
Automatic Identification of Bug-Introducing Changes

Sunghun Kim
1
, Thomas Zimmermann

2
, Kai Pan

1
, E. James Whitehead, Jr.

1

1
University of California,

Santa Cruz, CA, USA

{hunkim, pankai, ejw}@cs.ucsc.edu

2
Saarland University,

Saarbrücken, Germany

tz@acm.org

Abstract
Bug-fixes are widely used for predicting bugs or

finding risky parts of software. However, a bug-fix does

not contain information about the change that initially

introduced a bug. Such bug-introducing changes can help

identify important properties of software bugs such as

correlated factors or causalities. For example, they reveal

which developers or what kinds of source code changes

introduce more bugs. In contrast to bug-fixes that are

relatively easy to obtain, the extraction of bug-

introducing changes is challenging.

In this paper, we present algorithms to automatically

and accurately identify bug-introducing changes. We

remove false positives and false negatives by using

annotation graphs, by ignoring non-semantic source code

changes, and outlier fixes. Additionally, we validated that

the fixes we used are true fixes by a manual inspection.

Altogether, our algorithms can remove about 38%~51%

of false positives and 14%~15% of false negatives

compared to the previous algorithm. Finally, we show

applications of bug-introducing changes that demonstrate

their value for research.

1. Introduction
Today, software bugs remain a constant and costly

fixture of industrial and open source software

development. To manage the flow of bugs, software

projects carefully control their changes using software

configuration management (SCM) systems, capture bug

reports using bug tracking software (such as Bugzilla),

and then record which change in the SCM system fixes a

specific bug in the change tracking system.

The progression of a single bug is as follows. A

programmer makes a change to a software system, either

to add new functionality, restructure the code, or to repair

an existing bug. In the process of making this change,

they inadvertently introduce a bug into the software. We

call this a bug-introducing change, the modification in

which a bug was injected into the software. At some later

time, this bug manifests itself in some undesired external

behavior, which is recorded in a bug tracking system.

Subsequently, a developer modifies the project’s source

code, possibly changing multiple files, and repairs the

bug. They commit this change to the SCM system,

permanently recording the change. As part of the commit,

developers commonly (but not always) record in the SCM

system change log the identifier of the bug report that was

just fixed. We call this modification a bug-fix change.

Software evolution research leverages the history of

changes and bug reports that accretes over time in SCM

systems and bug tracking systems to improve our

understanding of how a project has grown. It offers the

possibility that by examining the history of changes made

to a software project, we might better understand patterns

of bug introduction, and raise developer awareness that

they are working on risky—that is, bug-prone—sections

of a project. For example, if we can find rules that

associate bug-introducing changes with certain source

code change patterns (such as signature changes that

involve parameter addition [11]), it may be possible to

identify source code change patterns that are bug-prone.

Due to the widespread use of bug tracking and SCM

systems, the most readily available data concerning bugs

are the bug-fix changes. It is easy to mine an SCM

repository to find those changes that have repaired a bug.

To do so, one examines change log messages in two

ways: searching for keywords such as "Fixed" or "Bug"

[12] and searching for references to bug reports like

“#42233” [2, 4, 16]. With bug-fix information,

researchers can determine the location of a bug. This

permits useful analysis, such as determining per-file bug

counts, predicting bugs, finding risky parts of software [7,

13, 14], or visually revealing the relationship between

bugs and software evolution [3].

The major problem with bug-fix data is that it sheds no

light on when a bug was injected into the code and who

injected it. The person fixing a bug is often not the person

who first made the bug, and the bug-fix must, by

definition, occur after the bug was first injected. Bug-fix

data also provides imprecise data on where a bug

occurred. Since functions and methods change their

names over time, the fact that a fix was made to function

“foo” does not mean the function still had that name when

the bug was injected; it could have been named “bar”

then. In order to deeply understand the phenomena

surrounding the introduction of bugs into code, such as

correlated factors and causalities, we need access to the

actual moment and point the bug was introduced. This is

tricky, and the focus of our paper.

Revision 1 (by kim, bug-introducing) Revision 2 (by ejw) Revision 3 (by kai, bug-fix)

1 kim
1 kim
1 kim
1 kim
1 kim
1 kim

1: public void bar() {
2: // print report
3: if (report == null) {
4: println(report);
5:
6: }

2 ejw
1 kim
2 ejw
2 ejw
1 kim
1 kim
1 kim

1: public void foo() {
2: // print report
3: if (report == null)
4: {
5: println(report);
6:
7: }

2 ejw
3 kai
3 kai
1 kim
1 kim
1 kim

1: public void foo() {
2: // print out report
3: if (report != null)
4: {
5: println(report);
6: }

Figure 1. Example bug-fix and source code changes. A null-value checking bug is injected in revision 1, and fixed in revision 3.

