, and the engineer found that the
problem could be traced back to the lowest-level layer, which
was reporting values in kilobytes when the user interface was
expecting values in megabytes. The interviewee could have
fixed the bug by correcting the calculation in the lowest layer,
or by transforming the data (multiplying by a thousand) as it is
passed through any of the intermediate layers.

Error Surfacing. This dimension describes how much error
information is revealed to users, whether that information is
for end users or other engineers. At one end of the dimension,
the user is made aware of detailed error information; at the
other, the existence of an error is not revealed.

P28 described a bug where the software he was developing
crashed when the user deleted a file. When fixing the bug, the
engineer decided to catch the exception to prevent the crash,
but also considered whether or not the user should be notified
that an exceptional situation had occurred.

As another example, P6 described a bug where she was
calling an API that returned an empty collection, where she
expected a non-empty collection. The problem was that she
passed an incorrect argument to the API, and the empty collec-
tion signified an error. However, an empty collection could
also signify “no results.” While fixing the bug, the engineer
considered changing the API so that it threw an error when an
unexpected argument was passed to the API. She anticipated
that this would have helped future engineers avoid similar
bugs.

Behavioral Alternatives. This dimension describes whether a
fix is perceptible to the user. At one end of the dimension, the
fix does not require the user to do anything differently; at the
other end, she must significantly modify her behavior.

One example is P11, who described a bug where the back
button in a mobile application was occasionally not working.
As part of the fix, he made the back button work, but had to
simultaneously disable another feature when the application
first loads. P11 stated that having both the back button and the
other feature working at the same time was simply not possi-
ble; he had to choose which one should be enabled initially.

Functionality Removal. This dimension describes how much
of a feature is removed during a bug fix. At one end of the
dimension, the whole software product is eliminated; at the
other, no code is removed at all.

As an example, P18 described a bug in which a crash oc-
curred. Rather than fixing the bug, P18 considered removing
the feature that the bug was in altogether. We were initially
quite surprised when we heard this story, because the notion
that an engineer would remove a feature just to fix a bug
seems quite extreme. However, removal of features was men-
tioned repeatedly as a fix for bugs during our interviews.

To quantify functionality removal, we asked survey re-
spondents to estimate how often they remove or disable fea-
tures, rather than alleviating a symptom of a bug. About 75%
of respondents said they had removed features from their
software to fix bugs in the past.

Refactoring. This dimension describes the degree to which
code is restructured in the process of fixing a bug, while
preserving its behavior. A bug may be fixed with a simple
one-line change, or it may entail significant code restructuring.
As an example, P5 considered refactoring to remove some
copy-and-paste duplication, so “you're not only fixing the bug,
but you also are kind of improv[ing the code].”

In our survey, we asked respondents to report on refactor-
ing frequency when fixing bugs, as shown in Table II. In the
table, “Should be refactored” indicates how often participants
“notice code that should be refactored when fixing bugs.” For
example, 29% of respondents indicated that they usually no-
tice code that should be refactored. The “Is refactored” row
indicates how often participants “refactor this code that should
be refactored”. For example, 26% reported rarely refactoring
code that should be refactored. These results suggest that, alt-
hough engineers appear to regularly encounter code that
should be refactored, much of this code remains unchanged.

Internal vs External. This dimension describes how much
internal code is changed versus external code is changed as
part of a fix. On one end of this dimension, the engineer makes
all of her changes to internal code, that is code for which the
engineer has a strong sense of ownership. On the other end,
the bug is fixed by changing only code that is external, that is,
code for which the engineer has no ownership.

One example is P33, who maintained a testing framework
for devices used by several other teams. The bug was that

TABLE II. SURVEY RESPONDENTS’ REFACTORING BEHAVIOR

N
ev

er

Ra
re

ly

So
m

et
im

es

U
su

al
ly

Al
w

ay
s

Should be refactored 1% 7% 56% 29% 5%

Is refactored 4% 26% 44% 21% 3%

336

many devices were not reporting data in a preferred manner,
causing undesirable behavior in P33’s framework. Part of the
fix was immediate and internal (changing the testing frame-
work), but part of it was deferred and external (changing each
of the other teams’ device code).

