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ABSTRACT
Software monitoring systems have high performance overhead be-
cause they typically monitor all processes of the running program.
For example, to capture and replay crashes, most current systems
monitor all methods; thus yielding a significant performance over-
head. Lowering the number of methods being monitored to a smaller
subset can dramatically reduce this overhead. We present an ap-
proach that can help arrive at such a subset by reliably identify-
ing methods that are the most likely candidates to crash in a fu-
ture execution of the software. Our approach involves learning pat-
terns from features of methods that previously crashed to classify
new methods as crash-prone or non-crash-prone. An evaluation
of our approach on two large open source projects, ASPECTJ and
ECLIPSE, shows that we can correctly classify crash-prone meth-
ods with an accuracy of 80–86%. Notably, we found that the clas-
sification models can also be used for cross-project prediction with
virtually no loss in classification accuracy. In a further experiment,
we demonstrate how a monitoring tool, RECRASH could take ad-
vantage of only monitoring crash-prone methods and thereby, re-
duce its performance overhead and maintain its ability to perform
its intended tasks.

Categories and Subject Descriptors:
D2.5 [Software Engineering]: Testing and Debugging; D2.7 [Soft-
ware Engineering]: Distribution, Maintenance, and Enhancement;
D2.8 [Software Engineering]: Metrics

General Terms: Measurement, Reliability, Experimentation

1. INTRODUCTION
“When you have a million users, it is amazing what will crash

[. . . ]” – Joel Spolsky [46]

Imagine we were able to prevent crimes by predicting them in ad-
vance — in the science-fiction short story Minority Report [14], a
special police department called Precrime uses this idea to identify
potential suspects and closely monitor their behavior in order to
prevent impending crimes. This has been the driving force behind
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the line of research that we present in this paper: unexpected be-
haviour and crashes in software systems can be similarly avoided
or captured by monitoring the behaviour of constituent methods
and modules.

Many capture and replay techniques exist that monitor software
systems to perform a variety of tasks, such as locating failures [11,
18, 38], reproducing crashes [5, 10], and profiling executions [22,
39, 47]. However, most of these monitoring tools are impractical
in deployment due to their significant performance overhead. For
example, Valgrind’s slow down factor is more than 30 times [39].
Even state-of-the-art lightweight monitoring approaches such as
RECRASH have a performance overhead of up to 60% [5]. The
main cause for such high performance overhead is the vast num-
ber of subjects being monitored. Most approaches monitor all pro-
cesses of the running program as there is currently no way to fore-
tell which methods are likely to crash. The parallel in Minority
Report would be that Precrime tries to prevent crime by putting
every citizen of the nation under surveillance.

In this paper, we investigate whether methods that run a high
risk to crash (henceforth referred to as crash-prone methods) can
be predicted in advance. If crash-prone methods can be identified
before the crash occurs, existing capture-based techniques can be
adapted to monitor only parts of a software system. In practice,
this will mean that only high risk methods will undergo byte code
instrumentation. Resulting key benefits from such adaptations in-
clude reductions in monitoring overhead.

Our approach predicts crash-prone methods by extracting byte-
code features, which includes operation codes, or opcodes, in order
to represent the execution sequence of instructions from the byte-
code of the method bodies. The intuition is that certain bytecode
sequences are more likely to lead to crashes than others. We then
train a classifier to learn patterns from sequential opcodes, in or-
der to classify methods as crash-prone or non-crash-prone (i.e., less
likely to crash). A classifier can be simply described as a mathemat-
ical function that assigns a label (e.g., crash-prone) to an instance
based on its set of features as inputs. We empirically validate our
approach on two large open-source projects and achieve a classifi-
cation accuracy of 80–86%.

At this stage, it is important to note that while our approach ap-
pears similar to that adopted for classifying defect-prone entities,
we solve a different problem: instead of defects, we predict crashes.
Crashes are effects of defects — a defect in method foo may lead
to a crash in the same method or another method bar. Also, not
all defects manifest themselves as crashes. Crashes are also more
similar to each other in that our analysis revealed 35-40% crashes
are NullPointerExceptions, while defects are more diverse and
often unique. Hence, existing defect prediction models may not
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Figure 1: Summary of our approach: (A) Collection of historical crash data. (B) Extraction of machine learning features from
bytecode. (C) Building a machine learner and classifying unseen methods into crash-prone or not.

perform well in identifying crash-prone methods. This calls for a
fresh approach to identify crash-prone methods, which is the main
contribution of this work. Rather than looking at the complexity of
code, we believe that for crash prediction one should focus on what
the code does and what operations it executes. While most defect
prediction models are built on top of source code (because this is
the unit where developers fix bugs), we instead analyze bytecode
to predict crashes. This has the advantage that we can extent pre-
dictions beyond in-house code, e.g., for third-party libraries, and
potentially replay crashes that involve those.

We also demonstrate the benefits of our approach by compar-
ing the run-time overhead when running RECRASH [5] (a tool that
monitors the program’s execution to reproduce a failure) first, mon-
itoring all methods to simulate classical approaches, and second,
when monitoring only methods predicted as crash-prone. We ob-
served a noticeable decrease in the run-time overhead of RECRASH
at virtually no cost to its performance (crash reproduction rate).

We summarize the main contributions of our work as follows:

1. Analysis of the distribution of crashed methods and excep-
tions thrown from two large open-source projects (Section 2).

