
Software Developers’ Perceptions of Productivity

André N. Meyer, Thomas Fritz
University of Zurich
Zurich, Switzerland

andre.meyer@uzh.ch, fritz@ifi.uzh.ch

Gail C. Murphy
University of British Columbia

Vancouver, BC Canada
murphy@cs.ubc.ca

Thomas Zimmermann
Microsoft Research
Redmond, WA USA

tzimmer@microsoft.com

ABSTRACT
The better the software development community becomes
at creating software, the more software the world seems to
demand. Although there is a large body of research about
measuring and investigating productivity from an organiza-
tional point of view, there is a paucity of research about
how software developers, those at the front-line of software
construction, think about, assess and try to improve their
productivity. To investigate software developers’ percep-
tions of software development productivity, we conducted
two studies: a survey with 379 professional software devel-
opers to help elicit themes and an observational study with
11 professional software developers to investigate emergent
themes in more detail. In both studies, we found that de-
velopers perceive their days as productive when they com-
plete many or big tasks without significant interruptions or
context switches. Yet, the observational data we collected
shows our participants performed significant task and activ-
ity switching while still feeling productive. We analyze such
apparent contradictions in our findings and use the analy-
sis to propose ways to better support software developers
in a retrospection and improvement of their productivity
through the development of new tools and the sharing of
best practices.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Human Factors

Keywords
Retrospection, productivity, goal setting

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
FSE’14 , November 16–22, 2014, Hong Kong, China.
Copyright 2014 ACM 978-1-4503-3056-5/14/11 ...$15.00.

1. INTRODUCTION
There is a common refrain that repeats itself in similar

forms every few years: the inability for enough software to
be produced to satisfy the needs of the world. In 1968, at-
tendees at the first NATO software engineering conference
coined the term software crisis [34]. In 1972, Dijkstra wrote
about “programming [becoming a] gigantic problem” [16, p.
861]. In 1987, Boehm wrote about the growing demand for
software [6]. In 1996, Gibbs wrote about the chronic soft-
ware crisis [19]. And in 2011, Andreessen wrote about soft-
ware eating the world, expressing that the need for software
keeps outstripping the ability to produce the software [2].

There are a couple of ways of addressing the gap between
software demand and supply. We could try to reduce the
demand, namely the world’s appetite for software. This ap-
proach seems unlikely to succeed. Or, we could try to in-
crease the supply, namely our ability to produce software.
In this paper, we consider one way to address supply: how
we might improve the productivity of software developers.

A substantial amount of research into the meaning of soft-
ware productivity has been undertaken over the past four
decades (Section 2). Much of this research introduces par-
ticular definitions of productivity, such as computing pro-
ductivity based on the number of source lines of code per
hour [15]. Another body of research considers organizational
issues associated with productivity, such as the effect of the
workplace on programmer performance [14]. There is also
research focused at specific tools and approaches for improv-
ing productivity. For example, the Personal Software Pro-
cess (PSP) aims to help software developers improve their
skills and quality of work by tracking a number of mea-
sures, including schedule data [22]. Surprisingly, there has
been no work that we have been able to find that considers
when software developers perceive themselves to be produc-
tive and when they perceive themselves as unproductive.
This information can help inform how productivity is de-
fined, measured, assessed and supported by tools and best
practices.

In this paper, we gather data about software developers’
perceptions of productive and unproductive work through
two studies: a survey (Section 3) and an observational study
(Section 4). The survey we conducted had 379 responses
from individuals with an average of 9.2 (±7.3) years profes-
sional software development experience. Our analysis of the
survey responses found, amongst other results, that devel-
opers think about productive days in terms of ones in which
many or big tasks are completed without significant context
switching or interruption.

The observational study we conducted involved observing
11 professional software developers from three companies at
work for four hours each. As the developers worked, we col-
lected detailed logs of the tasks worked on and the programs
used to perform work, gathering a total of 2650 log entries.
We defined a task as a piece of work with a specific goal,
such as fixing a bug, and an activity as an action under-
taken by the developer during his work, such as navigating
code or reading an email.

We also performed semi-structured follow-up interviews
of the participants in this study. From this data, we found
that significant context switching between tasks and activ-
ities can occur with developers still perceiving themselves
as productive. The number of task switches we observed,
13.3 (±8.5) per hour on average, is similar to other reports
in the literature [20, 29]. The number of activity switches is
larger than reported in previous studies at 47 (±19.8) times
per hour on average. From this study, we gained insights
into the complexities involved with helping developers as-
sess their own productivity.

We conclude the paper with a discussion of ways in which
we might help developers retrospect upon their productivity
and share best practices (Section 5).

This paper makes three contributions:

● it presents results from a survey of 379 professional
software developers, describing their perceptions of when
their work is productive and what measurements of
productivity they might find useful,

● it presents the results of an observational study of 11
professional software developers, showing that produc-
tive work can occur in the presence of some kinds of
fast context switches, and

● it synthesizes the results of these two studies to sug-
gest ways in which we might better support developers
in reflecting upon their productivity and sharing best
practices.

2. RELATED WORK
Definitions of productivity share characteristics of typi-

cally being about efficiency, inputs and outputs. As one ex-
ample, the Oxford Dictionary defines productivity as “effec-
tiveness of productive effort, especially in industry, as mea-
sured in terms of the rate of output per unit of input” [37].
Often, the unit of input is time-based. Most research in
software engineering defines productivity along similar lines;
here are some examples:

● number of modification requests and added lines of
code per year [32],

● number of tasks per month [41],

● number of function points per month [25],

● number of source lines of code per hour [15],

● number of lines of code per person month of coding
effort [5],

● amount of work completed per reported hour of effort
for each technology [28],

● ratio of produced logical code lines and spent effort [21],

● average number of logical source statements output per
month over the product development cycle [30],

● total equivalent lines of code per person-month [35],

● resolution time defined as the time, in days, it took to
resolve a particular modification request [9], and

● number of editing events to number of selection and
navigation events needed to find where to edit code [27].

In this paper, we do not attempt to define productivity for
developers but instead we investigate how developers them-
selves think about productive versus non-productive work.

In contrast, the majority of the work we could find about
software development productivity focused on the organiza-
tional, not the personal, level. DeMarco and Lister found
evidence that characteristics of the workplace and organi-
zation have significant influence on the performance of pro-
grammers [14]. Boehm looked at large-scale possibilities for
improving outputs, such as hiring well and using better lan-
guages and tools [6]. Blackburn et al. correlated lines of code
per person month to aspects such as program size and team
size from survey data collected from Western Europe, Japan
and US, finding that time-to-market correlated with higher
productivity, while larger teams tend to have lower produc-
tivity [5]. Through a systematic literature review, Wagner
and Ruhe distilled a list of the main factors influencing pro-
ductivity, separating them into technical (e.g., product com-
plexity) and soft (e.g., manager capability) factors [40].