Accuracy. This dimension captures the degree to which a fix
utilizes accurate information. On one end of this dimension,
the engineer uses highly accurate information, and on the
other, he uses heuristics or guesses.

An example is P29, who was working on a bug where
web browser printing was not working well. An accurate fix
would be one where his print driver retrieves the available
fonts from the printer, then modifies the browser’s output
based on the available fonts. A less accurate fix was to use a
heuristic that produces better, but not optimal, print output.

Hardcoding. This dimension captures to what degree a fix
hardcodes data. On one end of the dimension, data is specified
explicitly, and on the other, data is generated dynamically.

One example of fixes on this dimension is P24, who was
writing a test harness for a system that received database que-
ries. The bug was that some queries that his harness was gen-

erating were malformed. He considered a completely hardcod-
ed solution to the problem, removing the query generator and
using a fixed set of queries instead. A more dynamic solution
he considered was to modify the generator itself to either filter
out malformed queries, or not to generate them at all.

B. Navigating the Design Space
While the previous section described the design space of

bug fixes, it said nothing about why engineers implement par-
ticular fixes within that design space. For instance, when would
an engineer refactor while fixing a bug, and when would she
avoid refactoring? In an ideal world, we would like to think
that engineers make decisions based completely on technical
factors, but realistically, a variety of external factors come into
play as engineers navigate this bug fixing design space. In this
section, we describe those external factors.

Risk Management by Development Phase. A common way
that interviewees said that they choose how to design a bug fix
is by considering the development phase of the project. Specif-
ically, participants noted that as software approaches release,
their changes become more conservative. Conversely, partici-
pants reported taking more risks in earlier phases, so that if a
risk materializes, they would have a longer period to compen-
sate. Two commonly mentioned risks were the risk that new
bugs would be introduced and the risk that spending significant
time fixing one bug comes at the expense of fixing other bugs.

P12 provided an example of taking a more conservative
approach, when he had to fix a bug by either fixing an existing
implementation of the double checked locking pattern, or re-
place the pattern with a simpler synchronization mechanism.
He eventually chose to correct the pattern, even though he
thought the use of the pattern was questionable, because it was
the “least disruptive” way to fix the bug. He noted that if he
had fixed the bug at the beginning of the development cycle, he
would have removed the pattern altogether.

In our survey, we asked engineers several questions relat-
ing to risk and development phase, as shown in Table IIIA.
Here we asked engineers “How often do the following factors
influence which fix you choose?”, where each factor is listed at
left. The table lists the percentage of respondents who choose
that frequency level. Note that the factors are not necessarily
linked; for instance, an engineer could choose to change very
few lines of code for a reason other than the product is late in
development. However, our qualitative interviews suggested
that these factors are typically linked together, and thus we feel

TABLE IV. SURVEY RESPONDENTS’ OPTIMAL FIX

N
ev

er

Ra
re

ly

So
m

et
im

es

U
su

al
ly

Al
w

ay
s

Optimal fix should
be reconsidered 1% 17% 38% 29% 14%

Actually are fixed
optimally 4% 40% 38% 13% 1%

TABLE III. FACTORS THAT INFLUENCE ENGINEERS’ BUG FIX DESIGN

N
ev

er

Ra
re

ly

So
m

et
im

es

U
su

al
ly

Al
w

ay
s

(A)

Phase of the
release cycle 2% 6% 17% 35% 37%

Changes few
lines of code 3% 10% 32% 38% 17%

Requires little
testing effort 3% 12% 31% 37% 16%

Takes little
time to

implement
3% 10% 43% 30% 13%

(B)

Doesn't
change inter-

faces or break
backwards

compatibility

0% 2% 8% 36% 53%

(C)

Maintains the
integrity of
the original

design

1% 5% 16% 50% 28%

 (D) Frequency in
practice 2% 17% 39% 33% 8%

337

justified in presenting these four factors as a whole. These re-
sults suggest that, for most respondents, risk mitigation usually
plays an important role in choosing how to fix a bug.