2. Novel use of opcodes to train a classifier to identify crash-
prone methods; classifiers built with opcodes perform better
than classifiers built with complexity metrics for predictions
within projects (Sections 3, 4, and 5).

3. Demonstration that monitoring only crash-prone methods can
reduce performance overhead of monitoring tools such as
RECRASH at virtually no cost to their utility (Section 6).

We close this paper with a discussion of related work (Section 7),
threats to validity (Section 8), and the consequences and conclu-
sions that can be drawn from this research (Section 9).

2. CRASHED METHODS
Figure 1 presents an overview of the approach that we have adopted
for our research. The first step is to identify methods that are known
to have crashed in the past (Figure 1, part A). This section provides
the details on how we identified the methods and presents the sum-
mary statistics of data collected from our subject projects.

Methods do crash when they cannot fulfill required specifica-
tions due to errors. Crashes manifest themselves as thrown exceptions—
a functionality in many modern programming languages for error
handling and its separation from method logic. When an exception
is encountered, developers can access all active subroutine calls of
the program as a report that is referred to as a stack trace. Figure 2
shows a sample stack trace from ASPECTJ. Typically, stack traces
have the following parts:

1. The exception, error, or assertion that has been observed.

2. An optional exception or error message.

3. A list of methods that were active on the call stack when the
exception occurred.

As can be seen in Figure 2, the information in a stack trace points
to methods that are potential sources of error. It is no wonder that
they are much sought after by developers during bug fixing [6].
Often, stack traces can be found in bug reports filed by reporters
along with the bug’s description. We used such bug reports as the
primary source of data for our research.

2.1 Subject Projects
For our study, we use the following two open-source projects:

1. ASPECTJ: An aspect-oriented extension to the Java program-
ming language that facilitates modularization of crosscutting
concerns. Among other tools, it includes a compiler that
weaves together existing program code with aspect code.

2. ECLIPSE: A large open-source integrated-development envi-
ronment developed by IBM in 2001 and actively maintained
since then.

We considered all bug reports from beginning (September 2002) to
July 2008, for ASPECTJ that totalled to 1,885 bug reports; and from
beginning (October 2001) to July 2008, for the ECLIPSE project
that totaled to 41,999 bug reports.

2.2 InfoZilla
In order to extract stack trace information from bug reports (includ-
ing their discussions and attachments) from the subject projects, we
use the InfoZilla tool [7]. InfoZilla uses a set of regular expressions
based on the following model to identify and extract stack traces:

( [MODIFIER]?[EXCEPTION]) ([:] [MESSAGE])?
( [at][METHOD][(] [FILE][:] [LINE][)] )*

Manual inspection of the extracted stack traces in earlier work [7]
showed that InfoZilla can perform reliably with an accuracy of
98.5%. The output of the tool provides us with knowledge about
the type of exception that was thrown when the program error oc-
curred, the list of subroutines that were active when the crash oc-
curred, the name and path of the source code files containing the
respective methods, and the location of the methods’ source code
in that file.

A total of 34,970 stack traces were collected from the 43,884
bug reports of both projects. We then filtered duplicated or non-
ASPECTJ/non-ECLIPSE stack traces:



Table 1: Distribution of top-5 exceptions in ASPECTJ and ECLIPSE.
Project Observed Frequency Exception thrown

ASPECTJ (366)

166 (45.36%) lang.NullPointerException
50 (13.66%) aspectj.weaver.BCException
35 (9.56%) lang.ClassCastException
27 (7.38%) lang.IllegalStateException
21 (5.34%) lang.ArrayIndexOutOfBoundsException

ECLIPSE (17,910)

6,932 (38.70%) java.lang.NullPointerException
1,183 (6.61%) java.lang.IllegalArgumentException

952 (5.31%) org.eclipse.swt.SWTException
948 (5.29%) java.lang.ClassCastException
582 (3.25%) java.lang.ArrayIndexOutOfBoundsException

1. Remove duplicate stack traces: For the purpose of this study,
we adopted a definition for duplicate stack traces which is
different from that of developers. The reason is that we pre-
dict crashes, i.e., the effects of defects, and some defects re-
sult in crashes at multiple locations. Developers can decide
that two stack traces are duplicates because the comprising
bug reports are marked as duplicates (=the same defect, will
be fixed only once). In contrast, for our purpose we have to
instrument every crash location, even if it is the same defect.
Thus we considered only those stack traces that contained
exactly the same exceptions and order of crashed methods in
the stack frames as duplicates (=the same effect). Removing
such duplicate stack traces left us with 23,435 unique stack
traces.

2. Remove non-ASPECTJ and non-ECLIPSE stack traces: Al-
though the bug reports used to extracted these stack traces
were filed in the bug databases of the two projects, many
reported crashes were caused by external API and not the
projects themselves, such as crashes produced by the JAVA
virtual machine. To consider only ASPECTJ and ECLIPSE
related crashes, we further filtered the 23,435 stack traces
to include only those beginning with either org.eclipse.*
or org.aspectj.*. This left us with 17,910 stack traces for
ECLIPSE and 366 for ASPECTJ, which we used for the re-
mainder of our study.

2.3 Identifying Methods that Crashed
A stack trace includes multiple frames (see Figure 2), each con-
taining information on the method such as the file name, method
name and line number. We consider the first (top-most) frame in the
stack as the crashed method because the exception/crash occurred
in this method. 1 To exemplify, in the stack trace presented in Fig-
ure 2, the readClassInfo() method, defined in ClassParser.java,
crashed when executing the source code at line 242.