2. Background
Previous work by the second author developed what

was, prior to the current paper, the only approach for

identifying bug-introducing changes from bug-fix

changes [16]. For convenience, we call this previous

approach the SZZ algorithm, after the first letters of the

authors’ last names. To identify bug-introducing changes,

SZZ first finds bug-fix changes by locating bug identifiers

or relevant keywords in change log text, or following an

explicitly recorded linkage between a bug tracking system

and a specific SCM commit. SZZ then runs a diff tool to

determine what changed in the bug-fixes. The diff tool

returns a list of regions that differ in the two files; each

region is called a hunk. It observes each hunk in the bug-

fix and assumes that the deleted or modified source code

in each hunk is the location of a bug. Finally, SZZ tracks

down the origins of the deleted or modified source code in

the hunks using the built-in annotate feature of SCM

systems. The annotate feature computes, for each line in

the source code, the most recent revision in which the line

was changed, and the developer who made the change.

The discovered origins are identified as bug-introducing

changes.

Figure 1 shows an example of the history of

development of a single function over three revisions.

• Revision 1 shows the initial creation of function bar,

and the injection of a bug into the software, the line ‘if

(report == null) {‘ which should be ‘!=’ instead. The

leftmost column of each revision shows the output of

the SCM annotate command, identifying the most recent

revision and the developer who made the revision. Since

this is the first revision, all lines were first modified at

revision 1 by the initial developer ‘kim.’ The second

column of numbers in revision 1 lists line numbers

within that revision.

• In the second revision, two changes were made. The

function bar was renamed to foo, and a cosmetic change

was made where the angle bracket at the end of line 3 in

revision 1 was moved down to its own line (4) in

revision 2. As a result, the annotate output shows lines

1, 3, and 4 as having been most recently modified in

revision 2 by ‘ejw.’

• Revision 3 shows three changes, a modification to the

comment in line 2, deleting the blank line after the

println, and the actual bug-fix, changing line 3 from

‘==’ to ‘!=’.

Let us consider what happens when the SZZ algorithm

tries to identify the fix-inducing change associated with

the bug-fix in revision 3. SZZ starts by computing the

delta between revisions 3 and 2, yielding the lines 2, 3,

and 6 (these are highlighted in the figure). SZZ then uses

SCM annotate data to determine the initial origin of these

three lines. The first problem we encounter is that SZZ

seeks the origin of the comment line (2) and the blank line

(6); clearly neither contains the injected bug, since these

lines are not executable. The next problem comes when

SZZ tries to find the origin of line 3. Since revision 2

modified this line to make a cosmetic change (moving the

angle bracket), the SCM annotate data indicates that this

line was most recently modified at revision 2. SZZ stops

there, claiming that revision 2 is the bug-introducing

change. This is incorrect, since revision 1 was the point at

which the bug was initially entered into the code. The

cosmetic change threw off the algorithm.

A final problem is that, using just SCM annotate

information, it is impossible to determine that the name of

the function containing the bug changed its name from

bar to foo. The annotate information only contains triples

of (current revision line #, most recent modification

revision, developer who made modification). There is no

information here that states that a given line in one

revision maps to a specific line in a previous (or

following) revision. It is certainly possible to compute

this information—indeed, we do so in the approach we

outline in this paper—but to do so requires more

information than is provided solely by SCM annotate

capabilities.

We can now summarize the main two limitations of

the SZZ algorithm:

SCM annotation information is insufficient: there is not

enough information to identify bug-introducing changes.

The previous example demonstrates how a simple

formatting change (moving the bracket) modifies SCM

annotate data so an incorrect bug-introducing revision is

chosen. It also highlights the need to trace the evolution

of individual lines across revisions, so function/method

containment can be determined.

Not all modifications are fixes: Even if a file change is

defined as a bug-fix by developers, not all hunks in the

change are bug-fixes. As we saw above, changes to

comments, blank lines, and formatting are not bug-fixes,

yet are flagged as such.

 These two limitations result in the SZZ algorithm

inaccurately identifying bug-introducing changes. To

address these issues, in this paper we present an improved

approach for achieving accurate bug-introducing change

identification by extending SZZ. In the new approach, we

employ annotation graphs, which contain information on

the cross-revision mappings of individual lines. This is an

improvement over SCM annotate data, and permits a bug

to be associated with its containing function or method.

We additionally remove false bug-fixes caused by

comments, blank lines, and format changes.

An important aspect of this new approach is that it is

automated. Since revision histories for large projects can

contain thousands of revisions and thousands of files,

automated approaches are the only ones that scale to this

size. As an automated approach, the bug-introducing

identification algorithm we describe can be employed in a

wide range of software evolution analyses as an initial

clean-up step to obtain high quality data sets for further

analysis on the causes and patterns of bug formation.

To determine the accuracy of the automatic approach,

we use a manual approach as well. Two human judges

manually verified all hunks in a series of bug-fix changes

to ensure the corresponding hunks are real bug-fixes.

We applied our automatic and manual approach to

identify bug-introducing changes at the method level for

two Java open source projects, Columba and Eclipse

(jdt.core). We propose the following steps, as shown in

Figure 2, to remove false positive and false negatives in

identifying bug-introducing changes.