One of the findings that emerged from our interviews is
that if engineers are frequently making conservative changes,
then they may be incurring technical debt. As P15 put it,

I wish to do it better, but I'm doing it this way because
blah, blah, blah. But then I don't know if we ever go back
and kind of “Oh, okay, we had to do this, now we can
change it.” And I feel that code never goes away, right?

We verified this statement by asking survey respondents how
often they think bugs that are initially fixed “suboptimally”
should be reconsidered for a more optimal fix in the future.
We asked how many of these bugs actually are fixed optimally
after the initial fix. Table IV displays the results. These results
suggest that engineers often feel that optimal fixes should be
reconsidered in the future, but that those bugs rarely get fixed
optimally. As one respondent noted, “although we talk about
the correct fix in the next version, it never happens.”

Interface Breakage. Another factor that participants said in-
fluenced their bug fixes is the degree to which a fix breaks ex-
isting interfaces. If a fix breaks an interface that is used by ex-
ternal clients, then an engineer may be less inclined to imple-
ment that fix because it entails changes in those external cli-
ents.

One example comes from P16, who was working on a bug re-
lated to playing music and voice over Bluetooth devices. He
said that a better fix for the problem would be to change the
Bluetooth standard, but too many clients already depend on it.

We also asked survey respondents how often the following
factor influences which fix they choose: “Doesn’t change ex-
ternal interfaces or breaks backwards compatibility.” 89% re-
ported that “usually” or “always,” suggesting that changing
external interfaces is a significant determinant in choosing
which bug fix to implement (Table IIIB).

Consistency. This factor describes to what degree a fix will be
consistent with the existing software or existing practices. A fix
that is not consistent with the existing code may compromise
the design integrity of that code, leading to code rot.

One example is P10, who fixed a performance bug in his
build system. P10 fixed the bug by using the build system in a
way consistent with how it was being used by other teams.
However, he felt that a change that was inconsistent with the
way the build system currently worked would have produced
better build performance, at least for his product. Table IIIC
lists survey respondents’ attitudes towards the importance of
maintaining design consistency when fixing bugs.

User Behavior. This factor describes the effect of how users of
the software behave on the fix. If users have strong opinions
about the software, or use a certain part of the software heavily,
engineers may choose a fix that suits the user better.

One example is from T1, where the team discussed bugs in
a code analysis tool. The team wondered how often users used

a certain code pattern in practice. They acknowledged that their
analysis did not work when the pattern was used, but how they
fixed the bug depended on how often users actually wrote code
in that pattern. They judged, apparently based either on intui-
tion or experience, that several of these bugs were so unlikely
to arise in practice that the effort to implement a comprehen-
sive fix for the problem was not justified.

After hearing about T1 and some interviewees talk about
frequency of user behavior, we became interested in how engi-
neers know what users actually do. Thus, we asked two ques-
tions in the survey. In the first we asked how often fixes de-
pended on usage frequency (Table IIID). These results suggest
that how frequently a situation occurs in practice sometimes
influences how engineers design fixes. The second question
was a multiple-choice question about how engineers most often
determine frequency (Table V). In this table, SQM refers to a
usage data collector used in a variety of Microsoft products.
The most common follow up to answering “None of the
Above” was to ask the product manager. In Table V, we were
somewhat surprised to find that so many engineers write que-
ries over usage data. However, it still appears that many engi-
neers use ad-hoc methods for estimating user behavior, includ-
ing convenience sampling, estimation, and guessing.

Cause Understanding. This factor describes how thoroughly
an engineer understands why a particular bug occurs. In inter-
views, we were surprised how often engineers fixed bugs with-
out understanding why those bugs occurred. Without thorough-
ly understanding a bug, the bug may re-appear at some point in
the future. On the other hand, gaining acomplete understanding
of why a bug is occurring can be an extremely time-intensive
task.

P3 provided an example of fixing a bug without a full un-
derstanding of the problem. The symptom of his bug was that
occasionally an error message appeared to the user whenever
his software submitted a particular job. Rather than understand-
ing why the error was occurring, he fixed the job by simply
resubmitting the job, which usually completed without error.