There are a lot fewer studies on productivity at the level
of an individual developer where the focus is on the study
of productivity, not on the effect of introducing a new tool
or process to improve productivity. One of the few recent
studies is by Kamma and Jalote who recorded and analyzed
the screens of highly productive developers (as identified by
managers) to identify characteristics of what makes develop-
ers productive when performing model-based testing activ-
ities. They found differences in the behaviors of the highly
productive developers that could be captured as best prac-
tices, such as that high productivity programmers moved all
required information to a common place and avoided refer-
ring to multiple documents when writing test cases [26]. The
studies we report on in this paper help describe more general
work practices that developers themselves see as productive.

To try to improve the productivity of software develop-
ers, many approaches have been suggested (e.g., Extreme
Programming [3]). A few approaches have been aimed more
specifically at improving productivity. The most notable of
these is the Personal Software Process (PSP), which aims
to help individuals improve their skills and quality of work
by collecting (often manually) a set of basic PSP measures
such as time, size, quality (defects), and schedule data [23,
22]. Johnson et al. [24] observed a “PSP adoption problem,”
which they attributed to the high overhead of PSP-style
metrics collection and analysis, and the requirement that
PSP users switch between product development and pro-
cess recording. To eliminate overhead and context switch-
ing, they introduced Hackystat which fully automates both
data collection and analysis. Our work is orthogonal to PSP
and Hackystat in that we explore what it means to devel-
opers to be productive and how they perceive productivity.
This information can inform the design of new tools focused
on aspects of productivity that developers care about the
most.

In the last twenty years, an increasing number of stud-
ies were conducted about how developers work. Perry and
colleagues’ paper that collected time diaries from develop-
ers and performed direct observation of developers at work
to see where they spent their time was one of the first [36].

Table 1: Sample Survey Questions.
Q10 Are you satisfied with your productivity last week?

(very unsatisfied, unsatisfied, undecided, satisfied,
very satisfied)

Q11 How did you assess if you were productive last week?

They found that work was typically performed in two hour
chunks, progress on a particular development task could end
up being blocked for various reasons, over half of the devel-
opers’ time was spent in interactive activities other than cod-
ing and there were seven unique personal contacts per day
on average. The data we present in this paper on the obser-
vational study we performed also found situations in which
developers were blocked (also similar to Ko et. al. [29]), but
we saw much less time being spent on any one task. Other
observational based studies have focused on specific areas
of development, such as novice programming [4], program
comprehension [38], software dependencies [13], information
needs [29], and change tasks [39]. The work we report on
in this paper is unique in considering the condition under
which developers perceive they are productive.

3. STUDY 1: SURVEY
To gain a broad sense of what productivity means to soft-

ware developers and how developers assess their productiv-
ity, we conducted a survey.

3.1 Participants and Method
The online survey had 28 questions: 8 on the participants’

background and experience, 7 on perceptions of productiv-
ity, 7 on goal setting and monitoring, 3 on techniques for
improving and monitoring productivity, and 3 on the raf-
fle participation and dissemination of results. 16 of the 28
questions had a closed set of answers from which a partic-
ipant selected, while 12 of the questions were open-ended.
Table 1 shows an example of a closed and an open-ended
question. None of the questions were obligatory and a par-
ticipant was allowed to drop out at any time. Depending
on a participant’s answers, some questions were filtered and
not presented to avoid asking unnecessary questions. Inter-
ested readers can download the complete survey from our
web site [1].

We announced the online survey on Twitter and in sev-
eral big online developer forums, including two big German-
speaking IT news portals.1 We also advertised within Mi-
crosoft, sending a personalized email to 1500 Microsoft em-
ployees and directing them to a special internal posting of
the survey. To incentivize participants, we held a raffle for
the online participants to win two 200 US$ Amazon gift cer-
tificates and one for the Microsoft participants to win two
50 US$ Amazon gift certificates. We ended up with 379
valid responses: 185 from the general advertisements and
194 from Microsoft. Of the 185 participants that completed
the survey from the general advertisement, the majority of
the participants was from Germany (32%) and Switzerland
(16%). Of all 379 participants, more than 93.4% of the par-
ticipants listed their job as software developer; the remaining
6.6% reported having experience in software development.
The average professional software development experience
per participant was 9.2 (±7.3) years.

1heise.de/developer and pocketpc.ch, verified 03/15/14

Table 2: Top 5 Reasons for a Productive Workday.
(#, %: Number and Percentage of Participants)

I have a productive workday when I . . . # %

complete tasks or goals 192 53.2
have no/few interruptions and distractions 182 50.4
have no meetings 79 21.9
have clear goals and/or requirements are set 72 19.9
plan my workday 62 17.2

3.2 Results
We begin by describing when and in what conditions par-

ticipants perceived their software development activities as
productive. We then describe how participants think they
could assess or measure their productivity. Since the re-
sponses to the open-ended questions largely overlap and
there are only minor differences between the ratings by par-
ticipants from within Microsoft and from the general adver-
tisement, we present the results aggregated over all partici-
pants.

A Productive Day.
We asked each participant to complete the sentence “I

have a productive workday when . . . ” in up to three differ-
ent ways. Table 2 summarizes the top five reasons mentioned
by participants for having a productive workday. Most par-
ticipants responded that their workday is productive when
they complete tasks, achieve their planned goals or make
progress on their goals (stated by 192, 53.2%). The second
most mentioned reason for having a productive workday is
getting into a “flow” without many “context-switches” and
with no or few interruptions and distractions (182, 50.4%).
Different kinds of distractions were described, ranging from
interruptions from co-workers asking questions, phone calls,
infrastructure issues, such as waiting for a build to complete,
to disrupting background-noise in the office. The remaining
three reasons of the top five all had substantially lower sup-
port: having no meetings (79, 21.9%), having clear goals
(72, 19.9%) and planning of a workday (62, 17.2%).

Productive and Unproductive Activities.
Other questions in the survey focused on developers’ per-

ceptions of productivity on a finer-grained level. For ex-
ample, we asked participants in two open-ended questions
about the activities they consider particularly productive or
unproductive in a workday.

The top five productive and unproductive activities men-
tioned by participants are summarized in Table 3. Unsur-
prisingly, the activities mentioned most frequently as partic-
ularly productive were coding related, including coding, test-
ing, bug fixing and code reviews (236 participants, 71.5%).
Despite this strong support for coding activities as produc-
tive, some participants (47, 14.2%) did mention certain as-
pects of coding as unproductive; these participants mostly
differentiated between productive coding activities, such as
implementing a feature, and unproductive ones, mainly de-
bugging and testing.

