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Abstract—It is widely believed that refactoring improves software quality and developer productivity. However, few empirical studies
quantitatively assess refactoring benefits or investigate developers’ perception towards these benefits. This paper presents a field
study of refactoring benefits and challenges at Microsoft through three complementary study methods: a survey, semi-structured
interviews with professional software engineers, and quantitative analysis of version history data. Our survey finds that the refactoring
definition in practice is not confined to a rigorous definition of semantics-preserving code transformations and that developers perceive
that refactoring involves substantial cost and risks. We also report on interviews with a designated refactoring team that has led
a multi-year, centralized effort on refactoring Windows. The quantitative analysis of Windows 7 version history finds the top 5% of
preferentially refactored modules experience higher reduction in the number of inter-module dependencies and several complexity
measures but increase size more than the bottom 95%. This indicates that measuring the impact of refactoring requires multi-
dimensional assessment.
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1 INTRODUCTION

It is widely believed that refactoring improves software
quality and developer productivity by making it easier to
maintain and understand software systems [1]. Many be-
lieve that a lack of refactoring incurs technical debt to be
repaid in the form of increased maintenance cost [2]. For
example, eXtreme Programming claims that refactoring
saves development cost and advocates the rule of refactor
mercilessly throughout the entire project life cycles [3].
On the other hand, there exists a conventional wisdom
that software engineers often avoid refactoring, when
they are constrained by a lack of resources (e.g., right
before major software releases). Some also believe that
refactoring does not provide immediate benefit unlike
new features or bug fixes [4].

Recent empirical studies show contradicting evidence
on the benefit of refactoring as well. Ratzinger et al. [5]
found that, if the number of refactorings increases in the
preceding time period, the number of defects decreases.
On the other hand, Weißgerber and Diehl found that
a high ratio of refactoring is often followed by an in-
creasing ratio of bug reports [6], [7] and that incomplete
or incorrect refactorings cause bugs [8]. We also found
similar evidence that there exists a strong correlation
between the location and timing of API-level refactorings
and bug fixes [9].

These contradicting findings motivated us to conduct
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a field study of refactoring definition, benefits, and
challenges in a large software development organiza-
tion and investigate whether there is a visible benefit
of refactoring a large system. In this paper, we ad-
dress the following research questions: (1) What is the
definition of refactoring from developers’ perspectives?
By refactoring, do developers indeed mean behavior-
preserving code transformations that modify a program
structure [1], [10]? (2) What is the developers’ perception
about refactoring benefits and risks, and in which con-
texts do developers refactor code? (3) Are there visible
refactoring benefits such as reduction in the number of
bugs, reduction in the average size of code changes after
refactoring, and reduction in the number of component
dependencies?

To answer these questions, we conducted a survey
with 328 professional software engineers whose check-
in comments included a keyword “refactor*”. From our
survey participants, we also came to know about a multi-
year refactoring effort on Windows. Because Windows
is one of the largest, long-surviving software systems
within Microsoft and a designated team led an inten-
tional effort of system-wide refactoring, we interviewed
the refactoring team of Windows. Using the version
history, we then assessed the impact of refactoring on
various software metrics such as defects, inter-module
dependencies, size and locality of code changes, com-
plexity, test coverage, and people and organization re-
lated metrics.

To distinguish the impact of refactoring vs. regular
changes, we define the degree of preferential refactor-
ing—applying refactorings more frequently to a mod-
ule, relative to the frequency of regular changes. For
example, if a module is ranked at the 5th in terms
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of regular commits but ranked the 3rd in terms of
refactoring commits, the rank difference is 2. This pos-
itive number indicates that, refactoring is preferentially
applied to the module relative to regular commits. We
use the rank difference measure specified in Section 4.4
instead of the proportion of refactoring commits out
of all commits per module, because the preferential
refactoring measure is less sensitive to the total number
of commits made in each module. We then investigate
the relationship between preferential refactoring and
software metrics. In terms of a threshold, we contrast
the top 5% preferentially refactored modules against the
bottom 95%, because the top 5% modules cover most
refactoring commits—over 90%. We use both bivariate
correlation analysis and multivariate regression analysis
to investigate how much different development factors
may impact the decision to apply refactoring and how
these factors contribute to reduction of inter-module
dependencies and defects [11].

Our field study makes the following contributions:

• The refactoring definition in practice seems to differ
from a rigorous academic definition of behavior-pre-
serving program transformations. Our survey partici-
pants perceived that refactoring involves substantial
cost and risks, and they needed various types of tool
support beyond automated refactoring within IDEs.

• The interviews with a designated Windows refac-
toring team provide insights into how system-wide
refactoring was carried out in a large organization.
The team led a centralized refactoring effort by
conducting an analysis of a de-facto dependency
structure and by developing custom refactoring sup-
port tools and processes.

• To collect refactoring data from version histories,
we explore two separate methods. First, we isolate
refactoring commits based on branches relevant to
refactoring tasks. Second, we analyze check-in com-
ments from version histories based on the refactor-
ing related keywords identified from our survey.

• The top 5% of preferentially refactored modules
decrease the number of dependencies by a factor of
0.85, while the rest increases it by a factor of 1.10
compared to the average number of dependency
changes per modules.

• The top 5% of preferentially refactored modules
decrease post-release defects by 7% less than the
rest, indicating that defect reduction cannot be con-
tributed to the refactoring changes alone. It is more
likely that the defect reduction in Windows 7 is
enabled by both refactoring and non-refactoring
changes in the modified modules.

• We also collect data and conduct statistical analysis
to measure the impact of refactoring on the size and
locality of code changes, test coverage metrics, and
people and organization related metrics, etc. The
study results indicate that the refactoring effort was
preferentially focused on the modules that have rel-

atively low churn measures, have higher test block
coverage and relatively few developers worked on
in Windows Vista. Top 5% of preferentially refac-
tored modules experience a greater rate of reduction
in certain complexity measures, but increases LOC
and crosscutting changes more than other modules.1

While there are many anecdotes about the benefit of
refactoring, few empirical studies quantitatively assess
refactoring benefit. To the best of our knowledge, our
study is the first to quantitatively assess the impact of
multi-year, system-wide refactoring on various software
metrics in a large organization. Consistent with our
interview study, refactoring was preferentially applied
to modules with a large number of dependencies and
preferential refactoring is correlated with reduction in
the number of dependencies. Preferentially refactored
modules have higher test adequacy and they experience
defect reduction; however, this defect reduction cannot
be attributed to the role of refactoring changes alone
according to our regression analysis. Preferentially refac-
tored modules experience higher reduction in several
complexity measures but increase size more than the
bottom 95%. This indicates that measuring the impact
of refactoring requires multi-dimensional assessment.

Based on our study, we propose future research direc-
tions on refactoring—we need to provide various types
of tool support beyond automated refactorings in IDEs,
such as refactoring-aware code reviews, refactoring cost
and benefit estimation, and automated validation of pro-
gram correctness after refactoring edits. As the benefit
of refactoring is multi-dimensional and not consistent
across various metrics, we believe that managers and
developers can benefit from automated tool support for
assessing the impact of refactoring on various software
metrics.

2 A SURVEY OF REFACTORING PRACTICES

In order to understand refactoring practices at Microsoft,
we sent a survey to 1290 engineers whose change com-
ments included the keyword “refactor*” in the last 2 years
in five Microsoft products: Windows Phone, Exchange,
Windows, Office Communication and Services (OCS),
and Office. We purposely targeted the engineers who
are already familiar with the terms, refactor, refactoring,
refactored, etc., because our goal is to understand their
own refactoring definition and their perception about the
value of refactoring. The survey consisted of 22 multiple
choice and free-form questions, which were designed to
understand the participant’s own refactoring definition,
when and how they refactor code, including refactoring
tool usage, developers’ perception toward the benefits,
risks, and challenges of refactoring.

Table 1 shows a summary of the survey questions.
The full list is available as a technical report [12]. We
analyzed the survey responses by identifying the topics

1. A module unit in Windows is a .dll or .exe component and its
definition appears in Section 4.
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and keywords and by tagging individual responses with
the identified topics. The first author did a two pass
analysis by first identifying emerging categories and
next by tagging individual answers using the categories.
Suppose that a developer answered the following to the
question, “Based on your own experience, what are the risks
involved in refactoring?” We then tagged the answer with
categories, regression bugs and build breaks, merge conflicts,
and time taken from other tasks, which emerged from the
participant’s answer.

“Depending on the scope of the refactoring, it can be easy to
unintentionally introduce subtle bugs if you aren’t careful,
especially if you are deliberately changing the behavior of the
code at the same time. Other risks include making it difficult
to merge changes from others (especially troublesome be-
cause larger refactoring typically takes a significant amount
of time during which others are likely to make changes to
the same code), and making it difficult for others to merge
with you (effectively spreading out the cost of the merge to
everyone else who made changes to the same code).”
In total, 328 engineers participated in the survey.