In total, we identified 209 unique methods that crashed in AS-
PECTJ and 8,621 unique methods in ECLIPSE. We consider these
methods as crash-prone methods because the exception occurred in
these methods. More formally, for the experiments in this paper,
we define a method as “crash-prone” if it crashed at least once in
our dataset.

3. OUR APPROACH
Having identified crashed methods from the two projects, we now
continue by retrieving the method bodies from their respective ver-
1We use the top-most frame because this paper focusses on crash
prediction (recall the discussion of differences between defects and
crashes in the introduction). The defect that caused the crash can
be somewhere below in the stack trace or not be included at all.

org.apache.bcel.classfile.ClassFormatException

at org.apache.bcel.classfile.ClassParser.readClassInfo(ClassParser.java:242)

at org.apache.bcel.classfile.ClassParser.parse(ClassParser.java:165)

at org.aspectj.weaver.bcel.Utility.makeJavaClass(Utility.java:358)

at org.aspectj.weaver.bcel.UnwovenClassFile.getJavaClass(UnwovenClassFile.java:63)

at org.aspectj.weaver.bcel.UnwovenClassFile.getClassName(UnwovenClassFile.java:147)...

Exception

Frame 5

C
all Stack

Frame 1
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Figure 2: Stack trace extracted from ASPECTJ bug #59208.

sion archives. We then extract features from their bytecode presen-
tation that will constitute the data to train our classifier (Figure 1,
part B). This section elaborates on the steps we followed to collect
the data needed to perform our experiments.

3.1 Method Body Extraction
The information on the crashed methods (file name, method name
and line number) in the stack traces allows us to trace back to the
method body, and in turn, extract the features to train our classifier.
While this task appears trivial at first, we must exert caution to
ensure that the features are collected from the correct version of the
method, i.e., the one that actually crashed, else we risk training the
classifier with incorrect inputs. For example, if a user reports that a
method foo from ECLIPSE 2.0 (build 40013) crashed, we must strictly
extract features from method foo in ECLIPSE 2.0 (build 40013).

To match the version of the software, we extracted the value of
the version field in the bug report. The relevant method body was
then extracted from the project’s corresponding version. For exam-
ple, for a crash reported while using version “1.5.2” in ASPECTJ,
we use aspectj-1.5.2.jar to extract the method body with the
ASM framework [40]. We excluded stack traces found in bug re-
ports with no version numbers reported from our analysis.

The validity of our data was further increased by matching the
line numbers from the stack trace to those in the program archives.
This was done because JAVA supports method overriding and hence,
two or more methods can share the same name leading to ambiguity
when matching method names only. Comparing line numbers en-
sures that the extracted method bodies are the ones that crashed. If
a method in a specified version archive is not found, we excluded it
from our analysis. We also excluded methods whose line numbers
in the stack frame and program archive did not match.

We downloaded ASPECTJ2 and ECLIPSE3 versions from their re-
spective home pages to extract the crashed method bodies. In total,
18 versions of ASPECTJ and 25 versions of ECLIPSE were available.

2http://www.eclipse.org/aspectj/downloads.php
3http://www.eclipse.org/eclipse/downloads.php



0 ldc <Class Analysis>

2 invokevirtual desiredAssertionStatus() :boolean

5 ifne 12

8 iconst_1

9 goto 13

12 iconst_0

13 putstatic Analysis.assertionsDisabled :boolean

16 return

Figure 3: Opcode example from org.aspectj.Main.class
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Figure 4: Example basic blocks and control flow graphs of op-
codes in Figure 3.

3.2 Feature Extraction
After locating the method bodies of the crashed methods, we ex-
tracted features that are available in their bytecode representation
using the FindBugs framework [21]. We extract features from the
entire method body (and not just the line that crashed) to take into
account the surrounding region of the crash. Figure 3 shows the
sample bytecode of an initialization method for static fields.

A method’s bytecode consists of operation codes (opcodes) that
represent the execution sequence of instructions. Opcodes have
the advantage of representing low-level semantics of the code and
the resulting data is likely to contain less noise than that extracted
directly from source code. We hypothesize that certain opcode se-
quences are definite indicators of crash-prone methods.

The FindBugs framework that we used to extract features from
the bytecode first performs static analysis to determine basic blocks
and the control flow among them. Basic blocks are groups of con-
secutive instructions that can be sequentially executed without halt-
ing program execution or a branch. A basic block is entered at its
first instruction and is left at the last. After obtaining information
about basic blocks, we can trace the control flow of information by
inspecting the execution order and branching behavior among the
identified blocks.

Figure 4 presents the basic blocks and control flow of informa-
tion obtained from the opcode sequence example in Figure 3. First,
a nop instruction is inserted before the first block (B1) to allow con-

Table 2: Bytecode features extracted for this paper
Count

Features Abbreviation ASPECTJ ECLIPSE

Meta data m 7 7
Single opcode op1 92 148
2-grams opcode op2 681 1,938
3-grams opcode op3 864 4,938
First opcode in blocks ops 80 131
Last opcode in blocks ope 58 80
Exceptions thrown e 26 120
Method names n 114 1,597

structing a location representing the entry to the method. Next,
we obtain five separate sequences of opcodes that can be executed
without halting and branching and group as basic blocks. After de-
termining their execution order and branching behavior, a control
flow graph is generated as in Figure 4. Basic blocks form the nodes
of the graph. Whenever a block B2 follows a block B1 in the execu-
tion order of the method, the control flow graph contains a directed
edge from B1 to B2.

