
Automatic Identification of Bug-Introducing Changes 

Sunghun Kim
1
, Thomas Zimmermann

2
, Kai Pan

1
, E. James Whitehead, Jr.

1 

 
1
University of California,  

Santa Cruz, CA, USA 

{hunkim, pankai, ejw}@cs.ucsc.edu 

2
Saarland University,  

Saarbrücken, Germany 

tz@acm.org 

 

Abstract 
Bug-fixes are widely used for predicting bugs or 

finding risky parts of software. However, a bug-fix does 

not contain information about the change that initially 

introduced a bug. Such bug-introducing changes can help 

identify important properties of software bugs such as 

correlated factors or causalities. For example, they reveal 

which developers or what kinds of source code changes 

introduce more bugs. In contrast to bug-fixes that are 

relatively easy to obtain, the extraction of bug-

introducing changes is challenging.  

In this paper, we present algorithms to automatically 

and accurately identify bug-introducing changes. We 

remove false positives and false negatives by using 

annotation graphs, by ignoring non-semantic source code 

changes, and outlier fixes. Additionally, we validated that 

the fixes we used are true fixes by a manual inspection. 

Altogether, our algorithms can remove about 38%~51% 

of false positives and 14%~15% of false negatives 

compared to the previous algorithm. Finally, we show 

applications of bug-introducing changes that demonstrate 

their value for research. 
 

1. Introduction 
Today, software bugs remain a constant and costly 

fixture of industrial and open source software 

development. To manage the flow of bugs, software 

projects carefully control their changes using software 

configuration management (SCM) systems, capture bug 

reports using bug tracking software (such as Bugzilla), 

and then record which change in the SCM system fixes a 

specific bug in the change tracking system. 

The progression of a single bug is as follows. A 

programmer makes a change to a software system, either 

to add new functionality, restructure the code, or to repair 

an existing bug. In the process of making this change, 

they inadvertently introduce a bug into the software. We 

call this a bug-introducing change, the modification in 

which a bug was injected into the software. At some later 

time, this bug manifests itself in some undesired external 

behavior, which is recorded in a bug tracking system. 

Subsequently, a developer modifies the project’s source 

code, possibly changing multiple files, and repairs the 

bug. They commit this change to the SCM system, 

permanently recording the change. As part of the commit, 

developers commonly (but not always) record in the SCM 

system change log the identifier of the bug report that was 

just fixed. We call this modification a bug-fix change. 

Software evolution research leverages the history of 

changes and bug reports that accretes over time in SCM 

systems and bug tracking systems to improve our 

understanding of how a project has grown. It offers the 

possibility that by examining the history of changes made 

to a software project, we might better understand patterns 

of bug introduction, and raise developer awareness that 

they are working on risky—that is, bug-prone—sections 

of a project. For example, if we can find rules that 

associate bug-introducing changes with certain source 

code change patterns (such as signature changes that 

involve parameter addition [11]), it may be possible to 

identify source code change patterns that are bug-prone. 

Due to the widespread use of bug tracking and SCM 

systems, the most readily available data concerning bugs 

are the bug-fix changes. It is easy to mine an SCM 

repository to find those changes that have repaired a bug. 

To do so, one examines change log messages in two 

ways: searching for keywords such as "Fixed" or "Bug" 

[12] and searching for references to bug reports like 

“#42233” [2, 4, 16]. With bug-fix information, 

researchers can determine the location of a bug. This 

permits useful analysis, such as determining per-file bug 

counts, predicting bugs, finding risky parts of software [7, 

13, 14], or visually revealing the relationship between 

bugs and software evolution [3]. 

The major problem with bug-fix data is that it sheds no 

light on when a bug was injected into the code and who 

injected it. The person fixing a bug is often not the person 

who first made the bug, and the bug-fix must, by 

definition, occur after the bug was first injected. Bug-fix 

data also provides imprecise data on where a bug 

occurred. Since functions and methods change their 

names over time, the fact that a fix was made to function 

“foo” does not mean the function still had that name when 

the bug was injected; it could have been named “bar” 

then. In order to deeply understand the phenomena 

surrounding the introduction of bugs into code, such as 

correlated factors and causalities, we need access to the 

actual moment and point the bug was introduced. This is 

tricky, and the focus of our paper.  