Many other activities had mixed responses as to whether
they were productive or unproductive. Most participants
(191, 57.9%) think meetings are unproductive and a waste
of time. However, 57 (17.3%) participants considered formal
and informal meetings as productive, particularly when the

0

50

100

150

200

5 = very

sa!sfied

4 = sa!sfied 3 = neutral 2 = unsa!sfied 1 = very

unsa!sfied

#
 o

f
P

a
r!

ci
p

a
n

ts
workday

last week

Figure 1: Developers’ Productivity Satisfaction.

meetings include decision making, have a clear focus and
goals, improve relationships between developers, help others
and when all meeting attendees are well-prepared. The main
reasons stated for unproductive meetings were missing goals,
lacking a preparation, too many participants attending the
meeting, or going over time.

Participants were also mixed on their views of email. 62
(18.8%) participants considered time spent on email as un-
productive, while a few (10, 3%) stated reading and writing
emails as a productive activity. The amount of emails ap-
pears to be a reason contributing to this activity being seen
as unproductive:

Tracking and responding to tons of emails [and] email com-
munications going back and forth for days together with no
closure. (MS23)

Other activities mentioned as being productive included plan-
ning (25, 7.6%), writing documentation and (administra-
tive) reports (22, 6.7%), modeling or designing an architec-
ture (18, 6.7%), or learning new things (11, 3.3%).

Assessing Productivity.
When asked to rate their productivity on the previous

workday and workweek on a Likert-scale from 1 (very un-
satisfied) to 5 (very satisfied), most participants were sat-
isfied with their work (see Figure 1, median of 4, mean
of 3.42, ±0.94). Only a few participants mentioned being
very satisfied (7.7%) or very unsatisfied (2.1%). The partic-
ipants reported assessing their productivity in a variety of
ways. Most (242, 78.1%) assessed their productivity on their

Table 3: Top 5 Productive and Unproductive Activ-
ities. (#, %: Number and Percentage of Participants)

%

Productive activities

coding (implementing new features, testing,
bug fixing, code reviews)

236 71.5

meetings 57 17.3

planning 25 7.6

reading/writing documentation and reports 22 6.7

designing or modeling an architecture (i.e. so-
lution for a programming problem)

18 5.5

Unproductive activities

meetings 191 57.9

reading/writing emails 62 18.8

unplanned work (e.g., solving problems, fight-
ing fires, unplanned tasks)

58 17.6

coding (testing, debugging, maintenance) 47 14.2

reading/writing documentation and reports 25 7.6

Table 4: What Participants Want to Measure.
(#, %: Number and Percentage of Participants)

%

Activities (how much time was spent where) 67 27.0
Achievements (actual work done, progress) 44 17.7
Value (usefulness of completed work, success
of feature, value to customer)

41 16.5

Time per task ratio 39 15.7
Number of context switches and distractions 36 14.5

progress in the past workday or workweek, largely through
tasks and work items completed. Several participants (86,
27.8%) mentioned other measures, such as lines of code,
number of commits, number of bugs found or fixed, num-
ber of test cases written and code reviews completed and
number of emails sent. Others (43, 13.9%) stated that they
use their feelings to assess their productivity.

Measuring Productivity.
We also asked participants about which measures might

be helpful to them to assess their productivity. In particu-
lar, we asked participants to rate 23 possible measures on a
five point Likert-scale, with 1 - they strongly disagree that
the metric would help them to assess their personal produc-
tivity and 5 - they strongly agree. The 23 measures were
identified by the authors in an iterative process taking into
account related work and responses from our pilot survey
participants. The results are presented in Figure 2.

The metric with the highest rating is“The number of work
items (tasks, bugs) I closed.” with a mean of 3.88 (±1.22).
This supports our findings presented above that participants
assess their productivity often based on their tasks or work
items completed. Overall, the means of all metrics lie be-
tween 2 and 4 with an overall mean of 3.14 (±0.35). 16
metrics were rated 3 or higher while only 7 metrics have val-
ues slightly below 3, showing that while the number of work
items closed might be considered helpful by a wide range
of participants, there is no single metric that is consider-
ably better than others to assess a developer’s productivity,
similar to what Card states in [8]. Furthermore, partici-
pants usually rated several metrics as helpful, and differed
in which metrics they considered more helpful, suggesting
that measuring one’s productivity is an individual task that
varies across developers. When further asked in an open-
ended question on what one would want to measure to meet
ones goals and improve ones productivity, 221 (89.1%) of
the participants who answered the question mentioned one
or multiple measurements. The measures varied a lot across
participants. The top five mentioned pieces of information
participants wanted to measure are presented in Table 4. 67
(27.0%) participants are interested in better knowing how
they spend their time on their computer, in meetings, or
taking breaks, as well as in comparing their time spent cod-
ing with time spent in meetings, time spent on personal tasks
and total work time. Developers were also interested in the
value of their work. 41 (16.5%) participants mentioned that
performing useful, necessary, and interesting work and hav-
ing the feeling of being necessary to the team or product is
very important.

27 (10.9%) participants explicitly stated that they would
not want to be measured, as they either think measuring
decreases their productivity, have privacy concerns or think
it is not possible to accurately measure productivity.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

The number of code elements (e.g. packages or classes) that I changed.

The number of code elements that I changed for the first me.

The number of lines of code that I changed per day.

The number of emails I wrote.

The number of commits I made.

The number of API methods I learned each day.

The me that I spent browsing the web for personal ma!ers during work.

The me it took me on average to respond to email.

The number of test cases I wrote that subsequently failed.

The me that I spent in each code project or package.

The me it takes me on average to sign off on code reviews.

The number of mee ngs I a!ended.

The me that I spent browsing the web for work related informa on.

The number of test cases I wrote.

The number of code reviews I’ve signed off.

The me I spent in mee ngs.

The number of work items I created.

The number of work items I created that were fixed.

The number of code reviews I’ve contributed to.

The me that I spent wri ng code.

The me I spend reviewing code.

The me I have spent on each work item.

The number of work items (tasks, bugs) I closed.

Knowing the following would help me assess my personal produc vity.

5 = strongly agree 4 = agree 3 = neutral 2 = disagree 1 = strongly disagree

Figure 2: Metrics for Assessing Productivity.

3.3 Threats to Validity
Since the survey participants might not be representative

of the general population of software developers, the gener-
alizability of our survey results might be limited. To mit-
igate this risk, we advertised our survey through various
channels to a large audience. Having gathered data from
software developers from various countries, and with differ-
ent levels of open-source and closed source experience, we
believe that our sample is fairly representative of software
developers and that it provides an interesting perspective.
Participants could freely decide whether to participate in the
study or not (self-selection). They were informed about the
survey’s topics, an estimated duration for the participation
and offered a raffle to incent their participation. This could
have biased the selection of participants as only participants
who could spare enough time or were interested in the in-
centive might have participated. We tried to mitigate this
risk by advertising through various channels and offering a
very generic incentive.