TABLE V. THE MOST FREQUENT MECHANISMS USED BY ENGINEERS TO
DETERMINE USAGE FREQUENCIES

Guess 4%
Estimate based on my past experience as a user

of the software I develop 17%

Estimate based on my past experience
interacting with users 16%

Collect data by taking a quick convenience
sample (e.g., ask devs on my team) 19%

Collect data by external polling
(e.g., ask readers of my blog) 2%

Estimate based on existing usage data that I
remember seeing in the past (e.g. SQM) 11%

Write a query over existing usage data
(e.g. SQM) 18%

None of the Above 12%

338

Rather than understanding the problem, as he explained it, “my
time is better spent fixing the other ten bugs that I had.”

We asked survey respondents why they do not always
make an optimal fix for a bug; 18% indicated that they have not
had “time to figure out why the bug occurred.” This suggests
that lack of cause understanding is sometimes a problem.

Social Factors. A variety of social factors appear to play a role
in how bugs are fixed, including mandates from supervisors,
ability to find knowledgeable people, and code ownership.

One example of this was P22, who was fixing a bug in a
database system where records were not sorting in memory,
causing reduced performance. The engineer proposed a fix
based on “one week of discussions and bringing new ideas,
[and] discussing [it with my] manager.” Other interviewees
discussed their bugs with mentors (P28), peer engineers (P28),
testers (P39), and development leads (P34).

In the survey we asked how communication with people
helps inform the bug fix design (Table VI). The results suggest
that peer software development engineers (SDEs) and the peo-
ple who originally wrote the code related to where the fix
might be applied usually play important roles in deciding how a
bugs gets fixed. We also asked survey participants about who
decides on which bug fix design to implement. Most partici-
pants said they themselves usually decide, while others said it
was sometimes a group decision. Only 6% said their manager
usually or always decides.

We also asked survey respondents how they communicate
with others about bug design. Respondents indicated that they
most often communicate by email (44%), in unplanned meet-
ings (38%), planned meetings (7%), and in the bug report itself
(6%). A few respondents also indicated that they discussed
design during online code review and with instant messaging.
However, in a study run in parallel with this one, we inspected
200 online code review threads at Microsoft, but found no sub-
stantial discussions of bug fix design [22]. We postulate that,
by the time a fix is reviewed, engineers have already discussed
and agreed upon the basic design of that fix.

We asked survey respondents how many people, including
themselves, were typically involved in the bug fixing process.
Table VII shows the results. These results suggest that while
finding the cause of a bug and implementing a solution are
generally 1- or 2-person activities, choosing a solution tends
more often to be a collaborative activity.

One of the more surprising things we heard from some in-
terviewees was that when they made sub-optimal changes, they
were sometimes hesitant to file new bug reports so that the
optimal changes were reconsidered in the future. The rationale
for not doing so seemed to be at least partly social – respond-
ents were not sure whether other engineers would find a more
optimal fix useful to them as well. For instance, P2 said the
optimal fix to his bug would be a change to the way mobile
applications are built in the build system, but he wasn’t sure
that he would advocate for this change unless other teams
would find it useful as well. Ideally, this is what “feature en-
hancement” bug reports with engineer voting should help with.
However, P2 didn’t fill out a bug report for this enhancement at
all, because he judged the time he spent filling out the report
would be wasted if other engineers didn’t need it. As he put it,

If I had more data… that other teams did it,… if I could …
eyeball it quickly… then I'd [say], “Hey, you know, other
teams are doing this. Clearly, it's a [useful] scenario.”

This made us wonder why engineers avoid filing bug re-
ports, so we asked survey respondents to estimate the frequen-
cy of several possible rationales that we heard about during the
interviews (Table VIII). These results suggest that survey re-
spondents rarely avoid filing bugs for reasons that the inter-
viewees discussed. We view these somewhat contradictory
findings as inconclusive; more study, likely using a different
study methodology, is necessary to better understand how often
and why engineers do not file bug reports.

V. LIMITATIONS
Although our study provides a unique look at how engi-

neers fix bugs, several limitations of our study must be consid-
ered when interpreting our results.