 

Revision 1 (by kim, bug-introducing) Revision 2 (by ejw) Revision 3 (by kai, bug-fix) 

1 kim 
1 kim 
1 kim 
1 kim 
1 kim 
1 kim 

1: public void bar() {  
2:   // print report 
3:   if (report == null) {   
4:      println(report);  
5: 
6:   } 

2 ejw 
1 kim 
2 ejw 
2 ejw 
1 kim 
1 kim 
1 kim 

1: public void foo() {  
2:   // print report 
3:   if (report == null) 
4:   { 
5:      println(report);  
6: 
7:   } 

2 ejw 
3 kai 
3 kai 
1 kim 
1 kim 
1 kim 

1: public void foo() {  
2:   // print out report 
3:   if (report != null)  
4:   { 
5:      println(report);  
6:   } 

Figure 1. Example bug-fix and source code changes. A null-value checking bug is injected in revision 1, and fixed in revision 3.   

2. Background 
Previous work by the second author developed what 

was, prior to the current paper, the only approach for 

identifying bug-introducing changes from bug-fix 

changes [16]. For convenience, we call this previous 

approach the SZZ algorithm, after the first letters of the 

authors’ last names. To identify bug-introducing changes, 

SZZ first finds bug-fix changes by locating bug identifiers 

or relevant keywords in change log text, or following an 

explicitly recorded linkage between a bug tracking system 

and a specific SCM commit. SZZ then runs a diff tool to 

determine what changed in the bug-fixes. The diff tool 

returns a list of regions that differ in the two files; each 

region is called a hunk. It observes each hunk in the bug-

fix and assumes that the deleted or modified source code 

in each hunk is the location of a bug. Finally, SZZ tracks 

down the origins of the deleted or modified source code in 

the hunks using the built-in annotate feature of SCM 

systems. The annotate feature computes, for each line in 

the source code, the most recent revision in which the line 

was changed, and the developer who made the change. 

The discovered origins are identified as bug-introducing 

changes. 

Figure 1 shows an example of the history of 

development of a single function over three revisions. 

• Revision 1 shows the initial creation of function bar, 

and the injection of a bug into the software, the line ‘if 

(report == null) {‘ which should be ‘!=’ instead. The 

leftmost column of each revision shows the output of 

the SCM annotate command, identifying the most recent 

revision and the developer who made the revision. Since 

this is the first revision, all lines were first modified at 

revision 1 by the initial developer ‘kim.’ The second 

column of numbers in revision 1 lists line numbers 

within that revision.  

• In the second revision, two changes were made. The 

function bar was renamed to foo, and a cosmetic change 

was made where the angle bracket at the end of line 3 in 

revision 1 was moved down to its own line (4) in 

revision 2. As a result, the annotate output shows lines 

1, 3, and 4 as having been most recently modified in 

revision 2 by ‘ejw.’ 

• Revision 3 shows three changes, a modification to the 

comment in line 2, deleting the blank line after the 

println, and the actual bug-fix, changing line 3 from 

‘==’ to ‘!=’.  

Let us consider what happens when the SZZ algorithm 

tries to identify the fix-inducing change associated with 

the bug-fix in revision 3. SZZ starts by computing the 

delta between revisions 3 and 2, yielding the lines 2, 3, 

and 6 (these are highlighted in the figure). SZZ then uses 

SCM annotate data to determine the initial origin of these 

three lines. The first problem we encounter is that SZZ 

seeks the origin of the comment line (2) and the blank line 

(6); clearly neither contains the injected bug, since these 

lines are not executable. The next problem comes when 

SZZ tries to find the origin of line 3. Since revision 2 

modified this line to make a cosmetic change (moving the 

angle bracket), the SCM annotate data indicates that this 

line was most recently modified at revision 2. SZZ stops 

there, claiming that revision 2 is the bug-introducing 

change. This is incorrect, since revision 1 was the point at 

which the bug was initially entered into the code. The 

cosmetic change threw off the algorithm.  

A final problem is that, using just SCM annotate 

information, it is impossible to determine that the name of 

the function containing the bug changed its name from 

bar to foo. The annotate information only contains triples 

of (current revision line #, most recent modification 

revision, developer who made modification). There is no 

information here that states that a given line in one 

revision maps to a specific line in a previous (or 

following) revision. It is certainly possible to compute 

this information—indeed, we do so in the approach we 

outline in this paper—but to do so requires more 

information than is provided solely by SCM annotate 

capabilities. 

We can now summarize the main two limitations of 

the SZZ algorithm: 

 

SCM annotation information is insufficient: there is not 

enough information to identify bug-introducing changes. 

The previous example demonstrates how a simple 

formatting change (moving the bracket) modifies SCM 

annotate data so an incorrect bug-introducing revision is 

chosen. It also highlights the need to trace the evolution 

of individual lines across revisions, so function/method 

containment can be determined. 