4. STUDY 2: OBSERVATION
The survey results raise many questions. For instance, is

there a common meaning between developers for what con-
stitutes a task or a context switch? Are all interruptions
necessary? How, when and what kind of email must devel-
opers process? To investigate some of the survey results in
more depth, we conducted an observational study of software
developers at work including follow-up interviews. To focus
the observational study, we extracted three themes from the
survey results:

1. the role of tasks in how developers work and how de-
velopers view productivity,

2. different views on the effect on productivity of various
kinds of activities, and

3. the role of uninterrupted work to be in “the flow”.

4.1 Participants and Method
This observational study involved 11 professional software

developers who were recruited from three international soft-
ware development companies of varying size (Table 5). We
used personal contacts and a recruiting email to solicit par-
ticipation. Of the 11 participants, two were female and nine
were male, and all resided either in the US or Canada. Par-
ticipants had an average of 5.4 years (±3.4, ranging from 0.5
to 8 years) of professional software development experience
and an average of 13.3 years (±8.3, ranging from 1.5 to 29
years) of total development experience. The primary work
area of all participants was development and the roles varied
between individual contributor and lead.

The study had two parts. In the first part, we observed
each participant for a total of four hours on a single work-
day: two hours before and two hours after lunch. In four

Table 5: Observational Study Participants (Dev: De-

velopm., PM: Project Management, IC: Individ. Con-

tributor).

ID
Primary

Role
Dev Experience

Work Area Prof. Overall

Company R

R1 Dev IC 8.0 14.0
R2 Dev Lead 7.5 8.5
R3 Dev Lead 5.0 11.0
R4 Dev IC 8.0 13.0

Company S

S1 Dev IC/Lead 7.5 14.5
S2 PM/Dev IC/Lead 4.0 22.0
S3 Dev IC 0.5 1.5
S4 Dev IC 12.0 29.0

Company T

T1 Dev IC 2.0 22.0
T2 Dev IC 2.0 5.0
T3 Dev IC 3.0 6.0

cases, we had to adapt the two sessions to accommodate for
the participant’s availability, still ensuring to have at least
one hour in the morning or afternoon and all four hours on
the same day. Before the first session, the observer, one of
the authors of this paper, introduced himself to the partic-
ipant as well as any colleagues working nearby, asking for
all to ignore him as much as possible. He then provided a
short introduction to the study and placed himself behind
the participant to prevent distractions while still being able
to read the screen contents of the participant, before asking
the participant to continue his workday. The observer noted
in an observation log each time the participant switched a
program on his computer, was interrupted by others or inter-
rupted him or herself, or switched a task while being in the
same program. Each entry in the observation log consists
of a time stamp, a reason for the switch, the program that
the participant switched to and the task that the participant
was working on. We defined a task as a piece of work with
a specific goal or intention, such as fixing a bug or review-
ing code changes for a specific work item. We inferred tasks
from the active programs on the screen and the information
considered in those programs, such as a work item consulted
before beginning to code. Ten minutes into the first session,
the observer briefly interrupted the participant to validate
the tasks the participant was working on to ensure the qual-
ity of the collected transcripts. The preparation and process
of the observation was inspired by Mintzberg’s protocol of a
structured observation session [31].

All observations were conducted by the same observer.
For the first session of the first participant, we cross-checked
the observations by having a second observer also record ob-
servations. Almost all events were noted by both observers.
Of the total of 202 entries for the first session, less than 10
log entries (4.9%) were not contained in both observer’s logs,
while all others matched, suggesting a high accuracy of the
primary observer’s logs. Due to confidentiality reasons, we
are not able to share the observation logs.

In the second part of the study, following the observations,
we interviewed each participant using a semi-structured ap-
proach by using a set of prepared questions as general guid-
ance. As part of this interview, the observer briefly discussed
the tasks a participant worked on during the two observation
sessions to verify the accuracy of the observation notes. The
bulk of the interview focused on gaining further insights into
the observations and to investigate themes arising from the
survey results. In particular, the questions focused on par-
ticipants’ perception and reflection of productivity, context
switches, work items, code check-ins, meetings and emails
and whether and how information on these might help to
assess a developer’s productivity. Interviews took between
34 and 51 minutes per participant, and were conducted in
person. Interested readers can download the interview guid-
ance notes from our website [1].

From the observation sessions, we collected transcripts of
a total of 44 hours of work with a total of 2650 observation
events over all 11 developers. During the data analysis, we
further determined the number of tasks a developer worked
on and categorized each program into one of the activity cat-
egories listed in Table 6, which we inferred from the survey
results and the observations using an open coding technique.
The logged time stamps were then used to calculate the du-
ration spent on interruptions, activities and tasks, amongst
others.

Table 6: Activity Categories for Observations.

Category
% of time over

all Observ.

Development
Code reading/editing/navigating code 32.3%
Debug debugging 3.9%
VC reading/accepting/submitting

changes
2.4%

TestApp testing application outside IDE 11.7%
Review performing code reviews 2.3%
DevOther other related to development 4.1%

Email reading/writing emails 4.9%
Planning editing work items/tasks/todos; cre-

ating/changing calendar entries
7.9%

ReadWriteDoc reading/editing documents and other
artifacts, e.g. pictures

2.7%

MeetPlanned scheduled meeting/call 4.9%
MeetInformal ad-hoc, informal communication; e.g.

unscheduled phone call / IM, or col-
league asks a question

13.1%

BrowsingRel Internet browsing related to
code/work/task

4.0%

BrowsingUnrel Internet browsing work unrelated 0.4%
Other Anything else, such as break or

changing music
5.4%

4.2 Results
Figure 3 illustrates the work of each participant over the

first observation session. Each participant is represented by
a row. Each row is divided into segments, with each segment
representing a particular task: when tasks are revisited the
same grey-scale is used to represent the task. Figure 3 also
shows the activities undertaken by each participant. The
occurrence of the start of an activity is indicated with a par-
ticular colored shape. The lines emanating from the activity
indicate the duration of an activity. For two participants,
three hours of work are represented as these participants
required the observation sessions to be split into one three
hour session and one one hour session. Full graphs of both
sessions are available here [1]. Our analysis of the data in
this section considers all of the data collected over the four
hours for each participant.

Theme 1: Tasks.
During the observation sessions, participants worked on

between 2 and 10 tasks (mean of 4.8, ±2.3) each, such as
fixing a bug, reviewing code, helping co-workers with a prob-
lem, or reading and writing emails. Each participant switched
frequently between tasks with a mean task switch rate of
13.3 (±8.5) times per hour. The average time spent on each
task was 6.2 (±3.3) minutes. When asked about whether the
workday observed was productive or not, 8 of the 11 partic-
ipants (73%) stated that they were fairly or very productive
during the observation sessions. The number of tasks worked
on in the time observed (2 to 10) is similar in magnitude to
the number of working spheres (13), a concept similar to our
use of task, observed by Gonzales and Marks in a study that
included a small number of software developers [20]. The
rate of task switching is similar to that reported in both [20]
and [29].