We consider opcode sequences within a basic block as a series
of words and extract n-grams from them. N-grams are essentially
subsequences of n items in a given sequence. We extract single
opcodes (1-gram), two consecutive opcodes (2-grams), and three
opcode combinations (3-grams) and use them as features. Using
up to three opcode combinations allows us to investigate whether
sequences of n-grams are better indicators of crash-prone methods
than single opcodes in isolation. As an example, B2 in Figure 4
has invokevirtual and ifne opcode. From this block we extract
features, invokevirtual (single opcode), ifne (single opcode), and
invokevirtual ifne (2-grams. There are no 3-gram features in B2.
In addition, the first and last opcodes of each basic block are used
as features.

For the n-gram extraction, it is important to use basic block in-
formation instead of the entire list of opcodes. Even though two
opcodes are consecutive, there is no guarantee that the two op-
codes are executed sequentially. For example, in Figure 3 the op-
codes goto 13 (in Line 9) and iconst_0 are consecutive, but they
will never be executed sequentially. If we just use opcode n-grams
without basic block considerations, we may include meaningless
opcode combinations.

The attributes of basic blocks are good feature candidates. Ba-
sic block metadata such as the number of basic blocks, the number
of edges between basic blocks, and size of basic blocks indicate
properties that are used as features. Some opcodes can include ex-
ception targets such as athrow. We used these strings as features.
All extracted features are summarized in Table 2.

We also use class and methods names. As Schröter et al. [43]
discussed, crashes do not occur uniformly in methods. It is possible
that methods in some packages or some classes would crash more
(or less) frequently than other methods. Features extracted from
method names capture these properties.

In summary, we identify methods as crashed and non-crashed.
From each method, we extract features using extraction techniques
described in this section. The extracted features along with the
labels, crashed or non-crashed compose a corpus. The corpus is
used by our experiments to evaluate the prediction model.

4. EXPERIMENTAL SETUP
In this section, we describe the setup adopted to perform our exper-
iments.



4.1 Bayesian Networks
We used Bayesian networks in the Weka implementation [49] to
classify methods as crash-prone or non-crash-prone (see Figure 1,
part C). Our decision to use Bayesian networks is due to its good
performance when dealing with a large number of variables with
much variance in values [23]. In our case, we have many opcode n-
grams with highly varying values. It is possible that other classifiers
may perform as well as Bayesian networks, however investigating
the most suitable classifier is beyond the scope of this paper.

4.2 Training and Test Sets
A classifier has to learn from both, positive and negative exam-
ples; in our case, crash-prone and non-crash-prone methods respec-
tively. The previous sections elucidate how we identified crash-
prone methods as those that are known to have crashed. We con-
sider non-crash-prone methods to be the complement set of crash-
prone methods.

To train and test our classifier, we created a corpus of methods
for each project using undersampling, which is commonly used
in the literature [2, 32, 45]; we randomly sampled non-crash-prone
methods equal in number to the known crash-prone methods in the
project. As a result, our corpora consisted a total of 418 methods
for ASPECTJ and 17,242 methods for ECLIPSE.

4.3 Within and Cross-Project Classification
Using this data, we adopted two experimental setups to conduct

our experiments:

• Within-project classification: In this setup, we used data
from the same project to both, train and test the Bayesian net-
work. The setup allows us to investigate how well bytecode
features from a project can be used to classify crash-prone
and non-crash-prone methods in the same project. We ap-
plied 10-fold cross-validation in these experiments. In such
a setup, the data is divided equally into 10 folds and the in-
stances in each fold are classified in turn using the remaining
nine to train the model. The reported values in table 3 are the
average values of accuracy, precision, recall, and F-measure
over the 10 runs.

• Cross-project classification: In this setup, we trained the
Bayesian network with the corpus from one project and tested
it on the corpus from the other project. The reported values
in table 4 are the resulting accuracy, precision, recall, and
F-measure after training on one project and testing on an-
other. Earlier in Section 3, we mentioned that bytecode fea-
tures have the advantage of not being project-specific; hence
patterns indicative of crashes are likely to be generalizable
across projects. This setup allows us to investigate whether
bytecode features can indeed be used across projects for at
least select types of classification purposes.

4.4 Baseline
We compared the classifier built from our bytecode features with

a classifier built from complexity metrics commonly used for tra-
ditional defect prediction [9]. We computed the metrics directly on
the bytecode with the SandMark tool [12, 13]. To ensure compara-
bility of the results, we used the same experimental setup for both
complexity metrics and bytecode features, that is, we used the same
splits and the same classifier (Bayesian networks).

For the experiments we used the following complexity metrics:

• Size of Method (in Bytes)

• Number of Conditional Statements

• Number of Scalar Locals

• Number of Vector Locals

• Length of Local Identifiers

• McCabe Complexity [31]

• Munson/Khoshgoftaar: Data Structure Complexity [35]

• Harrison/Magel: Nesting Level Complexity [20]

• Halstead complexity measures: Length, Vocabulary, Volume,
Difficulty, Effort, Volume + Effort [19]

4.5 Evaluation
Applying a machine learner to our problem can result in four pos-
sible outcomes: the classifier predicts (1) a crash-prone method as
crash-prone (cp → cp); (2) a crash-prone method as non-crash-
prone (cp → cr); (3) a non-crash-prone method as crash-prone
(cr → cp); and (4) a non-crash-prone method as non-crash-prone
(cr → cr). These outcomes can be then used to evaluate the classi-
fication with the following four measures [2, 27, 44]:

• Accuracy: the number of methods correctly classified as
crash-prone (Ncp→cp) or non-crash-prone (Ncr→cr) divided by
the total number of methods classified. This is a good overall
measure of classification performance.