 

Not all modifications are fixes: Even if a file change is 

defined as a bug-fix by developers, not all hunks in the 

change are bug-fixes. As we saw above, changes to 



comments, blank lines, and formatting are not bug-fixes, 

yet are flagged as such.  

    These two limitations result in the SZZ algorithm 

inaccurately identifying bug-introducing changes. To 

address these issues, in this paper we present an improved 

approach for achieving accurate bug-introducing change 

identification by extending SZZ. In the new approach, we 

employ annotation graphs, which contain information on 

the cross-revision mappings of individual lines. This is an 

improvement over SCM annotate data, and permits a bug 

to be associated with its containing function or method. 

We additionally remove false bug-fixes caused by 

comments, blank lines, and format changes. 

An important aspect of this new approach is that it is 

automated. Since revision histories for large projects can 

contain thousands of revisions and thousands of files, 

automated approaches are the only ones that scale to this 

size. As an automated approach, the bug-introducing 

identification algorithm we describe can be employed in a 

wide range of software evolution analyses as an initial 

clean-up step to obtain high quality data sets for further 

analysis on the causes and patterns of bug formation. 

To determine the accuracy of the automatic approach, 

we use a manual approach as well. Two human judges 

manually verified all hunks in a series of bug-fix changes 

to ensure the corresponding hunks are real bug-fixes. 

We applied our automatic and manual approach to 

identify bug-introducing changes at the method level for 

two Java open source projects, Columba and Eclipse 

(jdt.core). We propose the following steps, as shown in 

Figure 2, to remove false positive and false negatives in 

identifying bug-introducing changes. 

 

1. Use annotation graphs to provide more detailed 

annotation information 

2. Ignore comment and blank line changes 

3. Ignore format changes 

4. Ignore outlier bug-fix revisions in which too many 

files were changed 

5. Manually verify all hunks in the bug-fix changes 

Figure 2. Summary of approach 

In overview, applying this new approach (steps 1-5) 

removes 38%~51% of false positives and 14%~15% of 

false negatives as compared to the original SZZ 

algorithm. Using only the automated algorithms (steps 1-

4), we can remove 36~48% false positives and 14% of 

false negatives. The manual fix verification does not 

scale, but highlights the low residual error remaining at 

the end of the automated steps, since it removes only 

2~3% of false positives and 1% of false negatives. 

In the remainder of the paper, we begin by describing 

our experimental setup (Section 3). Following are results 

from our experiments (Section 4), along with discussion 

of the results (Section 5). Rounding off the paper, we end 

with some existing applications of bug-introducing 

changes (Section 6) and conclusions (Section 7). 

3. Experimental Setup 
In this section, we describe how we extract the change 

history from an SCM system for our two projects of 

interest. We also explain the accuracy measures we use 

for assessing the performance of each stage in our 

improved algorithm for identifying bug-introducing 

changes. 

 

3.1. History Extraction 
Kenyon is a system that extracts source code change 

histories from SCM systems such as CVS and Subversion 

[1]. Kenyon automatically checks out the source code for 

each revision and extracts change information such as the 

change log, author, change date, source code, change 

delta, and change metadata. We used Kenyon to extract 

the histories of two open source projects, as shown in 

Table 1. 

 

3.2. Accuracy Measures 
A bug-introducing change set is all of the changes 

within a specific range of project revisions that have been 

identified as bug-introducing. Suppose we identify a bug-

introducing change set, P, using a bug-introducing 

identification algorithm such as SZZ [16]. We then apply 

the algorithm described in this paper, and derive another 

bug-introducing change set, R, as shown in Figure 3. The 

common elements of the two sets are P!R.  

 
Figure 3. Bug-introducing change sets identified using SZZ 

(P) and with the new algorithm (R) 

Assuming R is the more accurate bug-introducing 

change set, we compute false positives and false negatives 

for the set P as follows: 

False positive (FP) =

! 

|P " R |

|P |

  

False negative (FN) = 
||

||

R

PR !  

 

4. Algorithms and Experiments 
In this section, we explain our approach in detail and 

present our results from using the improved algorithm to 

identify bug-introducing changes. 



Table 1. Analyzed projects. # of revisions indicates the number of revisions we analyzed. # of fix revisions indicates the number of 

revisions that were identified as bug-fix revisions. Average LOC indicates the average lines of code of the projects in given periods. 