The participants mentioned several reasons during the in-
terview for why task switches occurred, including the need
to help co-workers make progress (T3, from company T),

to unblock them (S3 and S4, from company S), and to in-
terrupt themselves (all but two participants), similar to [29]
and [12]. The participants also mentioned that task switches
occurred when they were blocked themselves or waiting, such
as waiting for a build to finish. In these cases, the partic-
ipants mentioned that switching to email, code reviews, or
other small tasks can help increase their productivity. Five
of 11 participants (45%) also stated that making progress
on either many tasks or a difficult one (S1, S2, T2, R2, R4)
makes them perceive the day as productive. More experi-
mentation is needed to further narrow down what “many”
tasks means.

The results of this study also raise questions about the
relationships between tasks and trackable work items. From
the survey results, the highest rated measure for assess-
ing productivity (Figure 2) was the number of work items
closed. From our observations, we found that the partici-
pants worked on many more tasks than trackable work items.
When the participants were asked during the interview how
many work items they worked on during that day, answers
ranged from one to 13 and all participants stated that the
size of the work items varies.

There could be days where you’ve been working on one mas-
sive bug or issue or identified other sub-issues into it that
need to be resolved, but there could be other days where you
just got 20 bugs, but they are all little things. (R4)

The varying size of work items likely introduces problems
for using the measure of the number of work items closed as
a sole means of productivity assessment, at least for shorter
time periods, such as a day. Participants did mention the
use of the number of closed work items as one that is used
to reflect on a team’s productivity, such as in meetings as-
sociated with the end of an agile sprint.

Theme 2: Activities.
During the sessions, participants switched activities 47.0

(±19.8) times per hour, spending on average 1.6 (±0.8) min-
utes on an activity before switching. Table 6 shows the
percentage of time across the observation periods that de-
velopers spent in each activity. Unsurprisingly, given our
selection of participants, the largest amount of time was
spent on coding (32.3%), with testing the application also
taking an average of 11.7% of the observed time for each
participant.

Based on an n-gram analysis of the activities recorded,
we found that developers most frequently switched back and
forth between coding and testing. Following coding the next
activity was testing in 28.5% of the cases; a similar result
holds for switches from testing to coding. Coding was also
often superseded by an informal meeting (14.9%) either be-
cause someone asked a question or the participant asked
someone else a question. After an informal meeting, de-
velopers either went to coding (26.1%), testing (14.8%) or
right into planning (18.3%). Finally, emails were mostly
checked while coding (18.8%) or testing (19.4%) and devel-
opers generally returned to testing (20.7%), coding (17.2%)
or planning (19.5%) after the email check.

Interestingly, the second highest activity in terms of amount
of time spent (Table 6) was informal meetings (13.1%), rang-
ing from instant messages to a colleague interrupting and
asking a question. During the interviews, participants de-
scribed having between one and ten informal meetings per

day, taking anywhere from one minute to two hours. The
participants in this study agreed that unplanned, informal
meetings are usually productive as they are generally short
and efficient, and often succeed in helping to unblock a team
member.

Unlike the survey respondents, participants in the ob-
servational study found all meetings generally productive,
whether informal or formal. Participants in this study de-
scribed having five to ten planned meetings in the past work-
week, taking anywhere from 15 to 60 minutes each and uni-
formly stated that having more than two meetings a day
decreases their productivity. Participants did describe for-
mal meetings as more productive when only a few people
are involved, there is a concrete outcome and the partici-
pant feels useful in the meeting.

Most survey respondents described email activities as un-
productive (62, 18.8%) compared to productive (10, 3.0%).
When interviewed, participants in the observational study
did not consider emails as unproductive, given the small
fraction of time that email took up in their day. Table 6
shows that the participants spent on average just under 5%
of their time handling email during our observation. This
amount of time is similar to the time spent in formal meet-
ings and in taking breaks of various forms.

Each participant used on average 14.8 (±3.9) different pro-
grams during the observation. Several developers used mul-
tiple different programs to achieve a similar activity. For in-
stance, a few participants used two different development en-
vironments to develop software or two different email clients
to handle email.

Theme 3: Work Flow.
We were surprised by the number of task and activity

switches performed by the developers we observed. In par-
ticular, because the survey respondents as well as observed
developers had expressed concern that context switches lead
to a loss of productivity while 8 of the 11 (72.7%) develop-
ers observed making so many switches in the four hours,
felt that their sessions were productive. To understand the
relationships between task switches, activity switches and
context switches, we asked the participants in the observa-
tional study to define a context switch. The participants
predominantly described a context switch as a change in
thinking, as in:

When I have to stop thinking about one thing and start think-
ing about something else. (T1)

Participants did go on to discuss the range of context switches
from small ones, such as getting distracted due to back-
ground noise or switching between programs when working
on the same task (R2, R3), to switching between a main
task and small other tasks such as code reviews or writing
an email (R4) to switching between two cognitively different
tasks (R1). Although all participants agreed that context
switches generally reduced productivity, the cost or harm is
dependent upon the duration of the switch, the reason for
the switch and the focus on the current task. The longer the
switch the more expensive:

[To] stop and work on a different task is a more costly con-
text switch than writing a quick email. (S1)

Similarly, the more a developer is focused on a task, the
more expensive the switch:

Time [minutes]