83% of them were developers, 16% of them were test
engineers, 0.9% of them were build engineers, and 0.3%
of them were program managers. The participants had
6.35 years of experience at Microsoft and 9.74 years
of experience in software industry on average with a
familiarity with C++, C, and C#.

2.1 What is a Refactoring Definition in Practice?

When we asked, “how do you define refactoring?”, we
found that developers do not necessarily consider that
refactoring is confined to behavior preserving transfor-
mations [10]. 78% define refactoring as code transforma-
tion that improves some aspects of program behavior
such as readability, maintainability, or performance. 46%
of developers did not mention preservation of behavior,
semantics, or functionality in their refactoring definition
at all. This observation is consistent with Johnson’s
argument [13] that, while refactoring preserves some
behavior, it does not preserve behavior in all aspects.
The following shows a few examples of refactoring
definitions by developers.2

“Rewriting code to make it better in some way.”
“Changing code to make it easier to maintain. Strictly
speaking, refactoring means that behavior does not change,
but realistically speaking, it usually is done while adding
features or fixing bugs.”

When we asked, “how does the abstraction level of
Martin Fowler’s refactorings or refactoring types sup-
ported by Visual Studio match the kinds of refactoring
that you perform?”, 71% said these basic refactorings
are often a part of larger, higher-level effort to improve

2. In the following, each italicized, indented paragraph cor-
responds to a quote from answers to our survey (Section 2) or
interviews (Section 3).

existing software. 46% of developers agree that refac-
torings supported by automated tools differ from the
kind of refactorings they perform manually. In particular,
one developer said, the refactorings listed in Table 1
form the minimum granular unit of any refactoring
effort, but none are worthy of being called refactoring
in and of themselves. The refactorings she performs are
larger efforts aimed at interfaces and contracts to reduce
software complexity, which may utilize any of the listed
low-level refactoring types, but have a larger idea behind
them. As another example, a participant said,

“These (Fowler’s refactoring types or refactoring types sup-
ported by Visual Studio) are the small code transformation
tasks often performed, but they are unlikely to be performed
alone. There’s usually a bigger architectural change behind
them.”

These remarks indicate that the scope and types of code
transformations supported by refactoring engines are
often too low-level and do not directly match the kinds
of refactoring that developers want to make.

2.2 What Are the Challenges Associated with Refac-
toring?

When we asked developers, “what are the challenges
associated with doing refactorings at Microsoft?”, 28%
of developers pointed out inherent challenges such as
working on large code bases, a large amount of inter-
component dependencies, the needs for coordination
with other developers and teams, and the difficulty
of ensuring program correctness after refactoring. 29%
of developers also mentioned a lack of tool support
for refactoring change integration, code review tools
targeting refactoring edits, and sophisticated refactoring
engines in which a user can easily define new refac-
toring types. The difficulty of merging and integration
after refactoring often discourages people from doing
refactoring [14]. Version control systems that they use
are sensitive to rename and move refactoring, and it
makes it hard for developers to understand code change
history after refactorings. The following quotes describe
the challenges of refactoring change integration and code
reviews after refactoring:

“Cross-branch integration was the biggest problem [15]. We
have this sort of problem every time we fix any bug or
refactor anything, although in this case it was particularly
painful because refactoring moved files, which prevented
cross-branch integration patches from being applicable.”

“It (refactoring) typically increases the number of lines/files
involved in a check-in. That burdens code reviewers and in-
creases the odds that your change will collide with someone
else’s change.”

Many participants also mentioned that, when a re-
gression test suite is inadequate, there is no safety net
for checking the correctness of refactoring. Thus, it often
prevents from developers to initiate refactoring effort.
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TABLE 1
Summary of Survey Questions (The full list is available as a technical report [12].)

Background What is your role in your team (i.e., developer, tester, program manager, team lead, dev manager, etc.)? (multiple choice)
Which best describes your primary work area? (multiple choice)
How many years have you worked in software industry? (simple answer)
Which programming languages are you familiar with? (multiple choice)

Definition How do you define refactoring? (open answer, max characters: 2000)
Which keywords do you use or have you seen being used to mark refactoring activities in change commit messages? (open answer,
max characters: 2000)
How does the abstraction level of Fowler’s refactorings such as “Extract Method” and ”Use Base Type Whenever Possible” match

the kinds of refactorings that you often perform? (open answer, max characters: 2000)

Context How many hours per month roughly do you spend on refactoring? (min number 0 to max number 160)
How often do you perform refactoring? (multiple choice: daily, weekly, monthly, yearly, seldom, never)
In which situations do you perform refactorings? (open answer, max characters: 2000)

Value- What benefits have you observed from refactoring? (open answer, max characters: 2000)
Perception What are the challenges associated with performing refactorings? (open answer, max characters: 2000)

Based on your own experience, what are the risks involved in refactoring? (open answer, max characters: 2000)
How strongly do you agree or disagree with each of the following statements? (scale: strongly agree, agree, neither agree or disagree,
disagree, strongly disagree, no response)

• Refactoring improves program readability
• Refactoring introduces subtle bugs
• Refactoring breaks other people’s code
• Refactoring improves performance
• Refactoring makes it easier to fix bugs. . .

Tools What tools do you use during refactoring? (open answer: max characters: 2000)
What percentage of your refactoring is done manually as opposed to using automated refactoring tools? (min number 0 to max
number 100)
The following lists some of the types of refactorings. Please indicate whether you know these refactorings or used them before.

[multiple choice: (1) usually do this both manually and using automated tools (2) usually do this manually, (3) usually do this
using automated tools, (4) know this refactoring type but don’t use it, (5) don’t know this refactoring type.]
• Rename, Extract Method, Encapsulate Field, Extract Interface, Remove Parameters, . . .
These refactoring types were selected from Fowler’s catalog.

How strongly do you agree or disagree with each of the following statements? (scale: strongly agree, agree, neither agree or disagree,
disagree, strongly disagree, no response)

• I interleave refactorings with other types of changes that modify external program behavior.
• Refactorings supported by a tool differ from the kind of refactorings I perform manually.
• Refactorings that I apply are higher level changes than the ones supported by tools.
• How do you ensure program correctness after refactoring? . . .
Only a few statements are shown in this paper for presentation purposes.

If you would like to be informed about the results of this research, please enter your alias in the following box. (max characters:
256)
If you would be willing to participate in a follow-up interview (15 minutes) to share your perspective and anecdotes on refactoring
at Microsoft, please enter your alias in the following box. (max characters: 256)
If you have any other comments on this survey, please write them in the following text box. (max characters: 2000)

“If there are extensive unit tests, then (it’s) great, (one)
would need to refactor the unit tests and run them, and
do some sanity testing on scenarios as well. If there are no
tests, then (one) need to go from known scenarios and make
sure they all work. If there is insufficient documentation for
scenarios, refactoring should not be done.”

In addition to these inherent and technical challenges
of refactoring reported by the participants, maintaining
backward compatibility often discourages them from
initiating refactoring effort.

According to self-reported data, developers do most
refactoring manually and they do not use refactoring
tools despite their awareness of refactoring types sup-
ported by the tools. When we asked, “what percentage of
your refactoring is done manually as opposed to using au-
tomated refactoring tools?”, developers said they do 86%
of refactoring manually on average. Surprisingly 51%
of developers do all 100% of their refactoring manually.
Figure 1 shows the percentages of developers who usu-
ally apply individual refactoring types manually despite
the awareness and availability of automated refactoring

tool support. Considering that 55% of these developers
reported that they have automated refactoring engines
available in their development environments, this lack
of usage of automated refactoring engines is very sur-
prising. With an exception of rename refactoring, more
than a half of the participants said that they apply
those refactorings manually, despite their awareness of
the refactoring types and availability of automated tool
support. This result is aligned with Vakilian et al. [16].
Our survey responses indicate that the investment in tool
support for refactoring must go beyond automated code
transformation, for example, tool support for change
integration, code reviews after refactoring, validation of
program correctness, estimation of refactoring cost and
benefit, etc.

“I’d love a tool that could estimate the benefits of refac-
toring. Also, it’d be awesome to have better tools to help
figure out who knows a lot about the existing code to have
somebody to talk to and how it has evolved to understand
why the code was written the way it was, which helps avoid
the same mistakes.”
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Fig. 1. The percentage of survey participants who know
individual refactoring types but do those refactorings man-
ually
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Fig. 2. The risk factors associated with refactoring

“I hope this research leads to improved code understanding
tools. I don’t feel a great need for automated refactoring
tools, but I would like code understanding and visualization
tools to help me make sure that my manual refactorings are
valid.”
“What we need is a better validation tool that checks
correctness of refactoring, not a better refactoring tool.”