Accuracy =
Ncp→cp + Ncr→cr

Ncp→cp + Ncp→cr + Ncr→cp + Ncr→cr
(1)

• Precision: the number of methods correctly classified as
crash-prone (Ncp→cp) over the number of all methods clas-
sified as crash-prone.

Precision P(cp) =
Ncp→cp

Ncp→cp + Ncr→cp
(2)

• Recall: the number of methods correctly classified as crash-
prone (Ncp→cp) over the total number of crash-prone.

Recall R(cp) =
Ncp→cp

Ncp→cp + Ncp→cr
(3)

• F-measure: a composite measure of precision P(cp) and re-
call R(cp) for crash-prone methods.

F-measure F(cp) =
2 ∗ P(cp) ∗ R(cp)

P(cp) + R(cp)
(4)

Of these measures, the F-measure is the most important because it
indicates overall classification performance as a single value taking
both precision and recall into account. The same measures can be
correspondingly defined for non-crash-prone methods.

5. CLASSIFICATION RESULTS
We now turn to discussing the results from both experimental se-
tups in this section. All measures of evaluation are reported in Ta-
bles 3 and 4.

5.1 Within-Project Classification
We observed an F-measure of 86.4% for ASPECTJ and 79.5% for
ECLIPSE for classifying crash-prone methods; both measures are
very high. The precision and recall values for crash-prone and non-
crash-prone methods for both projects are also very high (see Ta-
ble 3). These results strongly suggest that bytecode features can
be used to reliably distinguish between the two classes of methods.



Table 3: Classification results from within-project setup (Bayesian networks with K2, 10-fold cross-validation).
Crash-prone methods non-crash-prone methods

Project Feature Set Accuracy Precision Recall F-measure Precision Recall F-measure

ASPECTJ
Bytecode features 0.859 0.838 0.891 0.864 0.883 0.828 0.855
Complexity metrics 0.805 0.800 0.813 0.806 0.810 0.797 0.803

ECLIPSE
Bytecode features 0.799 0.812 0.778 0.795 0.787 0.819 0.803
Complexity metrics 0.716 0.714 0.720 0.717 0.718 0.712 0.715

Table 4: Classification results from cross-project setup. (Bayesian networks with K2)
Crash-prone methods non-crash-prone methods

Project Training Data Feature Set Accuracy Precision Recall F-measure Precision Recall F-measure

ASPECTJ ECLIPSE
Bytecode features 0.750 0.686 0.922 0.787 0.881 0.578 0.698
Complexity metrics 0.796 0.779 0.828 0.803 0.817 0.766 0.790

ECLIPSE ASPECTJ
Bytecode features 0.721 0.751 0.664 0.705 0.699 0.779 0.737
Complexity metrics 0.713 0.745 0.648 0.693 0.689 0.778 0.731

For both ASPECTJ and ECLIPSE the values of all evaluation mea-
sures are lower for complexity metrics than the values for bytecode
features (between 3.4 and 9.9 percentage points).

The precision and recall values can be further improved when
using the classifier, but it typically involves trading off one for the
other, i.e., an increase in precision often results in a decrease in
recall and vice versa. The improvement can be made by adjust-
ing the threshold value of probability, which ranges from [0–1], in
the classifier. This value acts as boundary to determine the mem-
bership class of an instance. Typically, the threshold value is set
to 0.5 as was the case for the results presented in Table 3. But
when the threshold value is increased or decreased, it often results
in an improvement in either precision or recall. For example, if the
threshold value is set to 0, the recall value of crash-prone methods
will increase to 1, while the precision value will fall. On the other
hand, if the threshold value is increased to 1, precision may be very
high but only at the cost of fall in recall.

In Figure 5, we plot the corresponding precision and recall values
by varying the threshold in both projects. Overall, the precision and
recall curves display high values; it is possible to achieve values
> 85% for both, precision and recall, at certain threshold values.
Note that the curve for ASPECTJ is not as smooth in comparison to
ECLIPSE because of the relatively fewer number of methods.

Such a graph can be of much help when developing monitor-
ing tools with high performance overhead—in a calibration phase,
one can select the ideal threshold value for the project to adjust
performance overhead depending on the use-case. For example, if
the monitoring tool requires higher precision, then threshold values
corresponding to the upper-left portions of the curve are more suit-
able. In such setups, the performance overhead will decrease be-
cause fewer methods will be monitored. Vice versa, if performance
overhead is not a major concern, then choosing a threshold value
that results in higher recall may be more desirable. This graph can
be used to estimate future performance based on past performance.

Overall, the high values for accuracy and F-measure show that
our approach is promising for crash-prone method prediction and
that it can be reliably used to complement monitoring tools to nar-
row down the number of methods to monitor.

5.2 Cross-Project Classification
Next, we examine how the classifier performs on classifying meth-
ods from one project, when trained on methods from another. Usu-
ally data in the same project share common characteristics and so,
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Figure 5: Precision and recall graph of method crash predic-
tion of ASPECTJ and ECLIPSE.

it is reasonable to expect that classification accuracy will be high.
However, past research has found classification models to show low
performance when reused across different projects. For example,
Zimmermann et al. [51] noted that defect prediction models do not
yield good results from used across different projects. Also, Kim et
al. [27] found that classifying changes as clean or buggy yields high
accuracy within the same project, but not across projects. However,
as opposed to these very specialized models, we extract features
from relatively unified bytecode, hence it may be possible that the
classifier may perform well even across projects.