An important limitation is that of generalizability beyond
the population we studied (external validity). While our results
may represent the practices and attitudes at Microsoft, it seems
unlikely that they are completely representative of software
development practices and attitudes in general. However, be-
cause Microsoft makes a wide variety of software products,
uses many development methods, and employs an international

TABLE VI. WHO IS HELPFUL TO COMMUNICATE WITH WHEN CHOOSING AN
OPTIMAL FIX

N
ev

er

Ra
re

ly

So
m

et
im

es

U
su

al
ly

Al
w

ay
s

Peer SDEs 1% 4% 27% 47% 17%
Peer SDETs 4% 15% 37% 30% 8%

My manager 9% 25% 40% 20% 3%
My product manager 22% 30% 29% 9% 1%

The people who
wrote the code 2% 10% 36% 40% 9%

Other experts
(e.g., architects) 9% 30% 32% 10% 3%

TABLE VII. HOW MANY PEOPLE ARE INVOLVED IN BUG FIXING ACTIVITIES

1 2 3 to 5 6 to 10 11+

finding the
cause of a bug 49% 38% 11% 0% 0%

choosing a
solution 24% 43% 31% 1% 0%

implementing
the solution 77% 16% 5% 0% 0%

339

workforce, we believe that our random and stratified sampling
techniques improved generalizability significantly.

Giving interviewees’ and survey respondents’ example
bugs and multiple-fix examples may have biased participants
towards providing answers that aligned with those examples, a
form of expectancy bias (internal validity). However, we
judged the threat of participants unable to recall implicit or
explicit design decisions outweighed this threat. Future re-
searchers may be able to confirm or refute our results by using
a research method that is more robust to expectancy bias.

Still, some interviewees struggled with remembering the
design decisions they made, and were generally unable to artic-
ulate implicit decisions. This type of memory bias is inherent in
most retrospective research methods. However, we attempted
to control memory bias by asking opportunistic interviewees to
recall their most recently fixed bugs, asking firehouse inter-
viewees to discuss a bug they just fixed, and asking survey
respondents to look at bugs they had recently fixed.

To meet our goal of not significantly interrupting partici-
pants’ workdays, we kept our interview and survey short,
which means we were unable to collect contextual information
that may have helped us better explain the results. For example,
in the interviews, we did not ask questions about gender or
team structure, which may have some effect on bug fix designs.

Similarly, a consequence of keeping the survey short is
that participants may have misunderstood our questions. For
example, in our survey, we asked engineers whether they ever
avoided filing a bug report; this question could be interpreted
conservatively to mean, “when do you not report software fail-
ures?”, when our intent was for “bug reports” to be interpreted
broadly to include enhancements. While we tried to minimize
this threat by piloting our survey, as with all surveys [15], we
may still have miscommunicated with our respondents.

VI. IMPLICATIONS
The findings we present in this paper have several implica-

tions, a handful of which we discuss in this section.

Additional Factors in Bug Prediction and Localization.
Previous research has investigated several approaches to pre-
dicting future bugs based on previous bugs [23] [24], including

our own [3]. The intuition behind these approaches appears
reasonable: how engineers have fixed bugs in the past is a good
predictor of how they should fix bugs in the future. However,
the empirical results we present in this paper suggest a host of
factors can cause a bug to be fixed in one way at one point in
time, but in a completely different way at another. For exam-
ple, a bug fixed just before release is likely to be fixed differ-
ently than a bug fixed during the planning phase. As a result,
future research in prediction and localization may find it useful
to incorporate, when possible, these factors into their models.

Limits of Bug Prediction and Localization. Although in-
corporating some factors, such as development phase, into his-
torical bug prediction may improve the accuracy of these mod-
els, some factors appear practically outside the reach of what
automated predictors can consider. For example, when analyz-
ing past bugs, it seems unlikely that an automated predictor can
know whether or not a past fix was made with an engineer’s
full knowledge of why the bug occurred.

Refactoring while Fixing Bugs. The results of our study
suggest that engineers frequently see code that should be refac-
tored, yet still avoid refactoring. One way that this problem
could be alleviated is through wider use of refactoring tools,
which should help engineers refactor without spending exces-
sive time doing so and at minimal risk of introducing new
bugs. At the same time, such tools remain buggy [25] and diffi-
cult to use [26], so more research in that area is necessary.