Project Software type Period # of revision # of fix revision % of fix revision Average LOC 

Columba Email Client 11/2002 ~ 06/2003 500 143 29% 48,135 

Eclipse (jdt.core) IDE 06/2001 ~ 03/2002 1000 158 16% 111,059 

 

 

4.1. Using Annotation Graph 
The SZZ algorithm for the identification of bug-

introducing changes for fine-grained entities such as 

functions or methods uses SCM annotation data. In this 

section, we show that this information is insufficient, and 

may introduce false positives and negatives.  

Assume a bug-fix change occurs at revision 20, and 

involves the deletion of three lines (see Figure 4). Since 

they were deleted, the three lines are likely to contain a 

bug. In the SZZ approach, SCM annotate data is used to 

obtain the revisions in which these lines were initially 

added. The first two lines were added at revision 3, and 

the third line was added at revision 9. Thus, we identify 

the changes between revisions 2 and 3 and between 

revisions 8 and 9 as bug-introducing changes at the file 

level.  

 
Figure 4. Finding bug-Introduction changes in the function 

level. 

A problem occurs when we try to locate bug-

introducing changes for entities such as functions or 

methods. Suppose the deleted source code at revision 20 

was part of the 'foo()' function (see Figure 4). Note that 

SCM annotation data for CVS or Subversion includes 

only revision and author information. This means we only 

know that the first two lines in Figure 4 were added at 

revision 3 by 'hunkim', but we do not know the actual line 

numbers of the deleted code at revision 3. In past 

research, it was assumed that the lines at revision 3 are 

part of the 'foo()' function, which is marked as a bug-

introducing change, even though there is no guarantee 

that the function 'foo()' existed at revision 3. 

Suppose at revision 3 that 'foo()' does not exist and the 

'bar()' function does exist, as shown in Figure 4. One 

explanation for how this could occur is the ‘bar()’ 

function changes its name to ‘foo()’ at some later revision. 

One consequence is the above assumption is wrong and 

the 'foo()' function at revision 3 does not contain the bug-

introducing change (false positive). We also miss a real 

bug-introducing change, ‘bar()’ at revision 3 (false 

negative). Since SCM annotations do not provide the line 

numbers for the annotated lines at revision 3, it is not 

possible to identify the function where the bug-

introducing lines were inserted. 

We address this problem by using annotation graphs 

[18], a representation for origin analysis [6, 10] at the line 

level, as shown in Figure 5. In an annotation graph, every 

line of a revision is represented as a node; edges connect 

lines (nodes) that evolved from each other: either by 

modification of the line itself or by moving the line in the 

file. In Figure 5 two regions were changed between 

revisions r1 and r2: lines 10 to 12 were inserted and lines 

19 to 23 were modified. The annotation graph captures 

these changes as follows: line 1 in r2 corresponds to line 1 

in r1 and was not changed (the edge is not marked in 

bold), the same holds for lines 2 to 9. Lines 10 to 12 were 

inserted in r2, thus they have no origin in r1. Line 13 in r2 

was unchanged but has a different line number (10) in r1, 

this is indicated by the edge (same for 14 to 18 in r2). 

Lines 19 to 23 were modified in r2 and originated from 

lines 16 to 20 (edges are marked in bold). Note that we 

approximate origin conservatively, i.e., for modifications 

we need to connect all lines affected in r1 (lines 16 to 20) 

with every line affected in r2 (lines 19 to 23). 

 
Figure 5. An annotation graph shows line changes of a file 

for three revisions [18]. A single node represents each line in a 

revision; edges between nodes indicate that one line originates 
from another, either by modification or by movement. 

The annotation graph improves identification of bug-

introducing code by providing for each line in the bug-fix 

change the line number in the bug-introducing revision. 

This is computed by performing a backward directed 

depth-first search. The resulting line number is then used 

to identify the correct function name in the bug-fix 

revision. For the above example, the annotation graph 



would annotate the deleted lines with the line numbers in 

revision 3, which are then used to identify function ‘bar’. 

To demonstrate the usefulness of annotation graphs for 

locating bug-introducing changes, we identify bug-

introducing changes at the method level for our two 

projects with and without the use of annotation graphs. 

The left circle in Figure 6 (a) shows the count of bug-

introducing changes at method level identified without 

using the annotation graph; the right circle shows the 

count when using the annotation graphs. Without the 

annotation graph we have about 2% false positives and 

1~4% false negatives (total 3~6% errors) in identifying 

bug-introducing changes. Thus, annotation graphs provide 

information for more accurate bug-introducing change 

identification at the method level.   

 

Figure 6. Bug-introducing change sets with and without 

annotation graph. 