S
u

b
je

c
t

0 30 60 90 120 150 180

T3

T2

T1

S4

S3

S2

S1

R4

R3

R2

R1

●
●

●
●

●
●
●●

●●
●●

●
● ●

●

●

● ●
●●●●

●
●

●●●

●●●
●●

●

51 activity switches

10 task switches, 3 distinct tasks

●

●
●
●

●

●●
●●

●
●●

●

●

●●

●
●

●
●●
●
●●

●●●
●

●

●

●
●

●

●
●
●●●
●
●
●
●●●
●
●●
●

●

●

●

●
●
●

●●

●

●
●
●

●

●●●●
●
●

●●

●
●●
●●
●

●
●
●

●

●
●

●

● ● ●

●
● ●●

●●
●

●

●
●

●●

●
●
●

●

●
●●●

●
● ●

●

● ●

●

●●

●
●

●●
●

166 activity switches

36 task switches, 3 distinct tasks

●

●●●●
●
●

●
●●
●●●

●
●
●
●

●
●
●

●

●

●

●●

●
●
●

●

●●●
●

●
●
●
●●●
●

●●
●

●

●

● ●
●

●

●
●●●
●

●

●
●
●●
●
●

●●

●

●
●●
●
●

●●
●●●

●●●●●

●

●
●●●●●●●●

●
●●

●

●
● ●●

●●

●

●●
● ●●

●
●

●

●

●
●
●

●●

●
●●●●

●●●

●

●●

●
●●
●●
●●

●

●●
●

●●●
●

●

● 230 activity switches

79 task switches, 4 distinct tasks

●●
●●

●

●●
●
●
●●●
●

●●
●
●●●●
●●

●●

●

●●●●●

●● ●
●
●
●●

●

●
●
● ●●

●●
●

●●

● ● ●

85 activity switches

13 task switches, 4 distinct tasks

● ●●

●●

●●
●

●

●

●●●
●●

●●
●●

●
●
●

●●
●

●

●

●

●
●
●

●
●

●● ● ●

●

●

●
●● ●

●
59 activity switches

20 task switches, 5 distinct tasks

●
●
●
●●

●
●
●●●●
●●●

● ● ●
●

●
●●

●●
●

●●●
●
●

●
●●

88 activity switches

17 task switches, 5 distinct tasks

●
●

●●●

●
●●●●●

●

●●
●
●
●
●●●●

●
●

●

●
●●●●●●

●
●

●●
●

●
●
●

●
●
●●

●●●●
●●
●

●●

●

●●
●

●

●●●
●
●

●
●
●

●
●

●

●

●●
●
●

●

●

●●

●●
●
●●

●●
●

●
●
●
● ●●

●

●●
●
●
●
●●●
●
●

148 activity switches

27 task switches, 4 distinct tasks

●
●
●
●●●

●●
●

●

●

●

●●
●●●

●●
●●● ●●

●

●
●●●

●●●
●

●

●
●
●●

●

●●

●●
●

108 activity switches

16 task switches, 5 distinct tasks

●

●

●
●
●

●
●●
●
●●

●

●

●●
● ●

●

● ● ●
● ●

●
●
● ●

●
66 activity switches

25 task switches

4 distinct tasks

●

●
●

●
●

●●●
●

●
●

●

●

●●●
● ●
●

●

●

●
●

●
●

●
●

●

● ●
●

●
●●

●●

●

●

102 activity switches

61 task switches

6 distinct tasks

●

●

●

●●●

●

●
●●●●●●●

●●

●

●●●

● ●
●
●
●

●

●
●●●●
●●●

●
●

●●
●●
●
●●●●

● ●
●
●●● ●

●

●●
●
●

●●

96 activity switches

28 task switches, 4 distinct tasks

●

●

●

●

●

●

Dev:VC
Dev:Debug
Dev:Code
Dev:Review
Dev:TestApp
Dev:Other
BrowsingRel
BrowsingUnrel
MeetInformal
MeetPlanned
Email
Planning
ReadWriteDoc
Other

Figure 3: Developers’ Activity and Task Switches in the First Observation Session (for a figure of all sessions,
please visit www.ifi.uzh.ch/seal/people/meyer/developers-productivity). © Meyer, Fritz, Murphy, Zimmer-
mann.

Depends on where I was, if it was a critical section, it is
really hard to get back to focus on that task, even if it only
was for like 30 seconds. (R3)

And also, switching away from a creative task for which
more focus is required is more expensive than switching
from a routine task (S2). Finally, a self-inflicted context
switch, such as going for a coffee break or writing a quick,
task-unrelated email, is less expensive than externally im-
posed switches, such as interruptions by co-workers or an
unplanned task (S2, T2).

The distinctions in the kinds of context switches help ex-
plain why the participants felt their work sessions were pro-
ductive despite high numbers of task and activity switches.
In particular, we observed the participants often switching
to simple tasks, such as reviewing code for 30 seconds or
answering an email, without apparent significant impact to
a primary task, such as fixing a bug. Developers also adapt
to waiting times, such as waiting for builds to complete, by
performing low cost switches to tasks on which they could
make progress. These short fast task switches are even faster
than those reported by Gonzales and Marks in a study of
business analysts, software developers and managers; they
reported fast task switches as spending approximately two
and a half minutes at a time on email [20].

4.3 Threats to Validity
The small number of participants in our observation and

interview study, the use of personal contacts for inviting par-
ticipants and the short sessions capturing a total of 44 hours
of work might limit the generalizability of the results of this

study. We tried to address this threat by selecting partici-
pants from three different international software companies.
Furthermore, the strength of our mixed method approach
allowed us to triangulate findings obtained through the sur-
vey study with the results from the observations and follow
up interviews. Additionally, participants were observed in
their normal real-world work and not during an experimen-
tal exercise.

Another limitation might be the study setting of observ-
ing participants for 4 hours in one day. Participants could
have had a particularly productive or unproductive day, or
other factors could have influenced them. Furthermore, by
sitting behind the participant and observing him or her, the
observer might have been a source of distraction, influenced
the work style or prevented interruptions by co-workers. We
tried to mitigate this risk by splitting up the session into two,
two-hour sessions, sitting as far away from the participant as
possible and telling co-workers beforehand about the study
and that they should continue and interrupt as usual.

The collection and categorization of data poses another
threat to validity, since it is not straightforward to identify
task switches or not miss any switches. To mitigate these
risks, all observations were done by the same researcher and
task switches were confirmed with participants. A cross-
validation was also done for the first session, showing signif-
icant agreement between the two observers.

Finally, the interviews and qualitative analysis was per-
formed by one author using grounded theory techniques,
such as open, axial and selective coding. To avoid observer
bias, several parts of the survey, interview and observation
were analyzed and open coded by at least one more author.

5. DISCUSSION
Our findings contribute new knowledge about how devel-

opers perceive their own productivity and how it relates to
their software development work. Despite the general in-
terest of our participants in assessing and improving their
productivity, there is little tool support to help them and
few best practices recorded. Opportunities exist to better
support developers in managing and improving their work
to achieve higher productivity levels.

Tools for Retrospective Analysis.
Self-monitoring can provide valuable insights into one’s

own behavior and reflection about self-monitored informa-
tion can be used to change one’s behavior (e.g., [33], [17]). In
particular, activity tracking devices have been shown to be
successful in promoting individuals to adopt a more active
lifestyle (e.g., [11, 18]). There has been growing interest in
this area with devices such as the Fitbit2, which tracks such
information as the number of steps per day and the number
of stairs walked per day, and the Nike+ Fuelband3 which
aggregates such individual measures into a proprietary no-
tion of fuel. Given that participants in our two studies did
assert interest in measuring their productivity, what might
similar individual or aggregate measures be that are useful
for tracking and reporting to software developers?

Although developers in our survey suggested many pos-
sible individual measures (Figure 2), further investigation
of the top ranked item in our observational study indicated
the difficulty of using one simple metric, in this case, num-
ber of work items closed. Taken together, the results of the
two studies suggest that there might not be a single and/or
simple measure for a developer’s productivity. For example,
while summarizing the time developers spent on certain ac-
tivities during the day might provide some insight, as for
example done by Codealike4, to be more meaningful it has
to be combined with measures that also provide a certain,
possibly personal, assessment of the productivity of the time
spent, such as the progress made towards certain tasks, the
value of the task for the customers, or how focused the de-
veloper was during the time. Based on a combination of
such measures, some of which might be qualitative rank-
ings by a developer, one might be able to abstract these to
an overall productivity level for a day, not unlike the Nike
fuel idea. Seeing fluctuations in an abstracted measure may
provide sufficient support for a developer to retrospect on
how work was performed, particularly if detailed informa-
tion could be provided, such as the visualization of task and
program switches in Figure 3, to support the retrospection.