Usage Analytics. In our study, it appeared that engineers
often made decisions about how to fix bugs without a data-
driven understanding of how real users use their software.
While a better understanding would clearly be beneficial, gath-
ering and querying that data appears to be time consuming.
Microsoft, like many companies, has been gathering software
usage data for some time, but querying that data requires engi-
neers to be able to find and combine the right data sources, and
write complex SQL queries. We envision a future where engi-
neers, while deciding the design of a bug fix, can quickly query
existing usage data with an easy-to-use tool. To build such a
tool, research is first needed to discover what kinds of ques-
tions engineers ask about their usage data, beyond existing
“questions engineers ask” studies [27].

TABLE VIII. FREQUENCY OF REASONS FOR NOT FILING BUGS

N
ev

er

Ra
re

ly

So
m

et
im

es

U
su

al
ly

Al
w

ay
s

The bug is unlikely to ever be fixed 30% 31% 30% 7% 1%

Whether or not the bug gets fixed has little impact on the software I’m developing 41% 26% 25% 4% 1%
I don’t know where to file the bug or who to report it to 52% 27% 13% 6% 0%

Filing this bug dilutes the urgency of bugs I think are more important to fix 61% 20% 13% 3% 1%
A bug puts pressure on a colleague to fix the problem; I don’t want to add to his or her

workload 72% 16% 8% 1% 0%
Adding another report makes it look like the software is of poor quality or that the team is

behind 80% 12% 5% 1% 0%

340

Fix Reconsideration. Engineers in our study reported
needing to reconsider bug fixes in the future, but sometimes
used ad-hoc mechanisms for doing so, such as writing TODOs
in code. Some of these mechanisms may be difficult to keep
track of; for example, which TODOs should be considered
sooner rather than later. Engineers need a better mechanism to
reconsider fixes in the future, as well the time to do so.

VII. CONCLUSION
In this paper, we have described a study that combined op-

portunistic interviews, firehouse interviews, meeting observa-
tion, and a survey. Our results describe a multi-dimensional
design space for bug fixes, a space that engineers navigate by,
for example, selecting the fix that is least disruptive when a
release looms near. While our study has not investigated a new
practice, we have taken the critical first step towards under-
standing a practice that engineers have always engaged in, an
understanding that will enable researchers, practitioners, and
educators to better understand and improve bug fixes.

ACKNOWLEDGMENT
Emerson Murphy-Hill was a Visiting Researcher at Mi-

crosoft when this work was carried out. Thanks to all partici-
pants in our study, as well as Alberto Bacchelli, Michael Bar-
nett, Andy Begel, Nicolas Bettenburg, Rob DeLine, Xi Ge, Jeff
Huang, Brittany Johnson, Ekrem Kocaguneli, Tamara Lopez,
Patrick Morrison, Shawn Phillips, Juliana Saraiva, Jim Shep-
herd, Nuo Shi, Jonathan Sillito, Gustavo Soares, and Yoonki
Song.

REFERENCES

[1] Zeller, A. Causes and Effects in Computer Programs. In Fifth
Intl. Workshop on Automated and Algorithmic Debugging
(Sept. 24, 2003).

[2] Endes, A. An analysis of errors and their causes in system
programs. In International Conference on Reliable Software
(1975), 327-336.

[3] Kim, S., Zimmermann, T., Jr., W.J., and Zeller, A. Predicting
Faults from Cached History. In Proceedings of ICSE (2007),
IEEE Computer Society, 489--498.

[4] Lucia, Thung, F., Lo, D., and Jiang, L. Are faults localizable? In
Working Conference on Mining Software Repositories (june
2012), 74 -77.

[5] Leszak, M., Perry, D.E., and Stoll, D. A case study in root cause
defect analysis. In Proceedings of ICSE (2000), 428 -437.

[6] Ko, A.J. and Chilana, P.K. Design, discussion, and dissent in
open bug reports. In Proceedings of iConference (2011), ACM,
106--113.