4.2. Non Behavior Changes 
Software bugs involve incorrect behavior of the 

software [8], and hence are not located in the formatting 

of the source code, or in comments. Changes to source 

code format or comments, or the addition/removal of 

blank lines, do not affect software’s behavior. For 

example, Figure 7 shows a change in which one blank 

line was deleted and an ‘if condition’ was added to fix a 

bug. If we just apply SZZ, we identify the blank line as a 

problematic line and search for the origin of the blank 

line. We identify the revision and corresponding method 

of the blank line as a bug-introducing change, which is a 

false positive. 

To remove such false positives, we ignore blank lines 

and comment changes in the bug-fix hunks.  

 
public void  notifySourceElementRequestor()    

{ 

- 

+    if (reportReferenceInfo) { 

+        notifyAllUnknownReferences(); 

+    }  

    // collect the top level ast nodes 

    int length = 0; 

Figure 7. Blank line deletion example in Eclipse 

(compiler/org/eclipse/jdt/internal/compiler/SourceElementP

arser.java) 

Figure 8 shows the difference in identified bug-

introducing change sets by ignoring comment and blank 

line changes. This approach removes 14%~20% of false 

positives.  

 

 

Figure 8. Identified bug-introducing change sets by ignoring 

comment and blank line changes. 

4.3. Format Changes 
Similar to the comment and blank line changes, source 

code format changes do not affect software behavior. So 

if the source code’s format was changed during a bug-fix, 

as is shown in Figure 9, the source code format change 

should be ignored when we identify bug-introducing 

changes. 

  
- if ( folder == null ) return; 

+ if (folder == null) 

  +        return; 

Figure 9. Format change example in Columba 

(mail/core/org/columba/mail/gui/table/FilterToolbar.java) 

Unlike the comment and blank line changes, format 

changes affect the SCM annotation information. For 

example, consider the ‘foo’ function changes shown in 

Figure 10. Revision 10 is a bug-fix change, involving 

repair to a faulty ‘if’. To identify the corresponding bug-

introducing changes, we need to find the origin of the ‘if’ 

at revision 10. Revision 5 only involves a formatting 

change to the code. If we do not ignore source code 

format changes, when we examine the SCM annotation 

information, we identify that ‘foo’ at revision 5 is a bug-

introducing change (a false positive). In fact, the 

problematic line was originally created at revision 3 (this 

was missed, hence a false negative). Due to inaccurate 

annotation information, source code format changes lead 

to significant amounts of false positives and false 

negatives. Ignoring software format changes is an 

important process in the accurate identification of bug-

introducing changes. 

 
Revision 3 

 if ( a == true ) return; 

Revision 5 

 if (a == true)  

        return;  

Revision 10 (bug-fix) 

 if (a == false)  

        return; 

Figure 10.  False positive and false negative example caused 

by format changes. 

Figure 11 compares the results of the SZZ approach 

with the improved approach that identifies bug-

introducing changes by ignoring format changes in bug-

fix hunks. Overall, ignoring source code format changes 



removes 18%~25% of false positives and 13%~14% of 

false negatives. 

 

 

Figure 11. Bug-introducing change sets identified by 

ignoring source code format changes. 

4.4. Remove Fix Revision Outliers 
It is questionable if all the file changes in a bug-fix 

revision are bug-fixes, especially if a bug-fix revision 

contains large numbers of file changes. It seems very 

improbable that in a bug-fix change containing hundreds 

of file changes every one would have some bearing on the 

fixed bug. We observed the number of files changed in 

each bug-fix revision for our two projects, as shown in 

Figure 12. Most bug-fix revisions contain changes to just 

one or two files. All 50% of file change numbers per 

revision (between 25% and 75% quartiles) are about 1-3. 

A typical approach for removing outliers from data is if a 

data item is 1.5 times greater than the 50% quartile, it is 

assumed to be an outlier. In our experiment, we adopt a 

very conservative approach, and use as our definition of 

outlier file change counts that are greater than 5 times the 

50% quartile. This ensures that any changes we note as 

outliers truly have a large number of file changes. 

Changes identified as outliers for our two projects are 

shown as ‘+’ in Figure 12. 

 

Figure 12. Box plots for the number of file changes per 

revision. 