The results from our cross-project experiments are reported in
Table 4. We focus first on the values of F-measure since it combines
both, precision and recall. The values for crash-prone methods are
78.7% for ASPECTJ and 70.5% for ECLIPSE, which is similar to
those in the within-project setup (86.4% and 80.3% respectively).
The F-measure value for non-crash-prone methods is also compa-
rable in the case of ECLIPSE, but drops noticeably for ASPECTJ. A
closer look at precision and recall values, shows that for non-crash-
prone methods the recall dropped significantly from 82.8% within
project to 57.8% across projects.



Surprisingly the values for complexity metrics remained fairly
stable between the within-project and cross-project setups. For AS-
PECTJ, complexity metrics performed slightly better than bytecode
features (except for recall for crash-prone methods and precision
for non-crash-prone methods). This might be due to the fact that
complexity features are quite general whereas the bytecode features
are more specific. For ECLIPSE however, the bytecode features per-
formed better than complexity metrics.

These results warrant further research in the area of using byte-
code features for identifying crash-prone methods and perhaps other
topics too. A very encouraging consequence of these results is that
projects with limited data of their own can leverage data (bytecode
features and complexity) from other projects to address their own
concerns without too much loss in prediction quality.

5.3 Significant Features
We have shown that our approach yields high classification ac-
curacy of crash-prone methods in both, within-project and cross-
project experimental setups. A natural question that follows is
what are the common and most influential features that determine
a method to be crash-prone or non-crash-prone? This section fo-
cuses on answering this question.

Most influential factors can be investigated using the concept of
gain ratio [1]. Gain ratio improves upon information gain, which is
a well known measure of the degree of influence exerted by the fea-
ture to arrive at a classification. However, information gain can be
skewed by features that have a large number of distinct values. Gain
ratio plays the same role as information gain, but instead provides
a normalized measure of a feature’s contribution to a classification,
and thus avoiding the problem of numerous distinct values.

We investigated our classification model using gain ratio and
present the results in Table 5. The table lists opcode sequences
with the highest gain ratio, i.e., ones that cast the highest degree of
influence for classification. These features provide the most gain
with respect to the values of the attribute. The gain is reported in
the column Gain ratio in the table. The higher the gain ratio, the
more importance the opcode pattern has when identifying crash-
prone methods.

Some opcode patterns in Table 5 are common between ASPECTJ
and ECLIPSE, such as the aload opcode that loads a local reference
from a local variable [29]. Since aload accesses local variables, it
has more chance to crash with exceptions such as NullPointerException.
invokevirtual is another common top feature that invokes an in-
stance method. This indicates that methods with that make calls to
many other methods are more crash-prone.

Note that while Table 5 suggests that one likely cause of crashes
is the existence of an aload operation, it is important to avoid any
wrong interpretations [50]. The result does not mean that devel-
opers should not use this opcode (in fact, developers should con-
tinue writing code without worrying about bytecode operations).
Rather the result has implication on monitoring systems such as
RECRASH. It shows that methods with aload are more likely to
crash, thus monitoring systems should pay more attention to those
methods. The approach in this paper provides an automated way to
predict crash-prone locations with high accuracy.

5.4 Methods with declared thrown exceptions
and Crashes

The JAVA language provides a very extensive set of methods for
exception handling. A method can throw exceptions by adding the
throws declaration to its signature. A common understanding is
that if a method with declared thrown exceptions, there is a higher
chance it would crash. One may argue that a classifier can simply

Table 5: Top 5 opcodes sequences from ASPECTJ and ECLIPSE
that are predictors of crash-prone methods.

Project Gain ratio Feature

ASPECTJ

0.26 op1: aload

0.24 op1: astore

0.23 ope: aload

0.22 ope: ifle

0.22 op1: ifle

ECLIPSE

0.14 op3: aload aload iload

0.13 ops: aload

0.12 ops: jsr

0.12 op2: invokevirtual astore

0.12 op2: checkcast aload

predict all methods with declared thrown exceptions as crash-prone
and yield good results.

We investigated this issue by analyzing our data to observe the
types of methods that crashed. Only 30% of crashed methods from
ECLIPSE and 44% from ASPECTJ threw exceptions. The remaining
70% of crashed methods are not declared as throwing exceptions.
Most crashes found are runtime exceptions. It is less common to
see developers throw runtime exceptions in their programs. This
indicates the methods without declared thrown exceptions also have
a high chance to crash.

Next, to assess the effect of the throwable-related features on our
classifier, we removed all such features including the ‘exception
thrower’ meta data and the opcode ‘athrow’, and then reevaluated
our model. The classification accuracy stood comparable at 84.0%
as opposed to 85.9% using all data for ASPECTJ and 78.0% as op-
posed to 79.9% for ECLIPSE. The higher accuracy for ASPECTJ
may be attributed to the small data set. The F-measures also re-
mained comparable for both projects. Overall, these results show
that the classifier depends little on features related to ‘throwable’.

6. EXPERIMENTS WITH RECRASH
RECRASH is a framework that monitors and reproduces software
crashes [5]. It operates in two phases: monitoring phase and test
generation phase. In short, the former phase keeps track of all
method calls and arguments passed during the execution of a pro-
gram and stores this information. If a crash occurs, RECRASH uses
this information to generate unit tests that can reliably reproduce
the crash. The tests then allow developers to investigate the exact
cause for the crash and fix it.