2.3 What Are the Risks and Benefits of Refactoring?
When we asked developers, “based on your experience,
what are the risks involved in refactorings?”, they re-
ported regression bugs, code churns, merge conflicts,
time taken from other tasks, the difficulty of doing
code reviews after refactoring, and the risk of over-
engineering. Figure 2 summarizes the percentage of
developers who mentioned each particular risk factor.
Note that the total sum is over 100% as one developer
could mention more than one risk factor. 76% of the
participants consider that refactoring comes with a risk
of introducing subtle bugs and functionality regression;
11% say that code merging is hard after refactoring; and
24% mention increased testing cost.

“The primary risk is regression, mostly from misunder-
standing subtle corner cases in the original code and not
accounting for them in the refactored code.”
“Over-engineering—you may create an unnecessary archi-
tecture that is not needed by any feature but all code chunks
have to adapt to it.”
“The value of refactoring is difficult to measure. How do
you measure the value of a bug that never existed, or the
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Fig. 3. Various types of refactoring benefits that develop-
ers experienced

time saved on a later undetermined feature? How does this
value bubble up to management? Because there’s no way
to place immediate value on the practice of refactoring, it
makes it difficult to justify to management.”

When we asked, “what benefits have you observed
from refactoring?”, developers reported improved main-
tainability, improved readability, fewer bugs, improved
performance, reduction of code size, reduction of dupli-
cate code, improved testability, improved extensibility &
easier to add new feature, improved modularity, reduced
time to market, etc, as shown in Figure 3.

When we asked, “in which situations do you perform
refactorings?” developers reported the symptoms of code
that help them decide on refactoring (see Figure 4). 22%
mentioned poor readability; 11% mentioned poor main-
tainability; 11% mentioned the difficulty of repurposing
existing code for different scenarios and anticipated
features; 9% mentioned the difficulty of testing code
without refactoring; 13% mentioned code duplication;
8% mentioned slow performance; 5% mentioned depen-
dencies to other teams’ modules; and 9% mentioned
old legacy code that they need to work on. 46% of
developers said they do refactoring in the context of bug
fixes and feature additions, and 57% of the responses
indicate that refactoring is driven by immediate concrete,
visible needs of changes that they must implement in a
short term, rather than potentially uncertain benefits of
long-term maintainability. In addition, more than 95% of
developers do refactoring across all milestones and not
only in MQ milestones—a period designated to fix bugs
and clean up code without the responsibility to add new
features. This indicates the pervasiveness of refactoring
effort. According to self-reported data, developers spend
about 13 hours per month working on refactoring, which
is close to 10% of their work, assuming developers work
about 160 hours per month.

3 INTERVIEWS WITH THE WINDOWS REFAC-
TORING TEAM

In order to examine how the survey respondents’ per-
ception matches reality in terms of refactoring and to
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Fig. 4. The symptoms of code that help developers initiate
refactoring

investigate whether there are visible benefits of refactor-
ing, we decided to conduct follow-up interviews with
a subset of the survey participants and to analyze the
version history data. In terms of a subject program, we
decided to focus on Windows, because it is the largest,
long-surviving software system within Microsoft and
because we learned from our survey that a designated
refactoring team has led an intentional, system-wide
refactoring effort for many years.

We conducted one-on-one interviews with six key
members of this team. The following describes the role of
interview participants. The interviews with the partici-
pants were audio-recorded and transcribed later for anal-
ysis. The first author of this paper led all interviews. The
first author spent two weeks to categorize the interview
transcripts in terms of refactoring motivation, intended
benefits, process, and tool support. She then discussed
the findings with the sixth subject, (a researcher who
is familiar with the Windows refactoring project and
collaborated with the refactoring team) to check her
interpretation.

• Architect (90 minutes)
• Architect / Development Manager (30 minutes)
• Development Team Lead (75 minutes)
• Development Team Lead (85 minutes)
• Developer (75 minutes)
• Researcher (60 minutes)
The interview study results are organized by the ques-

tions raised during the interviews.

“What motivated your team to lead this refactoring
effort?” The refactoring effort was initiated by a few
architects who recognized that a large number of depen-
dencies at the module level could be reduced and opti-
mized to make modular reasoning of the system more
efficient, to maximize parallel development efficiency,
to avoid unwanted parallel change interference, and to
selectively rebuild and retest subsystems effectively.

“If X percent of the modules are at a strongly connected
component and you touch one of those things and you have
to retest X percent of the modules again. . . ”

“How did you carry out system-wide refactorings on
a very large system?” The refactoring team analyzed

the de-facto module level dependency structure before
making refactoring decisions. After the initial analysis
of module level dependencies, the team came up with
a layered architecture, where individual modules were
assigned with layer numbers, so that the partial order-
ing dependency relationships among modules could be
documented and enforced. To help with the analysis of
de-facto dependency structure, the team used a new tool
called MaX [17]. MaX not only computes module level
dependencies but also can distinguish benign depen-
dency cycles within a layer from undesirable dependen-
cies that go from low-level layers to the layers above.
The refactoring team consulted other teams about how
to decompose existing functionality into a set of logical
sub-groupings (layers).

“Our goal was actually (A) to understand the system,
and to develop a layered model of the system; and (B) to
protect the model programmatically and automatically. So
by developing a mathematical model of the entire system
that is based on layer numbers and associating modules with
a layer number, we could enforce a partial ordering—that’s
what we call it, the layer map.”
The team introduced quality gate checks, which pre-

vented developers from committing code changes that
violate the layer architecture constraints to the version
control system. The refactoring team then refactored the
existing system by splitting existing modules into sub-
component modules or by replacing existing modules
with new modules.

They created two custom tools to ease migration of
existing modules to new modules. Similar to how Java
allows creation of abstract classes which later can be
bound to concrete subclasses, the team created a tech-
nology that allows other teams to import an empty
header module for each logical group of API family,
which can be later bound to a concrete module im-
plementation depending on the system configuration.
Then a customized loader loads an appropriate target
module implementation instead of the empty header
module during the module loading time. This separates
API contracts from API implementations, thus avoiding
inclusion of unnecessary modules in a different execu-
tion environment, where only a minimal functionality
instead of a full functionality is desired. The above
technology takes care of switching between two different
API implementations during load time, but does not
take care of cases where the execution of two different
API implementations must be weaved carefully during
runtime. To handle such cases, the team systematically
inserted program changes to existing code. Such code
changes followed a special coding style guideline for
better readability and were partially automated by stub
code generation functionality.

In summary, we found that the refactoring effort had
the following distinctive characteristics:

• The team’s refactoring decisions were made after
substantial analysis of a de-facto dependency struc-
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ture.
• The refactoring effort was centralized and top

down—the designated team made software changes
systematically, integrated the changes to a main
source tree, and educated others on how to use new
APIs, while preventing architectural degradation by
others.

• The refactoring was enabled and facilitated by de-
velopment of custom refactoring support tools and
processes such as MaX and quality gate check.

4 QUANTITATIVE ANALYSIS OF WINDOWS 7
VERSION HISTORY

To examine whether the refactoring done by this team
had a visible benefit, we analyze Windows 7 version
history data. We first generate hypotheses based on our
survey and interview study findings. We then conduct
statistical analysis using the software metrics data col-
lected from version histories.

4.1 Study Hypotheses
As software functionality varies for different projects
and the expertise level of developers who work on the
projects varies across different organizations, our study
goal is to contrast the impact and characteristics of
refactoring changes against that of non-refactorings in
the same organization and the same project. In other
words, we compare the characteristics of refactoring vs.
non-refactoring vs. all changes, noted as refactoring churn,
non-refactoring churn, and regular churn (i.e., the union of
refactorings and non-refactorings).

We generate study hypotheses based on our qualita-
tive study findings. These hypotheses are motivated by
our survey and interviews, as well as the refactoring
literature. The hypotheses are described in Table 2 and
the following subsections discuss our data collection and
analysis method and corresponding findings.

• H1 (Dependency): We investigate the relationship
between refactoring and dependency because our
interview study indicates that the primary goal of
Windows refactoring is to reduce undesirable inter-
module dependencies (i.e. the number of neighbor
modules connected via dependencies).

• H2 (Defect): We investigate the relationship between
refactoring and defect because many of our survey
participants perceive that refactoring comes with a
risk of introducing defects and regression bugs.

• H3 (Complexity): The hypotheses on complexity are
motivated by prior studies on technical debt [18]–
[23].

• H4 (Size, Churn and Locality): The hypotheses on
size, churn, and locality are motivated by the fact
that developers often initiate refactoring to im-
prove changeability and maintainability [24] and
that crosscutting concerns pose challenges in evolv-
ing software systems [25]–[28].

• H5 (Developer and Organization): The hypotheses on
organizational characteristics are motivated by the
fact that the more people who touch the code, the
higher the chance of code decay and the higher
need of coordination among the engineers, calling
for refactoring of the relevant modules [29].