We believe the benefit of enabling and driving retrospec-
tion may be the key rather than trying to define measures
that can be compared across individuals or across organiza-
tions. By driving productivity for the individual in a person-
alized way, we can also help assuage privacy concerns men-
tioned by the participants in our studies with who might be
able to see productivity information and to whom it might
be compared, such as co-workers. We plan to investigate ag-
gregate approaches to visualizing and reporting productivity
that are driven by the individual and assess how the provi-

2fitbit.com, verified 03/15/14
3www.nike.com, verified 03/15/14
4codealike.com, verified 03/15/14

sion of such information enables retrospection and hopefully
drives up productivity.

Reducing Context Switches.
Participants in our study mentioned that being focused

and “in the flow” without context switches increases their
productivity. We can see benefits in visualizing context
switches to developers and using rates or measures based on
context switches as part of an aggregate measure of produc-
tivity in a given time period. However, this raises the ques-
tion of how one can automatically identify context switches
in a developer’s work given that the switch is based not only
on the program used, not only on the task defined, but on
the semantics of the work the developer is performing. For
instance, a developer might be switching to respond to a
personal email after writing an email to a colleague about a
problem in the code, thus staying in the same program but
still switching context. Participants in our observational
study clearly stated that quick context switches to perform
such a task, as reading email while waiting for a build, did
not impact productivity but switches that require a change
in thinking are most costly and do impact productivity. In-
vestigation is needed to determine whether it is possible to
correlate program switches to help enable the determination
of the cost of a context switch, for instance, a switch from
a program that enables builds to be launched to email may
be considered a low cost context switch. Investigation is
also needed to determine if analysis of the information in
programs used adjacently can help in assessing the cost of a
context switch. Perhaps the combination of the correlation
of program usage with the correlation of information in ad-
jacently used programs can help assess whether it is more
likely that the switch is between semantically different tasks
rather than just a program switch and thus more likely to
have a high cost. This information could be helpful in the
development of aggregate and individual productivity mea-
sures and could be helpful to support developers in reflecting
upon their work habits.

Even without knowledge of the exact cost of a specific
context switch and without being able to retrospectively an-
alyze one’s productivity in terms of context switch behavior,
there are multiple strategies that can help to avoid or pre-
vent context switches. The ones mentioned by our study
participants ranged from closing the email client and shut-
ting off notifications, to listening to music, closing the office
door, scheduling a meeting with oneself, coming in early to
work, or working from home. One team even used an ex-
plicit indicator for avoiding work disruptions by others at
certain times:

[..] all devs in our team also have a physical light on top of
our monitors that reflects our lync status, so people walking
by can see not to disturb. This has been really useful in re-
ducing random interruptions. (MS5)

There is a trade-off though between an individual devel-
oper’s productivity gain by avoiding interruptions from co-
workers and a team’s productivity loss. With a better as-
sessment of the impact a context switch would have on a
developer’s productivity, one could devise approaches to op-
timize the productivity gain.

Setting Goals.
The setting of goals is another technique that can be used

to motivate and enforce a behavior change. For example,
goal-setting has been shown to be successful in motivating
people to be more active, in particular in combination with
self-monitoring (e.g. [10, 7]). When it comes to software de-
velopment, many of our participants stated they set goals
for themselves on a daily or weekly basis. Although the de-
velopers did not necessarily believe that goal-setting helped
them increase their productivity, they stated that the goals
provide an overview of their tasks, allow them to prioritize
work and to better react in cases of unplanned tasks, which
were mentioned to be a major detriment to being and feel-
ing productive. Goals are often written down in a simple
todo list and allow developers to measure their progress and
productivity, creating a certain happiness and satisfaction
when the goals are met. However, as with a more general
retrospection of a developer’s productivity, monitoring goals
either requires manual work by the developer or measures
that can be tracked automatically, and describe the progress
towards fulfilling a goal.

As with monitoring, several participants fear the nega-
tive effect goal monitoring can have and stated that the ad-
ditional time needed for monitoring could better be used
for actual work. From talking to developers, it seems how-
ever that the overhead of setting goals, is negligible and well
worth it since it helps to better structure the next workday
and thus make them more focused. This approach is a best
practice that could be shared amongst developers.

6. CONCLUSION
To investigate how developers perceive and assess their

own productivity, we conducted two studies, a survey with
379 professional software developers and an in-person ob-
servation study with 11 professional developers in three dif-
ferent companies. The survey results show that while most
participants considered coding highly productive, there are
several activities, such as meetings and handling emails, that
are more difficult for developers to assess with respect to pro-
ductivity. The results also show that while progress made
on work items is considered as one of the better measures to
assess productivity, there is no simple and single best mea-
sure to use. Developers also like to organize their work to
get in “the flow” so as to have few interruptions and context
switches. Interestingly, the observation data we collected
paints a different picture, showing that developers experi-
ence a high number of switches in their work, switching tasks
every 6.2 minutes and activities every 1.6 minutes. The rea-
son why developers still feel productive is the varying cost
associated with these varying forms of context switches.

Based on this data, we propose a number of ways to im-
prove a developer’s productivity through tool support and
the sharing of best practices. For instance, tool support
to recognize context switches and visualize the switches to
a developer may help a developer in retrospecting on their
own productivity. There are also interesting avenues to ex-
plore in terms of helping developers define aggregate per-
sonal productivity measurements for tracking and retrospec-
tion. With more support for retrospection on productivity,
developers may be able to better share best practices, such
as goal setting best practices discussed by participants in
our observational study.

7. ACKNOWLEDGMENTS
The authors would like to thank the participants in the

survey and observational study. The authors would also
like to thank Chris Bird for his help and the anonymous
reviewers for their helpful feedback. This work was funded
in part by NSERC.

8. REFERENCES
[1] www.ifi.uzh.ch/seal/people/meyer/developers-

productivity.

[2] M. Andreessen. Why software is eating the world. The
Wall Street Journal, August 20, 2011.

[3] K. Beck and C. Andres. Extreme programming
explained: embrace change. Addison-Wesley, 2004.

[4] A. Begel and B. Simon. Novice software developers, all
over again. In Proceedings of the Fourth International
Workshop on Computing Education Research, ICER
’08, pages 3–14. ACM, 2008.

[5] J. Blackburn, G. Scudder, and L. Van Wassenhove.
Improving speed and productivity of software
development: a global survey of software developers.
IEEE Transactions on Software Engineering,
22(12):875–885, 1996.

[6] B. W. Boehm. Improving software productivity.
volume 20, pages 43–57. IEEE, 1987.