To ensure we were not incorrectly labeling these 

changes as outliers, we manually inspected each file 

change in the outlier revisions. We observed that most of 

the changes are method name and parameter name 

changes. For example, one parameter type changed from 

‘TypeDeclaration’ to ‘LocalTypeDeclaration’, and hence 

the revision contains 7 file changes related to this change, 

as shown Figure 13.  
- public boolean visit(TypeDeclaration  

-   typeDeclaration, BlockScope scope){ 

+ public boolean visit(LocalTypeDeclaration 

+  typeDeclaration, BlockScope scope){       

Figure 13. Object type change example in Eclipse 

(search/org/eclipse/jdt/internal/core/search/matching/Match

Set.java) 

As shown in Figure 14, ignoring outlier revisions 

removes 7%~16% of false positives. Even though most 

changes in the outlier revisions contain method name 

changes or parameter changes, it is possible that these 

changes are real bug-fixes. A determination of whether 

they are truly ignorable outliers will depend on the 

individual project. As a result, ignoring outlier revisions is 

an optional aspect of our approach for identifying bug-

introducing changes. 

 

Figure 14. Bug-introducing change sets identified by 

ignoring outlier revisions. 

4.5. Manual Fix Hunk Verification 
We identify bug-fix revisions by mining change logs, 

and bug-fix revision data is used to identify bug-

introducing changes. If a change log indicates the revision 

is a bug-fix, we assume the revision is a bug-fix and all 

hunks in the revision are bug-fixes. Then how many of 

them are true bug-fixes? It depends on the quality of the 

change log and understanding the degree of the bug-fixes. 

One developer may think a change is a bug-fix, while 

others think it is only a source code cleanup or a new 

feature addition. To check how many bug-fix hunks are 

true bug-fixes, we manually verified all bug-fix hunks and 

marked them as bug-fix or non-bug-fix. Two human 

judges, graduate students who have multiple years of Java 

development experience, performed the manual 

verification. A judge marks each bug-fix hunk of two 

projects (see Table 1) and another judge reviews the 

marks. Judges use a GUI-based bug-fix hunk verification 

tool. The tool shows individual hunks in the bug-fix 

revision. Judges read the change logs and source code 

carefully and decide if the hunk is a bug-fix. The total 

time spent is shown in Table 2. 



Table 2. Manual fix hunk validation time of two human 

judges.  

Judges Columba Eclipse 

Judge 1 3.5 hours 4 hours 

Judge 2 4.5 hours 5 hours 

The most common kind of non-bug-fix hunks in the 

bug-fix revision involves variable renaming, as shown in 

Figure 15. This kind of variable renaming does not affect 

software behavior, but it is not easy to automatically 

detect this kind of change without performing deep static 

or dynamic analysis.   
deleteResources(actualNonJavaResources,fForce); 

- IResource[] remaingFiles;  

+ IResource[] remainingFiles;  

  try {  

-      remaingFiles=((IFolder)res).members();  

+      remainingFiles=((IFolder)res).members(); 

  } 

Figure 15. Variable Renaming example in Eclipse 

(model/org/eclipse/jdt/internal/core/DeleteResourceElements

Operation) 

We identify bug-introducing changes after the manual 

fix hunk validation, as shown in Figure 16. Manual 

verification removes 4~5% false positives. Unfortunately, 

the manual validation requires domain knowledge and 

does not scale. However, the amount of false positives 

removed by manual verification was not substantial. We 

believe it is possible to skip the manual validation for 

bug-introducing change identification. We compare the 

overall false positives and false negatives using the 

automatic algorithms with manual validation in next 

section.  

 

 

Figure 16. Bug-introducing change sets after manual fix 

hunk validation.  

4.6. Summary  
We applied the steps described in Figure 2 to remove 

false positive and false negative bug-introducing changes. 

In this section we compare the identified bug-introducing 

change sets gathered using the original SZZ algorithm 

[16] and those from our new algorithm (steps 1-5 in 

Figure 2). Overall, Figure 17 shows that applying our 

algorithms removes about 38%~51% of false positives 

and 14~15% of false negatives—a substantial error 

reduction. 

 

Figure 17. Bug-introducing changes identified by the 

original SZZ algorithm [16] (P) and by the approach (steps 

1-5) proposed in this paper (R). 

The manual bug-fix hunk verification gives us a good 

sense of how many hunks in bug-fix revisions are true 

bug-fixes. There is no doubt that manual bug-fix hunk 

verification leads to more accurate bug-introducing 

changes. Unfortunately, manual fix hunk verification does 

not scale. The reason that we examined only the first 

500~1000 revisions (Table 1) is the high cost of the 

manual verification. Figure 18 shows the false positives 

and false negatives removed by applying only automatic 

algorithms (steps 1-4 in Figure 2).  Automatic algorithms 

remove about 36~48% of false positives and 14% of false 

negatives, yielding only 1~3% difference as compared to 

applying all algorithms (steps 1-5 in Figure 2). Since the 

errors removed by manual verification are not significant, 

manual fix hunk verification can be skipped when 

identifying bug-introducing changes. 