• H6 (Test Coverage): We investigate the hypothesis on
test adequacy because our survey respondents said,
“If there are extensive unit tests, then (it’s) great. If there
are no tests or there is insufficient documentation for test
scenarios, refactoring should not be done.”

• H7 (Layer): We investigate the hypothesis on a lay-
ered architecture to confirm our interview findings
that the refactoring team split core modules and
moved reusable functionality from upper layers to
lower layers to repurpose Windows for different
execution environments.

4.2 Data Collection: Identifying Refactoring Com-
mits

To identify refactoring events, we use two separate meth-
ods respectively. First, we identify refactoring-related
branches and isolate changes from those branches. Sec-
ond, we identify refactoring related keywords and mine
refactoring commits from Windows 7 version history by
searching for these keywords in the commit logs [30].
Refactoring Branch Identification. In many devel-
opment organizations, changes are made to specific
branches and later merged to the main trunk. For ex-
ample, the Windows refactoring team created certain
branches to apply refactoring exclusively. So we asked
the team to classify each branch as a refactoring vs.
non-refactoring branch. We believe that our method
of identifying refactorings is reliable because the team
confirmed all refactoring branches manually and reached
a consensus about the role of those refactoring branches
within the team.

During Windows 7 development, 1.27% of changes
are changes made to the refactoring branches owned
by the refactoring team; 98.73% of changes are made
to non-refactoring branches. The number of committers
who worked on the refactoring branches is 2.04%, while
the number of committers on non-refactoring branches
is 99.84%. Please note that the sum of the two is greater
than 100% because some committers work both on refac-
toring branches and non-refactoring branches. 94.64% of
modules are affected by at least one change from the
refactoring branches, and 99.05% of modules are affected
by at least one change from non-refactoring branches. In
our study, refactored modules are modules where at least
one change from the refactoring branches is compiled
into. For example, if the refactoring team made edits on
the refactoring branches to split a single Vista module
into three modules in Windows 7, we call the three
modules as refactored modules in Windows 7.
Mining Commit Logs. To identify refactoring from
version histories, we look for commit messages with
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TABLE 2
A summary of study hypotheses and results

Modularity H1.A: Refactoring was preferentially applied to the modules with a large number of inter-module dependencies. Confirmed
H1.B: Preferential refactoring is correlated to changes in the number of inter-module dependencies. Confirmed

Defect H2.A: Refactoring was not preferentially applied to the modules with a large number of post-release defects. Confirmed
H2.B: Preferential refactoring is correlated to reduction in the number of defects. Rejected

Complexity H3.A: Refactoring was preferentially made to the modules with high complexity. Rejected
H3.B: Preferential refactoring is correlated with reduction in complexity. Rejected

Size H4.A: Refactoring was preferentially applied to the modules with large size and preferential refactoring is
correlated with size reduction.

Rejected

Churn H4.B: Refactoring was preferentially applied to the modules where a large number of edits or commits, and
preferential refactoring is correlated with the decrease in churn measures.

Rejected

Locality H4.C: Refactoring was preferentially applied to the modules where logical changes tend to be crosscutting and
scattered, and preferential refactoring is correlated with the decrease in the number of crosscutting changes.

Rejected

Developer and Organization H5.A: Refactoring was preferentially applied to the modules touched by a large number of developers. Rejected
H5.B: Refactoring was preferentially applied to the modules that are not cohesive in terms of organizational
contributions.

Confirmed

H5.C: Refactoring was preferentially applied to the modules that are diffused in terms of organizations and
developer contribution.

Confirmed

Test Coverage H6: Refactoring was preferentially applied to the modules with high test adequacy. Confirmed
Layer H7: Preferential refactoring is correlated with reduction in the layer number. Rejected

winmain&

refactor&

refactor_dev&

media_core&

perf_dev_foo&

Refactoring&branches&

Non7refactoring&branches&

Fig. 5. Categorization of all Windows 7 commits into
refactoring vs. non-refactorings based on branches.

certain keywords. In our survey, we asked the survey
participant, “which keywords do you use or have you seen
being used to mark refactoring activities in change commit
messages? Based on the responses, we identify a list of
top ten keywords that developers use or have seen being
used to mark refactoring events: refactor (254), clean-up
(42), rewrite (22), restructure (15), redesign (15), move (15),
extract (11), improve (9), split (7), reorganize (7), rename(7)
out of 328 responses. By matching the keywords against
the commit messages, we detected refactoring commits
from version histories.

According to this method, 5.76% of commits are refac-
toring, while 94.29% of commits are non-refactoring. The
number of committers for the refactoring changes is
50.74%, while the number is 98.56% for non-refactoring.
95.07% of modules are affected by at least one refactoring
commit, and 99.92% of modules are affected by at least
one non-refactoring.

4.3 Data Collection: Software Metrics

This section discusses our data collection method for
defect, dependency, and developers metrics. For other
categories, Table 3 clarifies how the data are collected.
Dependencies. For our study, we analyzed dependen-
cies at a module level. Here, a module refers to an
executable file (COM, EXE, etc.) or a dynamic-link li-
brary file (DLL) shipped with Windows. Modules are

assembled from several source files and typically form a
logical unit, e.g., user32.dll may provide programs
with functionality to implement graphical user inter-
faces. This module unit is typically used for program
analysis within Microsoft and the smallest units to which
defects are accurately mapped. A software dependency
is a directed relation between two pieces of code such
as expressions or methods. There exist different kinds of
dependencies: data dependencies between the definition
and use of values and call dependencies between the
declaration of functions and the sites where they are
called. Microsoft has an automated tool called MaX [17]
that tracks dependency information at the function level,
including calls, imports, exports, RPC, COM, and Reg-
istry access. MaX generates a system-wide dependency
graph from both native x86 and .NET managed mod-
ules. MaX is used for change impact analysis and for
integration testing [17]. For our analysis, we generated
a system-wide dependency graph with MaX at the
function level. Since modules are the lowest level of
granularity to which defects can be accurately mapped
back to, we lifted this graph up to the module level in
a separate post-processing step.

Defects. Microsoft records all problems that are re-
ported for Windows in a database. In this study, we
measured the changes in the number of post-release
defects—defects leading to failures that occurred in the
field within six months after the initial releases of Win-
dows Vista or Windows 7. We collected all problem re-
ports classified as non-trivial (in contrast to enhancement
requests [33]) and for which the problem was fixed in
a later product update. The location of the fix is used
as the location of the post-release defect. To understand
the impact of Windows 7 refactoring, we compared the
number of dependencies and the number of post-release
defects at the module level between Windows Vista and
Windows 7.

Developers and Organization. We use committer infor-
mation extracted from version control systems. Based
on the Windows product organization’s structure and
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TABLE 3
Software metrics to be used for data collection and statistical analysis

Size lines of code (LOC), # of classes, # of parameters, # of local variables, # of functions, # of blocks
Churn total churn—added, deleted, and modified LOC

frequency—# edits or # check-ins that account for churn
relative churn as normalized values obtained during the development process
# of changed files

Complexity fan in, fan out, cyclomatic complexity [31], inheritance depth, nested block depth
coupling—coupling through member variables, function parameters, classes defined locally in class member function
bodies, immediate base classes, and return type

Organization and People
(people) engineers (NOE)—The number of engineers who wrote/contributed code to a module.

ex-engineers (NOEE)—The number of engineers who no longer work in the organization.
(cohesiveness of ownership) depth of master ownership (DMO)—The level in the organization structure of an organization at which the ownership

of a module is determined/attributed to a particular engineer.
percentage of organization contributing to development (PO) —the ratio of the number of people reporting at the
DMO level owner relative to the master owner organization size.
level of organizational code ownership (OCO)—the percent of edits from the organization that contains the module
owner of if there is no owner, then the organization that made the majority of the edits to that module

(diffusion of contribution) overall organization ownership (OOW)—the ratio of the percentage of people at the DMO level making edits to a
module relative to total engineers editing the module
organization intersection factor (OIF)—a measure of the number of different organizations that contribute to the grater
than 10% of edits
The seven organization and people measures are from Nagappan et al.’s study on the relationship between the
organizational structure and software quality [32].

Test Coverage block coverage—A basic block is a set of contiguous instructions in the physical layout of a module that has exactly
one entry point and one exit point. Calls, jumps, and branches mark the end of a block. A block typically consists
of multiple machine-code instructions. The number of blocks covered during testing constitutes the block coverage
measure.
arc (branch) coverage—Arcs between blocks represent the transfer of control between basic blocks due to conditional
and unconditional jumps, as well as due to control falling through from one block to another. Similar to block coverage
the proportion of arcs covered in a module constitute the arc coverage.

Defect post-release failures—the count of the number of fixes that were mapped back to components after the products were
released for a time period of the first six months.

committer information, we measure seven metrics that
represent the number of contributors, the cohesiveness
of ownership, and the diffusion of contribution used by
Nagappan et al. These metrics are summarized in Table 3
and the detailed description and data collection method
of these measures are available elsewhere [32].