[7] D. M. Bravata, C. Smith-Spangler, V. Sundaram,
A. L. Gienger, N. Lin, R. Lewis, C. D. Stave, I. Olkin,
and J. R. Sirard. Using pedometers to increase
physical activity and improve health: A systematic
review. Jama, 298(19):2296–2304, 2007.

[8] D. N. Card. The Challenge of Productivity
Measurements. In Pacific Northwest Software Quality
Conference, pages 1–10, 2006.

[9] M. Cataldo, J. D. Herbsleb, and K. M. Carley.
Socio-technical congruence: A framework for assessing
the impact of technical and work dependencies on
software development productivity. In Proceedings of
the Second ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement,
ESEM ’08, pages 2–11. ACM, 2008.

[10] S. Consolvo, P. Klasnja, D. W. McDonald, and J. A.
Landay. Goal-setting considerations for persuasive
technologies that encourage physical activity. In
Proceedings of the 4th international Conference on
Persuasive Technology, pages 8:1–8:8. ACM, 2009.

[11] S. Consolvo, D. W. McDonald, T. Toscos, M. Y. Chen,
J. Froehlich, B. Harrison, P. Klasnja, A. LaMarca,
L. LeGrand, R. Libby, et al. Activity sensing in the
wild: a field trial of ubifit garden. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems, pages 1797–1806. ACM, 2008.

[12] L. Dabbish, G. Mark, and V. M. González. Why do i
keep interrupting myself?: Environment, habit and
self-interruption. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI ’11, pages 3127–3130. ACM, 2011.

[13] C. R. B. de Souza and D. F. Redmiles. An empirical
study of software developers’ management of
dependencies and changes. In Proceedings of the 30th
International Conference on Software Engineering,
ICSE ’08, pages 241–250. ACM, 2008.

[14] T. DeMarco and T. Lister. Programmer performance
and the effects of the workplace. In Proceedings of the
8th International Conference on Software Engineering,
ICSE ’85, pages 268–272. IEEE, 1985.

[15] P. Devanbu, S. Karstu, W. Melo, and W. Thomas.
Analytical and empirical evaluation of software reuse
metrics. In Proceedings of the 18th International
Conference on Software Engineering, ICSE ’96, pages
189–199. IEEE, 1996.

[16] E. W. Dijkstra. The humble programmer.
Communications of the ACM, 15(10):859–866, 1972.

[17] B. J. Fogg. Persuasive technology: Using computers to
change what we think and do. Ubiquity, 2002:5, 2002.

[18] T. Fritz, E. M. Huan, G. C. Murphy, and
T. Zimmermann. Persuasive technology in the real
world: A study of long-term use of activity sensing
devices for fitness. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
2014. to appear.

[19] W. Gibbs. Software’s chronic crisis. Scientific
American, 271(3):86–94, 1994.

[20] V. M. González and G. Mark. ”constant, constant,
multi-tasking craziness”: Managing multiple working
spheres. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’04, pages
113–120. ACM, 2004.

[21] H. Hulkko and P. Abrahamsson. A multiple case study
on the impact of pair programming on product
quality. In Proceedings of the 27th International
Conference on Software Engineering, ICSE ’05, pages
495–504. ACM, 2005.

[22] W. S. Humphrey. Introduction to the Personal
Software Process. Addison-Wesley Professional, first
edition, 1996.

[23] W. S. Humphrey. Using a defined and measured
personal software process. IEEE, 13(3):77–88, 1996.

[24] P. M. Johnson, H. Kou, J. Agustin, C. Chan,
C. Moore, J. Miglani, S. Zhen, and W. E. J. Doane.
Beyond the personal software process: Metrics
collection and analysis for the differently disciplined.
In Proceedings of the 25th International Conference on
Software Engineering, ICSE ’03, pages 641–646. IEEE,
2003.

[25] C. Jones. Software metrics: good, bad and missing.
Computer, 27(9):98–100, 1994.

[26] D. Kamma and P. Jalote. Effect of task processes on
programmer productivity in model-based testing. In
Proceedings of the 6th India Software Engineering
Conference, ISEC ’13, pages 23–28. ACM, 2013.

[27] M. Kersten and G. C. Murphy. Using task context to
improve programmer productivity. In Proceedings of
the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, SIGSOFT
’06/FSE-14, pages 1–11. ACM, 2006.

[28] R. B. Kieburtz, L. McKinney, J. M. Bell, J. Hook,
A. Kotov, J. Lewis, D. P. Oliva, T. Sheard, I. Smith,

and L. Walton. A software engineering experiment in
software component generation. In Proceedings of the
18th International Conference on Software
Engineering, ICSE ’96, pages 542–552. IEEE, 1996.

[29] A. J. Ko, R. DeLine, and G. Venolia. Information
needs in collocated software development teams. In
Proceedings of the 29th International Conference on
Software Engineering, ICSE ’07, pages 344–353. IEEE,
2007.

[30] J. A. Lane and D. Zubrow. Integrating measurement
with improvement: An action-oriented approach:
Experience report. In Proceedings of the 19th
International Conference on Software Engineering,
ICSE ’97, pages 380–389. ACM, 1997.

[31] H. Mintzberg. The nature of managerial work. Theory
of management policy series. Prentice-Hall, 1980.

[32] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two
case studies of open source software development:
Apache and mozilla. ACM Transactions on Software
Engineering and Methodology, 11(3):309–346, 2002.

[33] S. Munson. Mindfulness, reflection, and persuasion in
personal informatics. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
2012.

[34] P. Naur and B. Randell. Software engineering: Report
of a conference sponsored by the nato science
committee. Scientific Affairs Division, NATO, 1969.

[35] V. Nguyen, L. Huang, and B. Boehm. An analysis of
trends in productivity and cost drivers over years. In
Proceedings of the 7th International Conference on
Predictive Models in Software Engineering, Promise
’11, pages 3:1–3:10. ACM, 2011.

[36] D. E. Perry, N. A. Staudenmayer, and L. G. Votta.
People, organizations, and process improvement.
Software, IEEE, 11(4):36–45, 1994.

[37] O. U. Press. Oxford dictionary.
www.oxforddictionaries.com/us/definition/american
english/productivity.

[38] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej.
How do professional developers comprehend software?
In Proceedings of the 2012 International Conference
on Software Engineering, ICSE 2012, pages 255–265.
IEEE, 2012.

[39] J. Sillito, G. C. Murphy, and K. De Volder. Questions
programmers ask during software evolution tasks. In
Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
SIGSOFT ’06/FSE-14, pages 23–34. ACM, 2006.

[40] S. Wagner, M. Ruhe, and A. Siemens. A systematic
review of productivity factors in software
development, 2008.

[41] M. Zhou and A. Mockus. Developer fluency:
Achieving true mastery in software projects. In
Proceedings of the Eighteenth ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, FSE ’10, pages 137–146. ACM, 2010.

