
Expert Recommendation with Usage Expertise

David Ma
University of Calgary
davma@ucalgary.ca

David Schuler
Saarland University

ds@cs.uni-sb.de

Thomas Zimmermann
Microsoft Research

tz@acm.org

Jonathan Sillito
University of Calgary
sillito@ucalgary.ca

Abstract

Global and distributed software development increases the
need to find and connect developers with relevant expertise.
Existing recommendation systems typically model expertise
based on file changes (implementation expertise). While
these approaches have shown success, they require a sub-
stantial recorded history of development for a project. Pre-
viously, we have proposed the concept of usage expertise,
i.e., expertise manifested through the act of calling (using)
a method. In this paper, we assess the viability of this con-
cept by evaluating expert recommendations for the ASPECTJ
and ECLIPSE projects. We find that both usage and im-
plementation expertise have comparable levels of accuracy,
which suggests that usage expertise may be used as a sub-
stitute measure. We also find a notable overlap of method
calls across both projects, which suggests that usage exper-
tise can be leveraged to recommend experts from different
projects and thus for projects with little or no history.

1. Introduction

Current approaches for automated developer recommenda-
tion systems are rooted in variations of the Line 10 Rule to
determine experts for files. The Line 10 Rule stems from
a version control system that stored the commit author in
line 10 of the log message. Through the act of changing
a file, the developer is considered to have gained expertise
for the said file. This type of expertise is also referred to
as implementation expertise [1]; see Section 2 for more
related work. While such approaches have shown promise,
the implicit criteria for recommending a developer for a file
is that there must be at least one commit by the developer
for the file. Thus such systems cannot be applied to files or
projects with no or little history.

In earlier work, we proposed usage expertise [9]; the ac-
cumulation of expertise by calling (using) methods. Simply
by calling a method, a developer demonstrates that they at
the very least know what the method does (without knowing
implementation details). In this paper, we argue that devel-

opers also have an implicit understanding of the existing
method calls surrounding the location of change. In other
words, by adding a method call developers demonstrate us-
age expertise for the added method call and the surrounding
context. We describe the set of heuristics that we use to in-
fer expertise from developer activities in Section 3.

In our experiments on the ECLIPSE and ASPECTJ
projects in Sections 4 and 5, we compare the accuracy of
recommendations based on usage expertise (including the
context) with recommendations based on implementation
expertise. Usage expertise, with context, can recommend
with similar accuracy as implementation expertise. Fur-
thermore, we propose a way of leveraging usage exper-
tise to recommend developers from projects that use the
same external libraries/frameworks (recommending across
projects). The implications of this are that not only can us-
age expertise produce cross-project recommendations but
also, that it can possibly recommend for projects with no or
little history.

2. Related Work

Researchers in the area of recommender systems have in-
vestigated how to recommend experts based on a mined his-
tory of development. Some approaches analyze source code
changes as evidence of expertise and recommend based on
the size, relation or frequency of contributions [2, 6]. Some
approaches chose to aggregate source code changes with ar-
tifacts related to the development process. Such examples
include bug reports [1], calls to tech support [5] or meta-
data for changes [7]. Other research has delved into ex-
pertise modeling based on artifacts other than source code.
Such examples include developer-IDE interaction patterns
[8] and vocabulary used within bug reports [4].

These approaches are specific to a given project. Thus
not only is a substantial history of activity required, this his-
tory is not portable to other projects. By mining usage ex-
pertise instead, we get project independent expertise (e.g.,
for external libraries) transferable across projects. This
could allow us to recommend for newcomers to projects or
the recommendation for code with little or no history.



3. Quantifying Expertise

To make recommendations, we must first record developer
activity in the form of an expertise profile. With an aggre-
gated profile we can then apply heuristics to infer the degree
of expertise developers have for a set of methods. This pa-
per presents an abridged account of how expertise is mod-
eled. For more details, we refer to a technical report [3].

Expertise Profiles
Developer activity is modeled with methods and method
calls as units of expertise. Given a reconstructed CVS com-
mit by a developer, we extract the added or changed meth-
ods by a developer and the frequency of changes into the de-
veloper’s implementation profile. Similarly, added method
calls and the frequency of calls are extracted into the devel-
oper’s usage profile. We repeat this process for all commits.

Scoring Expertise
Using the implementation profile of a developer and a query
in form of a set of methods, we infer the developer’s apti-
tude for the query as follows:

Frequency of changes. Committing changes is evidence
of expertise and by extension more changes implies
more expertise. Thus the most qualified developer for
a queried set of methods will be the developer with the
highest total adds/changes for members of the set.

Recency of changes. Recent changes imply that a devel-
oper is still familiar with the details. Given that com-
mit times are represented as timestamps, the developer
with the most recent knowledge (most expertise) is the
developer having the largest sum of timestamps.

Similarly, we can also infer aptitude with heuristics based
on usage profiles. We propose four possible measures be-
cause we do not know yet which heuristic yields the “best”
recommendations and to gain insight into what character-
izes an effective measure.