4.4 Analysis Method: Preferential Refactoring
To distinguish the role of refactoring vs. regular changes,
we define the degree of preferential refactoring—applying
refactorings more frequently to a module, relative to the
frequency of regular changes.'

&

$

%

To measure the degree of preferential refactoring
for each module m, we use the following rank
difference measure, defined as:

all commit rank(m)−ref commit rank(m) (1)

where all commit rank(m) is the rank of module
m among all modified modules in terms of the
commit count and ref commit rank(m) is the
rank of module m among all modified modules
in terms of the refactoring commit count.

This notion of preferential refactoring is used throughout
the later subsections to distinguish the impact of refac-
toring vs. regular changes. For example, if a module
is ranked at the 5th in terms of regular commits but
ranked the 3rd in terms of refactoring commits, the
rank difference is 2. This positive number indicates
that, refactoring is preferentially applied to the module

relative to regular commits. We use the rank difference
measure Eq(1), instead of the proportion of refactoring
commits out of all commits per module, defined as
refactoring commit count(m)

all commit count(m) , because this proportion mea-
sure is very sensitive to the total number of commits
made to each module and because the modules with
very few changes pose a significant noise.

We then sort the modules based on the rank difference
in descending order and contrast the characteristics of
the top 5% group against the characteristics of the bot-
tom 95% group. The reason why we choose a particular
threshold of top 5% instead of top n% is that the top 5%
modules with most refactoring commits account for 90%
of all refactoring commits—in other words, the top 5%
group represents concentrated refactoring effort.

4.5 Hypothesis H1. Dependencies

To investigate H1.A, for each module in Vista, we mea-
sure Neighbors, the number of neighbor modules con-
nected via dependencies. We then contrast the average
inter-module dependencies of the top 5% preferentially
refactored modules vs. that of bottom 95% of prefer-
entially refactored modules in Vista. These results are
summarized in Table 4. The second column and the third
column report the relative ratio of a software metric
with respect to the average metric value in Vista for
the top 5% and bottom 95% groups respectively. The
fourth column reports the p-value of the Wilcoxon test.
Statistically significant test results (p-value ≤ 0.05) are
marked in yellow background. Our results indicate that
the top 5% most preferentially refactored modules have
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7% more inter-module dependencies on average than
the average modified module in Vista, while the bottom
95% have almost the same number of inter-module
dependencies as the average modified module. In other
words, developers did preferentially applied refactorings
to the modules with a higher number of inter-module
dependencies in Vista. A two-sided, unpaired Wilcoxon
(Mann Whitney) test indicates that the top 5% group is
statistically different from the bottom 95% in terms of its
inter-module dependency coverage (p-value: 0.0026).

To investigate H1.B, we contrast the changes in the
metric value for the top 5% group vs. the bottom 95%
group. The changes in a metric are then normalized with
respect to the absolute average delta of the software met-
ric among all modified modules. Suppose that the top
5% of most preferentially refactored modules decreased
the value of a software metric by 5 on average, while the
bottom 95% increased the metric value by 10 on average.
On average, a modified module has increased the metric
value by 9.25. We then normalize the decrease in the top
5% group (-5) and the increase in the bottom 95% group
(+10) with respect to the absolute value of the average
change (9.25) average of all modified modules, resulting
in -0.54 and +1.08 respectively.

Using this method, we measure the impact of pref-
erential refactoring on the changes in inter-module de-
pendencies. The result indicates that the top 5% of
preferentially refactored modules decreased the number
of inter-module dependencies by a factor of 0.85, while
the bottom 95% of preferentially refactored modules
increased the number of inter-module dependencies by
a factor of 1.10 with respect to the average change of all
modified modules. The Wilcoxon test indicates that the
trend is statistically significant (p-value: 0.000022).

We conclude that, preferential refactoring is correlated
with the decrease of inter-module dependencies. This
is consistent with our interviews with the Windows
refactoring team that their goal is to reduce undesirable
inter-module dependencies.

4.6 Hypothesis H2. Defect

Similar to the analysis of contrasting the top 5% group
vs. the bottom 95% group in Section 4.5, we investigate
the relationship between preferential refactoring treat-
ment and defects. The results in Table 4 indicate that the
top 5% group has 9% fewer post-release defects than
the rest in Vista, confirming that refactoring was not
necessarily preferentially applied to the modules with
a high number of defects.

Further, the top 5% group decreased post-release de-
fects by a factor of 0.93, while the bottom 95% group
decreased by a factor of 1.00 with respect to the average
change in defect counts. In other words, the top 5%
group is correlated with the reduction of post-release
defects, but less so, compared to the rest. This result
indicates that the cause of defect reduction cannot be
attributed to refactoring changes alone. It is possible that

the defect reduction is enabled by other events in those
refactored modules as well.

4.7 Hypothesis H3. Complexity
We use the same method of contrasting the top 5% vs.
bottom 95%. Table 4 summarizes the results. Top 5%
of most preferentially refactored modules tend to have
lower complexity measures in Vista compared to the
bottom 95%. However, this distinction is not statistically
significant, according to the Wilcoxon test, rejecting the
hypothesis H3.A.

Top 5% group reduces fan-in, fan-out, and cyclomatic
complexity measures more than the rest. For example,
if we assume that an average modified module has 100
fan-ins in Windows Vista, the top 5% group covers 67,
while the bottom 95% covers 102 fan-ins. The member
read based coupling (C5.1) increases much less for the
top 5%, compared to the rest. The results are statisti-
cally significant (p-value ≤ 0.05). However, for other
complexity metrics, the same trend does not hold or is
not statistically significant. In summary, we found that,
the Windows refactoring effort did not reduce various
complexity measures consistently.

4.8 Hypothesis H4. Size, Churn, and Locality
We investigate the relationship between refactoring and
size, churn, and locality respectively. The hypotheses
H4.A, H4.B and H4.C are motivated by the fact that de-
velopers often initiate refactoring to improve changeabil-
ity and maintainability [24] and that crosscutting con-
cerns pose challenges in evolving software systems [25]–
[28]. We use the same study method of contrasting the
top 5% vs. the bottom 95% described in Section 4.5.

Regarding H4.A, the top 5% has smaller size metrics
than the rest in Vista. This indicates that refactoring
changes were not preferentially applied to the modules
with large size. Furthermore, the top 5% increased size
more in terms of LOC, while the rest decreased their
module size. In other words, preferential refactoring did
not play any role in decreasing various size measures,
rejecting H4.A.

Regarding H4.B, in contrast to our original hypothesis,
the top 5% group consistently has lower churn measures
in Vista, compared to the rest. In other words, the
less frequent changes are in Vista, the more likely they
are to receive preferential refactoring treatment during
Windows 7 development. One possible explanation is
that developers might have determined that the modules
to be refactored are problematic and that making too
many changes to them could impede the stability of
the system. Thus, to preserve stability, they may have
applied fewer changes intentionally. The churn measures
in the top 5% group decrease less, compared to the
rest. The less frequent refactorings are, the greater the
decrease in churn measurements, rejecting H4.B.

Regarding H4.C, to measure the degree of crosscutting
changes, we measure the average number of modified
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TABLE 4
The relationship between Windows 7 refactoring and various software metrics. Statistically significant test results

(p-value ≤ 0.05) are marked in yellow background.

Vista ∆ (Vista, Windows7)
Metric top 5% bottom 95% p-value top 5% bottom 95% p-value
Modularity
Neighbors 1.07 1.00 0.00 -0.85 1.10 0.00
Defect
Post release failures 0.91 1.00 0.00 -0.93 -1.00 0.00
Complexity
C1. Fan in 0.67 1.02 0.72 -1.18 -0.99 0.01

C2. Fan out 0.69 1.02 0.79 -1.12 -0.99 0.02

C3. Cyclomatic complexity [31] 0.77 1.01 0.75 -0.16 1.06 0.04
C4. Inheritance depth 0.57 1.02 0.23 -0.62 -1.02 0.47
C5. Coupling through
C5.1. member reads 0.78 1.01 0.51 0.09 1.05 0.02
C5.2. member writes 0.95 1.00 0.11 0.04 1.05 0.18
C5.3. function parameters 0.58 1.02 0.12 0.72 1.01 0.13
C5.4. type declarations in local
functions

0.77 1.01 0.11 0.40 1.03 0.21

C5.5. immediate base classes 0.63 1.02 0.23 -0.63 -1.02 0.90
C5.6. return type 0.54 1.02 0.30 -0.48 -1.03 0.96
Size
S1. LOC 0.80 1.01 0.79 1.24 -0.99 0.02
S2. # of classes 0.65 1.02 0.26 -0.69 -1.02 0.52
S3. # of parameters 0.75 1.01 0.63 -1.06 -1.00 0.09
S4. # of local variables 0.78 1.01 0.66 0.61 1.02 0.86
S5. # of function 0.71 1.01 0.68 -0.77 -1.01 0.52
S6. # of blocks 0.76 1.01 0.69 0.32 1.04 0.23
Churn
Ch1. total churn 0.12 1.05 0.00 -0.02 -1.05 0.00