In this section, we focus on comparing the performance overhead
of running RECRASH in its original form and when strictly monitor-
ing only those methods classified as crash-prone by our classifier.
We further check whether monitoring only crash-prone methods
reduces the ability of RECRASH to reproduce crashes.

For our experiments with RECRASH, we train our classifier us-
ing crash-prone and non-crash-prone methods from ECLIPSE and
use it to classify methods from a different project called SVNKit.
We chose SVNKit for our experiments because of our previous ex-
perience in using it with RECRASH and being able to reproduce
three real crashes from its execution [5]. In addition, SVNKit is the
only standalone application used in RECRASH [5] while others are
a plug-in (JSR), a library (JDT), and a toy program (BST). Note
that SVNKit is completely independent of the ECLIPSE project and
so, these experiments qualify as cross-project validation.

SVNKit has a total of 2,347 methods of which 625 (27%) were
classified as crash-prone by our classifier; the remaining methods



Table 6: User times of SVNKit processes with RECRASH and
RECRASH+. Numbers in parenthesis indicate increase in exe-
cution time using original time as the baseline.

User time (in seconds)
Process Original RECRASH RECRASH+

checkout 2.28 2.92 (28%) 2.63 (15%)
update 1.15 1.36 (18%) 1.24 (8%)

were classified as non-crash-prone. Having identified crash-prone
methods from SVNKit, we use RECRASH to strictly monitor them
while executing two SVNKit processes: checkout and update.

6.1 Performance Overhead
We first present the comparison of performance overhead of RE-
CRASH in its original form and when monitoring crash-prone meth-
ods only. For brevity, we henceforth refer to the latter setup as
RECRASH+.

In Table 6, we summarize the user times (measured in seconds
using the UNIX time command) of the two SVNKit processes in
three different setups. First, we run the individual processes solely
on the system (column Original in Table 6), second, we run the
processes alongside RECRASH (column RECRASH), and lastly, we
run the processes alongside RECRASH+ (column RECRASH+) and
measure the user times of each setup.

Running RECRASH in parallel with checkout increased the pro-
cess’s user time by 28% from 2.28 to 2.92 seconds; for update, it in-
creased by 18%. In comparison, running RECRASH+ increased the
user time of the processes by only 15% and 8% respectively. RE-
CRASH+ significantly reduced the monitoring overhead from 28%
to 15%, and 18% to only 8%.

In terms of absolute numbers, the improvements of 0.29 (from
2.92 to 2.63) and 0.12 seconds (from 1.36 to 1.24) may look in-
significant. However, when software runs continuously such as
long-running desktop and server programs, these improvements make
a big difference.

Note that the overhead can be further reduced by changing the
threshold value in the classifier to vary the number of monitored
methods as previously shown in Figure 5.

In this experiment, the SVNKit commands were executed to check
out and update a mock SVN repository4.

6.2 Reproducing Crashes
We observed a definite reduction in performance overhead when
using RECRASH+. However, what remains to be investigated is
whether the reduction in overhead affects the ability of RECRASH
to reproduce crashes.

In Table 7, we present three crashes from SVNKit that have been
identified in previous work [5] and successfully reproduced using
RECRASH. The table also lists the methods listed in the stack trace
at the time of each crash. RECRASH uses this list of methods and
arguments passed to them to reproduce the crash. Note that crashes
from other subject programs, i.e., ECLIPSE, JSR, and BST [5] were
excluded from our evaluation because (a) only a subset of tests in
ECLIPSE and JSR reproduced the crash and (b) BST is a toy subject
program with 10 methods and 200 lines of code The last column in
Table 7 indicates whether the methods were classified crash-prone
by our classifier and if they would be monitored using RECRASH+.
Crash-prone methods are indicated using 4 (monitored using RE-
CRASH+) and non-crash-prone methods are indicated using 8.

4http://amock.googlecode.com/svn/trunk/src

Table 7: Stack trace frames from crashes in SVNKit. Crash-
prone methods are indicated using 4 (monitored using RE-
CRASH+) and non-crash-prone methods are indicated using 8.

Crash Methods in stack trace Crash-prone

Crash 1
org...SVNCommandLine.getURL() 8
org...CheckoutCommand.run() 4
org...SVN.main() 4

Crash 2

com...UserAuthNone.start() 4
com...Session.connect() 4
org...SVNJSchConnector.connect() 4
org...SVNJSchConnector.open() 4
org...SVNConnection.open() 8
org...openConnection() 4
org...testConnection() 8
org...CheckoutCommand.run() 4
org...SVN.main() 4

Crash 3 org...InfoCommand.run() 4
org...SVN.main() 4

RECRASH+ monitors 11 (79%) of all 14 methods listed in the
table. Even though some methods were not monitored, each of the
three crashes could be reproduced because RECRASH+ monitored
the calling crash-prone methods in the stack traces. For exam-
ple, for Crash 1, RECRASH+ did not monitor the crashing method
org...getURL(), but it monitored the calling method org...run().
A unit test was generated for the latter which called org...getURL()
and passed the same argument to it as when the crash occurred,
which in turn reproduced the crash in org...getURL(). Crashes 2
and 3 were similarly reproduced. However, RECRASH+ may be un-
able to reproduce the crash when the crashing method is not moni-
tored and the cause behind the crash is non-deterministic.