Depth of usage. Each call for a method is quantified as a
linear increase in expertise for the method. Thus for a
set of methods the developer with the most expertise is
the developer with the largest sum of calls.

Relative depth of usage. Frequency of calls by a single
developer are normalized relative to frequency of calls
by the entire developer population. Commonly used
methods are weighed less than rarely called methods.

Breadth of usage. Here we consider developers to have
expertise for a method with at least a single call. Thus
the best developer(s) for a queried set of methods are
the developers who have called the most members of
the set at least once.

Experiment 3

1 2 3 n

Profiles

1
Heuristic_1 Expert Within

Top-N?

Heuristic_n
Query

3

Expert Within
Top-N?

Profiles

1
Heuristic_1 Expert Within

Top-N?

Heuristic_n
Query

2

Expert Within
Top-N?

Experiment 2

2

January 06 October 06

Figure 1. Experiment Overview

Relative breadth of usage. Again we consider developers
calling methods at least once to have knowledge. How-
ever, calls to methods used by a large portion of devel-
opers is scored lower than methods called by only a
few developers. This measure favors developers who
have called the widest range of methods with an em-
phasis on rarely called methods.

4. Methodology

In our study we investigated the ECLIPSE and ASPECTJ
projects over the period of January 2006 until October 2006.
This period was selected according to three criteria. First,
because of previous experience with this data. Second, we
wanted sufficient volume of commits to avoid the potential
for individual commits to skew data. Third, because exper-
tise decays over time we wanted to limit the span of time.

Figure 1 depicts an overview of our experiments. Given
a commit we train expertise profiles for each developer with
data prior to the commit. Changes recovered from the com-
mit form a set of methods (implementation query) and set
of method calls (usage query). Profiles and queries serve
as input to heuristics which produce an ordered list of de-
velopers with the most expertise. Expertise profiles are then
incrementally updated using the changes recovered from the
current commit and the above procedure is repeated again
for all remaining commit operations. The accuracy of rec-
ommendations is then the percentage of times a “success-
ful” recommendation appears within the Top-N results.

We now discuss how to form queries and how to de-
fine success for two different experiments: recommending
within and across projects.



Recommending Within Projects
These experiments compare the precision of usage and im-
plementation expertise in the context of providing recom-
mendations for individual projects. To perform this com-
parison, we test with three different types of queries:

Implementation. The methods added or changed during a
commit.

Usage. The method calls added during a commit

Usage with context. The method calls added during a
commit combined with the method calls added prior
to the commit in the same location (context).

Here a successful recommendation is when the expert (i.e.,
the actual commit author) appears within the Top-N recom-
mendations. The underlying assumption is that the commit-
ted change set is evidence that the commit author had the
expertise to do so. In some cases, we may recommend de-
velopers with sufficient expertise but who did not actually
perform the change. Accounting for such situations would
increase the hit rates. In other words, the hit rates reported
should be consider as a lower bound.

Recommending Across Projects
These experiments explore the possibility of making cross-
project recommendations by leveraging usage expertise. In
other words, is it possible to recommend developers work-
ing in the ECLIPSE project for tasks on the ASPECTJ project
(or vice versa)?

To test this we now consider commits from both projects.
For any given commit we train usage profiles on data, be-
longing to either project, occurring prior to the commit. We
limit our possible queries to only the method calls added
during a commit (i.e., the Usage scenario from above).

We define a recommendation as successful when a de-
veloper from a different project is recommended within
the Top-N recommendations. Note that this experiment is
rather a demonstration of the feasibility of recommending
developers across projects. We not yet certain whether the-
ses recommendations are indeed “good” recommendations,
this will be part of our future work.

5. Results

Implementation and usage expertise within projects.
Figure 2 illustrates our results for recommending within
projects. On the left-most plot we observe favorable results
when recommending for projects with small development
teams (ASPECTJ). With only one recommendation (N = 1),
3 of 4 usage based measures perform close to the best im-
plementation based heuristic. As N increases the difference
quickly becomes negligible.

This trend, however, does not repeat for ECLIPSE project
(middle plot). We speculate that the disparity in results
could possibly be attributed to the scope of dependencies
on external libraries. As a smaller and more focused project,
ASPECTJ developers are likely to manipulate less code and
by extension, a narrower set of method calls. Thus it is
less likely that usage patterns for libraries overlaps which in
turn, results in stronger evidence for the heuristics.

Context improves accuracy of usage expertise.

Given as few as the Top-2 recommendations we see that
Change Frequency is roughly 75% accurate. Unsurpris-
ingly, this means only a handful of developers contribute
the bulk of contributions for most methods. The implica-
tions of this behavior can explain the marked improvement
when using context (right-most plot of Figure 2). It is prob-
able that developers understand the calls surrounding the
location of change, given that they were directly responsi-
ble for adding the previous methods; evidence that querying
with context is based on solid ground.

On different usage expertise heuristics.