Ch2. relative churn 0.40 1.03 0.00 -0.02 -1.05 0.00

Ch3. # of check-ins 0.30 1.04 0.00 -0.35 -1.03 0.03

Ch4. # changed files 0.30 1.04 0.00 -0.18 -1.04 0.04
Locality
L1. # files per check-in 0.91 1.04 0.89 1.73 0.96 0.00
People
O1. NOE 0.53 1.02 0.00 -0.08 -1.05 0.79

O2. NOEE 0.67 1.02 0.02 -0.79 -1.01 0.88
Cohesiveness of contribution
O3. DMO -0.44 1.08 0.00 -1.60 1.14 0.00

O4. PO 0.70 1.02 0.02 4.53 -1.29 0.36

O5. OCO 62% 1.02 0.00 0.05 1.05 0.06
Diffusion of contribution
O6. OOW 0.59 1.02 0.00 0.92 1.00 0.89

O7. OIF 1.02 0.99 0.42 1.86 0.95 0.00
Test adequacy
T1. block coverage 1.13 0.99 0.00 -1.13 -0.99 0.13

T2. arc coverage 1.15 0.99 0.00 -1.18 -0.99 0.06
Layer
L1. layer numbers 1.01 1.00 0.83 0.35 1.03 0.09

files per check-in. Our results indicate that preferential
refactoring is applied to the modules with lower de-
gree of crosscutting changes in Vista, and the modules
which received preferential refactoring treatment tend to
increase crosscutting changes more than other modules
in Windows 7 (173% vs. 96%), rejecting H4.C. We believe
that the increase in the crosscutting changes is caused by
refactorings themselves, which tend to be more scattered
than regular changes (on average refactorings touched
20% more files than regular changes).

4.9 Hypothesis H5. Developer and Organization

The more people who touch the code, the higher the
chance of code decay, and there could be a higher need

for coordination among the engineers [29]. Such coor-
dination needs may call for refactoring of the relevant
modules. We hypothesize that refactoring could reduce
the number of engineers who worked on the modules
by aligning the modular structure of the system with
the team structure [34]–[36]. To check these hypotheses,
we study the cohesiveness and diffusion measures of
ownership and contribution. The less cohesive and local
the contributions are, it may call for more refactoring
effort, while diffusive ownership could impede the effort
of initiating refactoring.

Table 4 summarizes the results. Regarding the hy-
potheses H5.A, the NOE and NOEE measures are lower
in the top 5% than the rest, indicating that the refactoring
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effort was preferentially made to the modules where a
fewer number of developers worked on. This is contrary
to our initial hypothesis. One possible explanation is that
the refactored modules are crucial, important modules
and for these modules typically only a tight small group
of developers were allowed to check-in code changes.

The cohesiveness of contribution measures (DMO, PO,
and OCO) are lower in the top 5% than the rest in Vista,
validating H5.B. The refactoring effort was preferentially
made to the modules with lower cohesiveness in terms
of contribution. However, we did not find any distinctive
trends in terms of changes in those measures before and
after refactoring.

Regarding the hypothesis H5.C, the diffusion measure
(OOW) is lower in the top 5% than the rest in Vista.
However, we did not find any distinctive trends in
terms of changes in those measures before and after
refactoring.

4.10 Hypothesis H6. Test Coverage
We investigate the following hypothesis about refactor-
ing and test adequacy, because our survey indicates that,
when a regression test suite is inadequate, it could pre-
vent developers from initiating refactoring effort. Devel-
opers perceive that there is no safety net for checking the
correctness of refactoring edits when the test adequacy
is low. Table 4 summarizes the results. The block and
arc test coverages for the top 5% of most preferentially
refactored modules are indeed higher than the rest.

4.11 Hypothesis H7. Layers
The layer data in Windows is a means of quantifying
the architectural constraints of the system. Simplistically
speaking, the lowest level is the Windows kernel and
the highest level is the UI components. The goal of
assigning layer numbers to modules is to prevent reverse
dependencies. In other words, modules in level 0 are
more important than say level 25 for the reliability of
the system as modules at level n can depend only on the
modules of level n − 1 and below only. We investigate
H7 to confirm our interview findings that the refactoring
team split core modules and moved reusable function-
ality from an upper layer to a lower layer to repurpose
Windows for different execution environments.

The top 5% and the bottom 95% of most preferentially
refactored modules have similar average layer numbers
(1.01 and 1.00 respectively in Table 4). The difference
is not statistically significant. In contrast to the inter-
viewees’ understanding, the refactoring was not prefer-
entially applied to modules with a high layer number.
Further, the layer number increase for the top 5% group
is less than the increase of the bottom 95%.

4.12 Multivariate Regression Analysis
To identify how much and which factors may impact
a refactoring investment decision (or selection of the

TABLE 5
Multivariate regression analysis for preferential

refactoring. Software metrics are measured for Vista
before refactoring effort.

Estimate Std. Error t value
(Intercept) 193.09 47.50 4.07
# files per check-in 19.38 5.81 3.34
# of sources 0.53 0.14 3.81
OOW -2.25 0.45 -5.01
# of edits by engineers 0.12 0.02 6.02
defects -10.92 3.87 -2.82
NOE -2.00 0.39 -5.07
# of check-ins -0.22 0.04 -5.44

modules to apply refactorings preferentially), we use
multivariate regression analysis.

To select independent variables for multivariate re-
gression, we first measure the Spearman rank correlation
between the rank difference and individual software
metrics before refactoring. We use the metrics from Vista,
as they represent the characteristics before the refactoring
effort was made.

cor(all commit rank(m)− ref commit rank(m),

metric vista(m))
(2)

If the correlation is a positive number close to 1, it im-
plies that preferentially refactored modules tend to have
a higher metric value before refactoring. If the correlation
is near zero, it implies that there exists no correlation
between preferential refactoring and the metric.

We then select all metrics with significant correlations
at p < 0.0001, even if the correlations values do not
appear to be very high. We use the lower p-value
to account for multiple hypothesis testing (Bonferroni
Correction) [37]. We construct an initial model where
a dependent variable is a rank difference per module,
and independent variables are {# of files per check-in,
# of sources, # of incoming dependencies, OCO, OOW,
relative churn, NOE, # of changed files, # of defects, total
churn, NOEE, NOE, and # of check-ins}. Then we use
a forward and backward stepwise regression to reduce
the number of variables in the model.

The final model is described in Table 5. The rows
represent the selected variables and the cells represent
coefficient, standard errors, and t-values. The results
indicate that the locality of change, the number of de-
pendent modules (sources), the number of defects, and
the number of developers who worked on the modules
are significant factors for preferential refactoring. As dis-
cussed in previous sections, factors such as complexity,
size, and test adequacy do not play much roles in the
decision of refactoring investment.

To investigate how other factors may contribute to
reduction of defects and dependencies, we use mul-
tivariate regression analysis. Using the same method
described, we select all metrics that have significant
correlations with preferential refactoring at p < 0.0001
to build an initial model. Then we use a forward and
backward stepwise regression to reduce the number of
variables in the model. In addition to these selected
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TABLE 6
Multivariate regression analysis results for the changes

in defects and dependencies

∆defects ∆dependencies
(Intercept) -0.109 4.985
rank differences 0.001 -0.001
# of all commits 0.009 0.001
# of refactoring commits -0.072 -0.130
refactoring ratio 0.000 0.000
# incoming dependencies 0.000 0.001
# of sources -0.003 -0.062
OOW -0.014
relative churn 0.000
# of edits by engineers 0.000
# of changed files 0.000 0.001
defects -0.965 -0.182
total churn 0.000 0.000
NOE -0.024 -0.024

variables, we use several independent variables: (1) pref-
erential refactoring, as measured by the rank differences,
(2) refactoring churn and churn, as measured by the
number of refactoring commits and all commits, and (3)
refactoring ratio as measured by # of refactoring commits

# of all commits .
In Table 6, column ∆defects describes a regres-

sion model for the changes in the number of defects,
i.e., defects windows7(m) − defects vista(m). Column
∆dependencies describes a regression model for the
changes in the number of inter-module dependencies.
Each cell describes a coefficient for a selected indepen-
dent variable. The resulting model for ∆defects indi-
cates that one of the most important factors for defect
reduction is the number of previous defects in Vista.
The higher the number of defects in Vista, the higher
the decrease of defects in Windows 7 (coefficient, -0.965).
Another important factor is the amount of refactoring
churn, indicated by # of refactoring commits (coefficient,
-0.072). This result indicates that, among many metrics,
refactoring churn is likely to play a significant role in
reducing the number of defects.