 

Figure 18. Bug-introducing changes identified by the 

original SZZ algorithm [16] (P) and by the automatable 

steps (1-4) described in this paper (R). 

5. Discussion 
In this section, we discuss the relationship between 

identified bug-fixes and true bug-fixes. We also discuss 

the relationship between identified bug-introducing 

changes and true bugs.   

5.1. Are All Identified Fixes True Fixes? 
We used two approaches to identify bug-fixes: 

searching for keywords such as "Fixed" or "Bug" [12] and 

searching for references to bug reports like “#42233” [2, 

4, 16]. The accuracy of bug-fix identification depends on 

the quality of change logs and linkages between SCM and 

bug tracking systems. The two open source projects we 

examined have, to the best of our knowledge, the highest 

quality change log and linkage information of any open 

source project. In addition, two human judges manually 

validated all bug-fix hunks. We believe the identified 

bug-fix hunks are, in almost all cases, real fixes. Still 

there might be false negatives. For example, even though 



a change log does not indicate a given change is a fix, it is 

possible that the change includes a fix. To measure false 

negative fix changes, we need to manually inspect all 

hunks in all revisions, a daunting task. This remains 

future work. 

5.2. Are Bug-Introducing Changes True Bugs? 
Are all identified bug-introducing changes real bugs? 

It may depend on the definition of ‘bug’. IEEE defines 

anomaly, which is a synonym of fault, bug, or error, as: 

“any condition that departs from the expected [8].” 

Verifying whether all identified bug-introducing changes 

meet a given definition of bug remains future work. 

More importantly, we propose algorithms to remove 

false positives and false negatives in the identified bugs. 

As shown in Figure 19, even though we do not know the 

exact set of real bugs, our algorithms can identify a set 

that is closer to the real bug set than the set identified by 

the original SZZ algorithm [16]. Even if not perfect, our 

approach is better than the current state of the art. 

 

Figure 19. False positives and false negatives of each bug-

introducing identification process. 

5.3. Threat to Validity 
There are four major threats to the validity of this work. 

Systems examined might not be representative. We 

examined 2 systems, so it is possible that we accidentally 

chose systems that have better (or worse) than average 

false positive and negative bug-introducing changes. 

Since we intentionally only chose systems that had some 

degree of linkage between bug tracking systems and the 

change log (so we could determine bug-fixes), we have a 

project selection bias. It certainly would be nice to have a 

larger dataset. 

Systems are all open source. The systems examined in 

this paper all use an open source development 

methodology, and hence might not be representative of all 

development contexts. It is possible that the stronger 

deadline pressure of commercial development could lead 

to different results.  

Bug-fix data is incomplete. Even though we selected 

projects that have change logs with good quality, we still 

are only able to extract a subset of the total number of 

bug-fixes. For projects with a poor change log quality, the 

false negatives of bug-introducing change identification 

will be higher. 

Manual fix hunk verification may include errors. Even 

though we selected two human judges who have multiple 

years of Java programming experience, their manual fix 

hunk validation may contain errors.  

6. Applications 
In the first part of this paper, we presented an approach 

for identifying bug-introducing changes more accurately 

than SZZ. In this section, we discuss possible applications 

for these bug-introducing changes. 

6.1. Bug-Introduction Statistics 
Information about bug-introducing changes can be 

used to help understand software bugs. Unlike bug-fix 

information, bug-introducing changes provide the exact 

time a bug occurs. For example, it is possible to determine 

the day in which bugs are most introduced. We can also 

now determine the most bug-prone authors. When 

combined with bug-fix information, we can determine 

how long it took to fix a bug after it was introduced.  

Sliwerski et al. performed an experiment to find out 

the most bug-prone day by computing bug-introducing 

change rates over all changes [16]. They found that Friday 

is the most bug-prone day in the projects examined.  

 
Figure 20. Eclipse author bug-fix and bug-introducing 

change contributions. 

 
Figure 21. Columba author bug-fix and bug-introducing 

change contributions. 

 

In the two projects we examined, we computed the bug-

introducing change rates and bug-fix change rates per 

author, shown in Figure 20 and Figure 21. The figures 

show that rates of bug-introduction and bug-fixing are 

different. For example, in Eclipse, author a1 makes about 

40% of all fixes, but introduces about 75% of all bugs. In 



contrast, author a2 fixes far more bugs than they 

introduce. These numbers do not allow conclusions on the 

performance of individual developers: in many projects 

the most skillful developers are assigned to the most 

difficult parts; thus they are likely to introduce more bugs.  