Results do not clearly depict any one heuristic as superior.
Thus we cannot yet conclude how to best leverage usage
expertise for recommendation. Conversely, it may also be
the case that perhaps inferring based on breadth or relative
depth of expertise are indeed effective. What we can state
is when considering the commit author as the only accurate
expert, inferring with Depth yields lower hit rates. Relative
Depth favors rarely called methods which may accurately
model the behavior of commit authors (whereas Depth does
not normalize weights). Also note that the commit author
may not be the sole expert and thus these results should be
considered a lower bound.

On Recommending Across Projects

Figure 3 paints a favorable picture regarding the prospects
of recommending across projects. Intuitively, for the hit
rate to be as high as 75%, there must be sufficient over-
lap in the calls to external libraries. By extension this
means that recommendations are at the very least, possi-
ble. When rarely called methods are given more weight
(Relative Depth/Breadth), we are more likely to recommend
inter-project developers, given that the overlap of internal
methods is likely to be low.

While we cannot claim for our experiment that the cross-
project recommendations are in fact “good” recommenda-
tions, we demonstrated the feasibility of providing recom-
mendations across projects. Assessing the quality of these
recommendations is only possible with user studies; which
we leave as future work.



0%

25%

50%

75%

100%

1 2 3 4 5

AspectJ
O

v
e
ra

ll 
H

it
ra

te

Top-N

Depth Breadth Relative Depth Relative Breadth Change Frequency Recent Changes

0%

25%

50%

75%

100%

1 2 3 4 5

Eclipse

Top-N

0%

25%

50%

75%

100%

1 2 3 4 5

Eclipse

Top-N

Figure 2. Recommendations within projects. Implementation (light) versus usage expertise (dark).
Left: ASPECTJ implementation and usage expertise; middle: ECLIPSE implementation and usage
expertise; right: ECLIPSE implementation and usage expertise (with context queries).

6. Consequences and Conclusions

In this paper we showed empirically that usage expertise
produces recommendations with an accuracy comparable to
implementation expertise. We also presented an approach to
improve recommendations by also considering the implicit
understanding of the surrounding context.

Our results also revealed that between the ECLIPSE and
ASPECTJ project there is a substantial overlap of calls to
external (or shared) libraries; alluding to the possibility of
cross-project recommendations. While we could not as-
sess the correctness of cross-project expert recommenda-
tions, we have demonstrated the possibility in this paper.
We expect that the precision will be similar across projects
to the precision within projects, for which usage expertise
performs similar to implementation expertise.

To summarize, usage expertise can enhance traditional
expert recommendation systems. In particular, they will al-
low recommendations for files and projects with little to no
history and from unrelated parts of a project.

0%

25%

50%

75%

100%

1 2 3 4 5

C
ro

s
s
 P

ro
je

c
t 

R
e
c
o

m
m

e
n
d

a
ti
o

n
s

Depth Breadth
Relative Depth Relative Breadth

Figure 3. Recommending Across Projects

References

[1] J. Anvik and G. C. Murphy. Determining implementation expertise
from bug reports. In MSR ’07: Proceedings of the Fourth Interna-
tional Workshop on Mining Software Repositories, 2007.

[2] H. H. Kagdi, M. Hammad, and J. I. Maletic. Who can help me with
this source code change? In ICSM ’08: Proceedings of the Interna-
tional Conference on Software Maintenance, pages 157–166, 2008.

[3] D. Ma, D. Schuler, T. Zimmermann, and J. Sillito. Exper-
tise recommendation with usage expertise. Technical report, De-
partment of Computer Science, University of Calgary, July 2009.
https://dspace.ucalgary.ca/.

[4] D. Matter, A. Kuhn, and O. Nierstrasz. Assigning bug reports using
a vocabulary-based expertise model of developers. In MSR ’09: Pro-
ceedings of the 2009 6th IEEE International Working Conference on
Mining Software Repositories, pages 131–140, May 2009.

[5] D. W. Mcdonald and M. S. Ackerman. Expertise recommender: a
flexible recommendation system and architecture. In Proceedings
of the 2000 ACM Conference on Computer Supported Cooperative
Work, pages 231–240. ACM Press, 2000.

[6] S. Minto and G. C. Murphy. Recommending emergent teams. In
MSR ’07: Proceedings of Fourth International Workshop on Mining
Software Repositories, 2007.

[7] A. Mockus and J. D. Herbsleb. Expertise browser: a quantitative
approach to identifying expertise. In ICSE ’02: Proceedings of the
24th International Conference on Software Engineering, pages 503–
512, 2002.

[8] S. Rastkar and G. C. Murphy. On what basis to recommend: Change-
sets or interactions? In MSR ’09: Proceedings of the 2009 6th IEEE
International Working Conference on Mining Software Repositories,
pages 155–158, May 2009.

[9] D. Schuler and T. Zimmermann. Mining usage expertise from version
archives. In MSR ’08: Proceedings of the Fifth International Working
Conference on Mining Software Repositories, May 2008.