Similarly, the resulting model for ∆dependencies in-
dicates that important factors include the number of
previous defects in Vista and the amount of refactoring
churn (coefficients -0.182 and -0.130 respectively).

4.13 Results of Keyword based Identification of
Refactoring Commits
In addition to the designated refactoring team, other
developers in the Windows also apply refactoring to the
system. To understand the impact of such refactoring,
we identify refactoring changes by matching refactoring
keywords against commit messages described in Sec-
tion 4.2.

Refactoring commits found using a branch-based
method overlap with refactoring commits found using a
keyword-based method. When normalizing the absolute
number of commits, suppose that the total number of
commits is X . The number of refactoring commits iden-
tified based on keywords is Y = 0.058X . The number
of refactoring commits identified based on branches is
Z = 0.013X . The overlap between refactoring commits

identified using both methods is 0.004X , which is 0.006Y
or 0.279Z. The absolute number of commits is normal-
ized for presentation purposes.

Table 7 presents the same information as Table 4, and
the only difference between the two is that Table 7 uses
a branch-based isolation method, while Table 4 uses
a keyword-based method. According to the results of
Table 4, the refactoring team’s effort was preferentially
applied to the modules with a relative high number
of inter-module dependencies, low post-release defects,
low churn measures, and high organization cohesiveness
metrics. The team effort is correlated with a relatively
higher degree of reduction in inter-module dependencies
and certain complexity measures. On the other hand,
the refactoring effort indicated by the keyword method
focused on the modules with a relative low number
of inter-module dependencies, low post-release defects,
low complexity measures, low churn measures, small
sizes, and high organization cohesiveness metrics.

Since refactorings identified by a keyword method and
a branch isolation method are both correlated with re-
duction in inter-module dependencies, complexity met-
rics, and churn measures, these reduction trends are
unlikely to be enabled by the refactoring team’s effort
alone. Instead, both the refactoring made by individual
developers in Windows 7 and the designated refactoring
team are likely to have contributed to the reduction of
these metrics.

4.14 Discussion

Table 2 summarizes the study results of refactoring
commits found by the branch method.

• Refactoring was preferentially applied to the mod-
ules with a large number of dependencies. Pref-
erential refactoring is correlated with reduction in
the number of dependencies. These findings are
expected and not surprising because interview par-
ticipants stated the goal of system-wide refactoring
is to reduce undesirable inter-module dependencies.
However, we believe that there is a value in validat-
ing intended benefits using version history analysis.

• Preferential refactoring is correlated with the reduc-
tion of post-release defects, but less so, compared to
the rest. This indicates that the cause of defect re-
duction cannot be attributed to refactoring changes
alone.

• Refactoring was not preferentially applied to the
modules with high complexity. Preferentially refac-
tored modules experience a higher rate of reduc-
tion in certain complexity measures, but increase
LOC and crosscutting changes more than the rest
of modules. This implies that managers may need
automated tool support for monitoring the impact
of refactoring in a multi-dimensional way.

• Refactoring was preferentially applied to the mod-
ules with high test coverage. This is consistent with
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TABLE 7
The relationship between refactoring identified by a keyword based method and various software metrics. Statistically

significant test results (p-value ≤ 0.05) are marked in yellow background.

Vista ∆ (Vista, Windows7)
Metric top 5% bottom 95% p-value top 5% bottom 95% p-value
Modularity
Neighbors 0.92 1.00 0.13 -0.46 1.08 0.01
Defect
Post release failures 0.94 1.00 0.00 -0.96 -1.00 0.00
Complexity
C1. Fan in 0.44 1.03 0.02 -0.73 -1.01 0.31

C2. Fan out 0.48 1.03 0.03 -0.71 -1.02 0.36

C3. Cyclomatic complexity [31] 0.51 1.03 0.02 -0.22 1.06 0.00

C4. Inheritance depth 0.36 1.03 0.01 -0.49 -1.03 0.60
C5. Coupling through
C5.1. member reads 0.54 1.02 0.40 0.58 1.02 0.03

C5.2. member writes 0.69 1.02 0.60 -0.11 1.06 0.01

C5.3. function parameters 0.21 1.04 0.00 0.41 1.03 0.01

C5.4. type declarations in local
functions

0.26 1.04 0.00 0.31 1.04 0.00

C5.5. immediate base classes 0.42 1.03 0.01 -0.52 -1.02 0.77

C5.6. return type 0.26 1.04 0.01 -0.31 -1.04 0.06
Size
S1. LOC 0.54 1.02 0.03 -0.94 -1.00 0.14

S2. # of classes 0.42 1.03 0.00 -0.48 -1.03 0.75

S3. # of parameters 0.54 1.02 0.03 -0.91 -1.00 0.13
S4. # of local variables 0.54 1.02 0.09 0.18 1.04 0.31
S5. # of function 0.47 1.03 0.02 -0.65 -1.02 0.44

S6. # of blocks 0.50 1.03 0.01 0.10 1.05 0.00
Churn
Ch1. total churn 0.22 1.04 0.00 -0.15 -1.04 0.01

Ch2. relative churn 0.62 1.02 0.01 0.91 -1.10 0.01

Ch3. # of check-ins 0.29 1.04 0.00 -0.27 -1.04 0.00

Ch4. # changed files 0.36 1.03 0.00 -0.33 -1.04 0.03
Locality
L1. # files per check-in 0.55 1.02 0.00 -0.92 -1.00 0.68
People
O1. NOE 0.57 1.02 0.00 0.58 -1.08 0.76

O2. NOEE 0.63 1.02 0.02 -0.70 -1.02 0.66
Cohesiveness of contribution
O3. DMO -0.16 1.06 0.20 -1.71 1.14 0.00

O4. PO 1.53 0.97 0.00 -7.28 -0.67 0.00

O5. OCO 1.01 1.00% 0.64 -1.26 1.12 0.00
Diffusion of contribution
O6. OOW 1.12 0.99 0.33 -9.06 1.53 0.00

O7. OIF 0.94 1.00 0.02 2.49 0.92 0.00
Test adequacy
T1. block coverage 1.05 1.00 0.07 -1.27 -0.99 0.01

T2. arc coverage 1.06 1.00 0.09 -1.29 -0.98 0.01
Layer
L1. layer numbers 1.01 1.00 0.83 0.35 1.03 0.09

the survey participants’ view that test adequacy
affects developers’ likelihood to initiate refactoring.

5 THREATS TO VALIDITY

Internal validity. Our findings in Section 3 indicate only
correlation between the refactoring effort and reduction
of the number of inter-module dependencies and post-
release defects, not causation—there are other confound-
ing factors such as the expertise level of developers that
we did not examine. It is possible that the changes to
the number of module dependencies and post-release
defects in Windows 7 are caused by factors other than

refactoring such as the types of features added in Win-
dows 7.

Construct validity. Construct validity issues arise when
there are errors in measurement. This is negated to an
extent by the fact that the entire data collection process
of failures and VCS is automated. When selecting target
participants for refactoring, we searched all check-ins
with the keyword “refactor*” based on the assumption
that people who used the word know at least approxi-
mately what it means.

The definition of refactoring from developers’ per-
spectives is broader than behavior-preserving transfor-
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mations, and the granularity of refactorings also varies
among the participants. For example, some survey par-
ticipants refer to Fowler’s refactorings, while a large
number of the participants (71%) consider that refac-
torings are often a part of larger, higher-level effort to
improve existing software. We do not have data on
how many of the survey participants participated in
large refactorings vs. small refactorings as such question
was not a part of the survey. In our Windows case
study, we focused on system-wide refactoring, because
such refactoring granularity seems to be aligned with the
refactoring granularity mentioned by a large number of
the survey participants.

To protect confidential information, we used stan-
dard normalizations. All analyses were performed on
the actual values and the normalization was done for
the presentation purposes only to protect confidential
information.
External validity. In our case, we came to know about a
multi-year refactoring effort in Windows from several
survey participants and to leverage this best possible
scenario where intentional refactoring was performed,
we focused on the case study of Windows. As opposed
to formal experiments that often have a narrow focus
and an emphasis on controlling context variables, case
studies test theories and collect data through observation
in an unmodified setting.

Our study about Windows 7 refactoring may not
generalize to other refactoring practices, because the
Windows refactoring team had a very specific goal of
reducing undesirable inter-module dependencies and
therefore may not be applicable where refactoring efforts
have a different or less precise goal. The hypothesis
H7 assumes that the software system has a layered
architecture. Thus it may not be applicable to systems
without a layered architecture. Because the Windows
refactoring is a large scale, system-wide refactoring, its
benefit may differ from other small scale refactorings
that appear in Fowler’s catalog.

While we acknowledge that our case study on Win-
dows may not generalize to other systems, most de-
velopment practices are similar to those outside of Mi-
crosoft. Furthermore, developers at Microsoft are highly
representative of software developers all over the world,
as they come from diverse educational and cultural
backgrounds.3 We believe that lifting the veil on the Win-
dows refactoring process and quantifying the correlation
between refactoring and various metrics could be valu-
able to other development organizations. To facilitate
replication our study outside Microsoft, we published
the full survey questions as a technical report [12].