[7] Breu, S., Premraj, R., Sillito, J., and Zimmermann, T.
Information needs in bug reports: improving cooperation
between developers and users. In Proceedings of the
Conference on Computer Supported Cooperative Work (2010),
ACM, 301-310.

[8] Bird, C., Bachmann, A., Aune, E., Duffy, J., Bernstein, A.,
Filkov, V., and Devanbu, P. Fair and balanced?: bias in bug-fix
datasets. In Proceedings of ESEC/FSE (2009), ACM, 121--130.

[9] Gu, Z., Barr, E.T., Hamilton, D.J., and Su, Z. Has the Bug
Really Been Fixed? In The International Conference on
Software Engineering (2011), IEEE.

[10] Yin, Z., Yuan, D., Zhou, Y., Pasupathy, S., and
Bairavasundaram, L. How do fixes become bugs? In
Proceedings of FSE (2011), ACM, 26--36.

[11] Aranda, J. and Venolia, G. The secret life of bugs: Going past
the errors and omissions in software repositories. In
Proceedings of ICSE (2009), IEEE Computer Society, 298--
308.

[12] Spinellis, D., Gousios, G., Karakoidas, V., Louridas, P., Adams,
P.J., Samoladas, I., and Stamelos, I. Evaluating the Quality of
Open Source Software. Electronic Notes on Theoretical
Computer Science, 233 (Mar. 2009), 5--28.

[13] Storey, M.A., Ryall, J., Bull, R.I., Myers, D., and Singer, J.
TODO or to bug. In Proceedings of ICSE (may 2008), 251--
260.

[14] Anvik, J., Hiew, L., and Murphy, G.C. Who should fix this bug?
In Proceedings of ICSE (2006), ACM, 361--370.

[15] Shull, F., Singer, J., and Sjoberg, D.I.K. Guide to Advanced
Empirical Software Engineering. Springer-Verlag New York,
Inc., 2007.

[16] Fischhoff, B. and Beyth, R. 'I knew it would happen':
Remembered probabilities of once-future things. Organizational
Behavior & Human Performance, 13 (Feb. 1975), 1--16.

[17] Murphy-Hill, E., Zimmermann, T., Bird, C., and Nagappan, N.
Appendix to the Design of Bug Fixes. MSR-TR-2013-22,
Microsoft Research, 2013.
http://research.microsoft.com/apps/pubs/?id=183985.

[18] Seaman, C.B. Qualitative methods in empirical studies of
software engineering. IEEE Transactions on Software
Engineering, 25 (jul/aug 1999), 557 -572.

[19] Rogers, E.M. Diffusion of Innovations, 5th Edition. Free Press,
2003.

[20] Kitchenham, B.A. and Pfleeger, S.L. Personal Opinion Surveys.
In Guide to Advanced Empirical Software Engineering.
Springer, 2007.

[21] Punter, T., Ciolkowski, M., Freimut, B., and John, I.
Conducting on-line surveys in software engineering. In
Proceedings of Empirical Software Engineering (sept.-1 oct.
2003), 80 - 88.

[22] Bacchelli, A. and Bird, C. Expectations, Outcomes, and
Challenges of Modern Code Review. In International
Conference on Software Engineering (2013), IEEE.

[23] Ostrand, T.J., Weyuker, E.J., and Bell, R.M. Predicting the
location and number of faults in large software systems. IEEE
Transactions on Software Engineering, 31 (Apr. 2005), 340--
355.

[24] Hassan, A.E. and Holt, R.C. The Top Ten List: Dynamic Fault
Prediction. In Proceedings of the International Conference on
Software Maintenance (2005), IEEE Computer Society, 263--
272.

[25] Soares, G., Gheyi, R., and Massoni, T. Automated Behavioral
Testing of Refactoring Engines. IEEE Transactions on Software
Engineering (2012).

[26] Murphy-Hill, E., Parnin, C., and Black, A.P. How we refactor,
and how we know it. In Proceedings of ICSE (2009), IEEE
Computer Society, 287--297.

[27] Fritz, T. and Murphy, G.C. Using information fragments to
answer the questions developers ask. In Proceedings of ICSE
(2010), ACM, 175--184.

341