Despite this limitation, RECRASH+ performed very well: it re-
duced performance overhead substantially and reproduced all three
crashes in SVNKit. Recall that the crash-prone methods in SVNKit
were identified by a classifier trained using data from ECLIPSE.

7. RELATED WORK
Our work is closely related to defect prediction, which is fairly

often studied in software engineering, for example [8,25,37,41]. A
study that is close to ours is by Mizuno and Kikuno [34]: they ap-
plied a spam filter on source code to classify files as defect-prone.
While they focused only on single words, our approach takes se-
quences of bytecode operations into account and further abstracts
specific variables names (through the opcodes). Also crashes are
fairly different from regular defects. For example, in ASPECTJ and
ECLIPSE the number of crashes in files correlates only very weakly
with the number of defects (Spearman correlation values are be-
tween 0.10 and 0.20). This suggests that for crash prediction novel
models like ours are needed.

Our work is also related to software reliability [30, 36], which is
defined as “the probability of failure-free software operation for
a specified period of time in a specified environment” [3]. For
our study, failure-free operation means that a software does not
crash. For the prediction of software reliability, software measure-
ments are typically used, for example product metrics (in particular
complexity), product management metrics, process metrics, fault
and failure metrics, and many more [42]. In contrast to these ap-
proaches, we use n-grams of bytecode operations and basic meta
data extracted by the FindBugs framework.



Ganapathi et al. conducted an empirical study of crashes in the
Windows XP Kernel [16]. They found that most OS crashes are
caused by poorly written device drivers. Several reliability moni-
toring approaches have been proposed that help to collect crashes
from the field [17, 28]. In addition, capture and replay techniques
can locate failures, reproduce crashes, and monitor the performance
of a system [5, 10, 11, 18, 22, 24, 38, 47]. However, they typically
require a large runtime overhead and thus are too expensive to be
used. With the approach presented in this paper, capture and replay
can be focused on only crash-prone methods and hence reduce the
runtime overhead.

Previously, some static analysis techniques have been proposed
to predict crash prone methods. For example, JSR308 [15] tries
to prevent NullPointerExceptions using static analysis and user
annotations. However, such techniques are limited to predict only
specific types of exceptions and/or usually yield high false posi-
tive rates. For example, all object references are potential Null
pointer exception points, but most of them do not throw an ex-
ception. In contrast, our approach learns from features of meth-
ods that previously crashed to classify new methods as likely to
crash or not. Information from previously crashed methods is col-
lected from stack traces posted in bug reports and source code in
projects’ archives. Kim et al. proposed a prediction model to prior-
itize crashes using machine-learning techniques [26]. The focus of
the earlier work [26] is on crash triage, i.e., deciding which crashes
should be fixed. In contrast, the focus of our paper is on predicting
crash-prone methods.

8. THREATS TO VALIDITY
We identified the following threats to validity to our work:

• Integrity of stack traces. Stack traces in bug reports are copied
and pasted by the bug reporter. Occasional clerical errors
may lead to incorrect stack traces in the report. However,
we expect such errors to be negligible in number and have
virtually no impact on our results.

• Projects may not be representative. Two projects were used
in this paper which were chosen because we had access to
their bug reports from which the stack traces were extracted.
However, these projects are not representative of all software
systems and hence, we cannot currently generalize the results
of our study across all projects.

• Projects are open source. Both projects used are open source.
So they might not be representative of closed-source projects.
Having said that, it is important to note that the analyzed
projects have substantial industrial participation too.

• Incomplete crash data. We could only collect stack traces
from bug reports. It is possible that other methods crashed
too, but they were not reported. Thus, our analysis does not
treat them as crash-prone methods.

• Selecting non-crash-prone methods. Methods that are not
reported to have crashed in the analyzed bug reports were
treated as non-crash-prone. But we cannot guarantee that
these methods will not crash in the future. This could make
our corpus noisy and affect the classification accuracy.

9. CONSEQUENCES AND CONCLUSIONS
Capture and replay techniques are very useful to prevent or repro-
duce failures, but they have typically associated with high perfor-
mance overhead. In this work, we show that this problem can be

addressed leveraging known crashes in the project to identify crash-
prone methods and monitor only them, and not the entire system.

Our results have shown that monitoring crash-prone methods re-
duced the performance overhead of RECRASH significantly at al-
most no cost to its original objectives, reproducing crashes. Hence,
one of the main consequences of this work is giving a new direc-
tion to design of capture and replay tools that leverage a project’s
history to intelligently monitor running processes. We believe our
approach can be used with most capture and replay techniques, sub-
stantially reducing their overhead.

To the best of our knowledge, our research is also the first to
use a project’s history to identify crash-prone methods. We used
opcodes extracted from the bytecode to train a classifier to classify
the methods. We also demonstrated that the use of opcodes for
such tasks can allow classification models to be reliably used across
projects. We expect that future approaches will see software crash
history not only as information for debugging, but also as a source
to predict future crashes.

In the future, we plan to expand our analysis to other projects
and analyze crash history from automated crash report systems and
identifying common features of methods that crashed. In its cur-
rent form our technique is most useful for analyses that consider
methods in isolation, in future work we plan to investigate interac-
tions between methods. Furthermore we plan to use crash reports
in automated crash report systems such as Dr. Watson [33], Apple
crash reporter [4], and Talkback [48] to mark crash prone methods,
since automated crash reports are more reliable and complete than
manual reports.
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