6 RELATED WORK

Refactoring Definition. While refactoring is defined as
a behavior-preserving code transformation in the aca-

3. Global diversity and inclusion http://www.microsoft.come/
about/diversity/en/us/default.aspx

demic literature [10], the de-facto definition of refactor-
ing in practice seems to be very different from such
rigorous definition. Fowler catalogs 72 types of struc-
tural changes in object oriented programs but these
transformations do not necessarily guarantee behavior
preservation [1]. In fact, Fowler recommends developers
to write test code first before, since these refactorings
may change a program’s behavior. Murphy-Hill et al. an-
alyzed refactoring logs and found that developers often
interleave refactorings with other behavior-modifying
transformations [38], indicating that pure refactoring
revisions are rare. Our survey in Section 2 also finds
that refactoring is not confined to low-level, semantics-
preserving transformations from developers’ perspec-
tives.

Quantitative Assessment of Refactoring Benefits. While
several prior research efforts have conceptually ad-
vanced our understanding of the benefit of refactoring
through metaphors, few empirical studies assess refac-
toring benefits quantitatively. Sullivan et al. first linked
software modularity with option theories [39]. A module
provides an option to substitute it with a better one with-
out symmetric obligations, and investing in refactoring
activities can be seen as purchasing options for future
adaptability, which will produce benefits when changes
happen and the module can be replaced easily. Baldwin
and Clark [40] argued that the modularization of a sys-
tem can generate tremendous value in an industry, given
that this strategy creates valuable options for module
improvement. Ward Cunningham drew the comparison
between debt and a lack of refactoring: a quick and dirty
implementation leaves technical debt that incur penalties
in terms of increased maintenance costs [21]. While
these projects advanced conceptual understanding of
refactoring impact, they do not quantify the benefits of
refactoring.

Xing and Stroulia found that 70% of structural changes
in Eclipse’s evolution history are due to refactorings and
existing IDEs lack support for complex refactorings [41].
Dig et al. studied the role of refactorings in API evolu-
tion, and found that 80% of the changes that break client
applications are API-level refactorings [42]. While these
studies focused on the frequency and types of refac-
torings, they did not focus on how refactoring impacts
inter-module dependencies and defects. MacCormack et
al. [43] defined modularity metrics and used these met-
rics to study evolution of Mozilla and Linux. They found
that the redesign of Mozilla resulted in an architecture
that was significantly more modular than that of its
predecessor. However, unlike our study on Windows,
their study merely monitored design structure changes
in terms of modularity metrics without identifying the
modules where refactoring changes are made.

Several research projects automatically detect the
symptoms of poor software design—coined as code smells
by Fowler [1]. Gueheneuc et al. detect inter-class design
defects [44] and Marinescu identifies design flaws using
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software metrics [45]. Izurieta and Bieman detect accu-
mulation of non design-pattern related code [19]. Guo
et al. define domain-specific code smells [46] and inves-
tigate the consequence of technical debt [20]. Wong et
al. [47] identify modularity violations—recurring discrep-
ancies between which modules should change together
and which modules actually change together according
to version histories. While these studies correlate the
symptoms of poor design with quality measurements
such as the number of bugs, these studies do not directly
investigate the consequence of refactoring—purposeful
actions to reverse or mitigate the symptoms of poor
design.

Conflicting Evidence on Refactoring Benefit. Kataoka
et al. [18] proposed a refactoring evaluation method
that compares software before and after refactoring in
terms of coupling metrics. Kolb et al. [23] performed a
case study on the design and implementation of existing
software and found that refactoring improves software
with respect to maintainability and reusability. Moser et
al. [48] conducted a case study in an industrial, agile
environment and found that refactoring enhances qual-
ity and reusability related metrics. Carriere et al.’s case
study found the average time taken to resolve tickets
decreases after re-architecting the system [49]. Ratzinger
et al. developed defect prediction models based on
software evolution attributes and found that refactoring
related features and defects have an inverse correla-
tion [5]—if the number of refactoring edits increases
in the preceding time period, the number of defects
decreases. These studies indicated that refactoring posi-
tively affects productivity or quality measurements.

On the other hand, several research efforts found con-
tradicting evidence that refactoring may affect software
quality negatively. Weißgerber and Diehl found that
refactoring edits often occur together with other types
of changes and that refactoring edits are followed by an
increasing number of bugs [6]. Kim et al. found that the
number of bug fixes increases after API refactorings [9].
Nagappan and Ball found that code churn—the number
of added, deleted, and modified lines of code—is corre-
lated with defect density [50]— since refactoring often
introduces a large amount of structural changes to the
system, some question the benefit of refactoring. Görg
and Weißgerber detected errors caused by incomplete
refactorings by relating API-level refactorings to the
corresponding class hierarchy [6].

Because manual refactoring is often tedious and error-
prone, modern IDEs provide features that automate the
application of refactorings [51], [52]. However, recent
research found several limitations of tool-assisted refac-
torings as well. Daniel et al. found dozens of bugs
in the refactoring tools in popular IDEs [53]. Murphy-
Hill et al. found that refactoring tools do a poor job of
communicating errors and programmers do not leverage
them as effectively as they could [38]. Vakilian et al. [16]
and Murphy et al. [54] found that programmers do not

use some automated refactorings despite their awareness
of the availability of automated refactorings.

These contradicting findings on refactoring benefits
motivate our survey on the value perception about refac-
toring. They also motivate our analysis on the relation-
ship between refactoring and inter-module dependencies
and defects.

Refactoring Change Identification. A number of ex-
isting techniques address the problem of automatically
inferring refactorings from two program versions. These
techniques compare code elements in terms of their
name [41] and structure similarity to identify move and
rename refactorings [55]. Prete et al. encode Fowler’s
refactoring types in template logic rules and use a logic
query approach to automatically find complex refactor-
ings from two program versions [56]. This work also
describes a survey of existing refactoring reconstruction
techniques. Kim et al. use the results of API-level refac-
toring reconstruction to study the correlation between
API-level refactorings and bug fixes [9]. While it is cer-
tainly possible to identify refactorings using refactoring
reconstruction techniques, in our Windows 7 analysis,
we identify the branches that a designated refactoring
team created to apply and maintain refactorings ex-
clusively and isolate changes from those branches. We
believe that our method of identifying refactorings is
reliable as a designated team confirmed all refactoring
branches manually and reached a consensus about the
role of those refactoring branches within the team.

Empirical Studies on Windows. Prior studies on Win-
dows focused on primarily defect prediction. Nagappan
and Ball investigated the impact of code churn on defect
density and found that relative code churn measures
were indicators of code quality [50]. Zimmermann and
Nagappan built a system wide dependency graph of
Windows Server 2003. By computing network centrality
measures, they observed that network measures based
on dependency structure were 10% more effective in
defect prediction, compared to complexity metrics [57].
More recently, Bird et al. observed that socio-technical
network measures combined with dependency measures
were stronger indicators of failures than dependency
measures alone [58]. Our current study is significantly
different from these prior studies by distinguishing
refactoring changes from non-refactoring changes and by
focusing on the impact of refactoring on inter-module
dependencies and defects. In addition, this paper uses a
multivariate regression analysis to investigate the factors
beyond refactoring churn that could have affected the
changes in the defects and inter-module dependencies.

7 CONCLUSIONS AND FUTURE WORK
This paper presents a three-pronged view of refactoring
in a large software development organization through
a survey, interviews, and version history data analysis.
To investigate a de-facto definition and the value per-
ception about refactoring in practice, we conducted a
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survey with 328 professional software engineers. Then
to examine whether the survey respondents’ perception
matches reality and whether there are visible benefits
of refactoring, we interviewed 6 engineers who led the
Windows refactoring effort and analyzed Windows 7
version history data.

Our study finds the definition of refactoring in prac-
tice is broader than behavior-preserving program transfor-
mations. Developers perceive that refactoring involves
substantial cost and risks and they need various types
of refactoring support beyond automated refactoring
within IDEs. Our interview study shows how system-
wide refactoring was carried out in Windows. The quan-
titative analysis of Windows 7 version history shows that
refactoring effort was focused on the modules with a
high number of inter-module dependencies and high test
adequacy. Consistent with the refactoring goal stated by
the interview participants, preferentially refactored mod-
ules indeed experienced higher reduction in the num-
ber of inter-module dependencies than other changed
modules. While preferentially refactored modules expe-
rience a higher rate of reduction in certain complexity
measures, they increase LOC and crosscutting changes
more than the rest. As the benefit of refactoring is multi-
dimensional and not consistent across various metrics,
we believe that managers and developers can benefit
from automated tool support for monitoring the impact
of refactoring on various software metrics.
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