Using the bug-introducing change information, we can 

determine the exact bug residency time, the elapsed time 

between initial injection of a bug and its eventual fix. The 

bug residency time provides a good understanding of the 

entire life cycle of a bug, starting with the injection of the 

bug in a bug-introducing change, appearance of the bug in 

a bug report, and the end of the bug in a bug-fix change. 

Previous research tries to measure the time it takes to fix a 

bug after a bug report has been entered, but without the 

bug-introducing changes, it is not possible to determine 

the entire life cycle of a bug. Figure 22 shows the average 

bug residency time using box-plots for Columba and 

Eclipse. For example, the box-plot for Columba shows 

that the average bug residency time is around 40 days, the 

25% quartile is around 10 days and 75% quartile is 

around 100 days.  

 

Figure 22. Average bug residency time of Columba and 

Eclipse. 

6.2. Bug Prone Change Patterns 
Since we can determine bug-introducing changes, it is 

possible to analyze the source code for any patterns that 

might exist in bug prone code. Signature changes [11] and 

micro pattern changes [5] are examples of source code 

change patterns. Suppose we identify bug-introducing 

changes and function signature changes as shown in 

Figure 23. We can then try to find correlations between 

signature and bug-introducing changes [11]. 

We analyzed micro pattern changes in Java source 

code using bug-introducing changes to determine what 

kinds of micro pattern changes introduce more/less bugs 

[9]. Micro patterns capture non-trivial idioms of Java 

programming languages [5]. This work did identify some 

bug prone micro patterns such as Box, CompoundBox, 

Sampler, Pool, Outline, and CommonState [9]. 

The bug prone change pattern analysis depends on 

having access to bug-introducing changes, since 

otherwise we do not know when a bug was introduced. 

 
Figure 23. Bug-introducing changes and signature changes. 

6.3. Change Classification 
In the previous section, we provided one example of 

finding bug-prone source code change patterns. If a 

source code change pattern is consistent with bug-

introducing changes, then we can use such factors to 

predict unknown changes as buggy or clean. Suppose we 

observe various change factors between 1 to n revisions 

as shown in Figure 24. We know which changes are bug-

introducing changes and which changes are not. This 

permits us to train a model using labeled change factors, 

where the changes are labeled as being bug-introducing or 

clean. Using the trained model, we can predict whether 

future unknown changes are buggy or clean.  

 

Figure 24. Predicting future changes using identified bug-

introducing changes. 

There are many machine learning algorithms [17] that 

take pre-labeled instances, train a model, and predict 

unknown instances using the model. Finding consistent 

bug-prone factors might be challenging, but it is possible 

to label changes and make a training data set using bug-

introducing changes. Such change classification is not 

possible without the bug-introducing change data. Hence, 

one key benefit of ready access to bug-introducing 

changes is the ability to apply machine learning 

techniques to bug prediction. 

6.4. Awareness Tool: HATARI 
     Every programmer knows that there are locations in 

the code where it is difficult to get things right. The 

HATARI tool [15] identifies the individual risk for all 

code locations by examining, for each location, whether 

earlier changes caused problems. To identify such 

changes HATARI mines bug-introducing changes 

automatically from version archives and bug databases. 

The risk of a location L is then estimated as the 

percentage of “bad” changes at that location: 
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Figure 25. Source code highlights of HATARI. 

Risky locations are important for maintenance, such as 

adding extra documentation or restructuring, and for 

quality assurance, because changes that occur at risky 

locations should get more attention. In order to support 

developers during these tasks, HATARI highlights such 

locations (see Figure 25) and provides views to browse 

the most risky locations and to analyze the risk history of 

particular locations. HATARI depends strongly on the 

quality of bug-introducing changes. By reducing false 

positives and negatives, its annotations will be improved. 

7. Conclusions 
Bug-introducing changes are important information for 

understanding properties of bugs, mining bug prone 

change patterns, and predicting future bugs. In this paper 

we describe a new approach for more accurately 

identifying bug-introducing changes from bug-fix data. 

The approach in this paper removes many false positives 

and false negatives as compared to the prior SZZ 

algorithm. Our experiments show that our approach, 

including manual validation, can remove 38~51% of false 

positives and 14% of false negatives as compared to SZZ. 

Omitting the manual validation and using only 

automatable processes, we can still remove 36%~48% of 

false positives and 14% of false negatives. Using our 

approach, we can identify bug-introducing changes more 

accurately than the prior SZZ algorithm, which is the 

current state of the art. We also showed various 

applications of the bug-introducing changes. We believe 

that software bug related research should use bug-

introducing change information.  
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