1. Use annotation graphs to provide more detailed

annotation information

2. Ignore comment and blank line changes

3. Ignore format changes

4. Ignore outlier bug-fix revisions in which too many

files were changed

5. Manually verify all hunks in the bug-fix changes

Figure 2. Summary of approach

In overview, applying this new approach (steps 1-5)

removes 38%~51% of false positives and 14%~15% of

false negatives as compared to the original SZZ

algorithm. Using only the automated algorithms (steps 1-

4), we can remove 36~48% false positives and 14% of

false negatives. The manual fix verification does not

scale, but highlights the low residual error remaining at

the end of the automated steps, since it removes only

2~3% of false positives and 1% of false negatives.

In the remainder of the paper, we begin by describing

our experimental setup (Section 3). Following are results

from our experiments (Section 4), along with discussion

of the results (Section 5). Rounding off the paper, we end

with some existing applications of bug-introducing

changes (Section 6) and conclusions (Section 7).

3. Experimental Setup
In this section, we describe how we extract the change

history from an SCM system for our two projects of

interest. We also explain the accuracy measures we use

for assessing the performance of each stage in our

improved algorithm for identifying bug-introducing

changes.

3.1. History Extraction
Kenyon is a system that extracts source code change

histories from SCM systems such as CVS and Subversion

[1]. Kenyon automatically checks out the source code for

each revision and extracts change information such as the

change log, author, change date, source code, change

delta, and change metadata. We used Kenyon to extract

the histories of two open source projects, as shown in

Table 1.

3.2. Accuracy Measures
A bug-introducing change set is all of the changes

within a specific range of project revisions that have been

identified as bug-introducing. Suppose we identify a bug-

introducing change set, P, using a bug-introducing

identification algorithm such as SZZ [16]. We then apply

the algorithm described in this paper, and derive another

bug-introducing change set, R, as shown in Figure 3. The

common elements of the two sets are P!R.

Figure 3. Bug-introducing change sets identified using SZZ

(P) and with the new algorithm (R)

Assuming R is the more accurate bug-introducing

change set, we compute false positives and false negatives

for the set P as follows:

False positive (FP) =

!

|P " R |

|P |

False negative (FN) =
||

||

R

PR !

4. Algorithms and Experiments
In this section, we explain our approach in detail and

present our results from using the improved algorithm to

identify bug-introducing changes.

Table 1. Analyzed projects. # of revisions indicates the number of revisions we analyzed. # of fix revisions indicates the number of

revisions that were identified as bug-fix revisions. Average LOC indicates the average lines of code of the projects in given periods.

Project Software type Period # of revision # of fix revision % of fix revision Average LOC

Columba Email Client 11/2002 ~ 06/2003 500 143 29% 48,135

Eclipse (jdt.core) IDE 06/2001 ~ 03/2002 1000 158 16% 111,059

4.1. Using Annotation Graph
The SZZ algorithm for the identification of bug-

introducing changes for fine-grained entities such as

functions or methods uses SCM annotation data. In this

section, we show that this information is insufficient, and

may introduce false positives and negatives.

Assume a bug-fix change occurs at revision 20, and

involves the deletion of three lines (see Figure 4). Since

they were deleted, the three lines are likely to contain a

bug. In the SZZ approach, SCM annotate data is used to

obtain the revisions in which these lines were initially

added. The first two lines were added at revision 3, and

the third line was added at revision 9. Thus, we identify

the changes between revisions 2 and 3 and between

revisions 8 and 9 as bug-introducing changes at the file

level.

Figure 4. Finding bug-Introduction changes in the function

level.

A problem occurs when we try to locate bug-

introducing changes for entities such as functions or

methods. Suppose the deleted source code at revision 20

was part of the 'foo()' function (see Figure 4). Note that

SCM annotation data for CVS or Subversion includes

only revision and author information. This means we only

know that the first two lines in Figure 4 were added at

revision 3 by 'hunkim', but we do not know the actual line

numbers of the deleted code at revision 3. In past

research, it was assumed that the lines at revision 3 are

part of the 'foo()' function, which is marked as a bug-

introducing change, even though there is no guarantee

that the function 'foo()' existed at revision 3.

Suppose at revision 3 that 'foo()' does not exist and the

'bar()' function does exist, as shown in Figure 4. One

explanation for how this could occur is the ‘bar()’

function changes its name to ‘foo()’ at some later revision.

One consequence is the above assumption is wrong and

the 'foo()' function at revision 3 does not contain the bug-

introducing change (false positive). We also miss a real

bug-introducing change, ‘bar()’ at revision 3 (false

negative). Since SCM annotations do not provide the line

numbers for the annotated lines at revision 3, it is not

possible to identify the function where the bug-

introducing lines were inserted.

We address this problem by using annotation graphs

[18], a representation for origin analysis [6, 10] at the line

level, as shown in Figure 5. In an annotation graph, every

line of a revision is represented as a node; edges connect

lines (nodes) that evolved from each other: either by

modification of the line itself or by moving the line in the

file. In Figure 5 two regions were changed between

revisions r1 and r2: lines 10 to 12 were inserted and lines

19 to 23 were modified. The annotation graph captures

these changes as follows: line 1 in r2 corresponds to line 1

in r1 and was not changed (the edge is not marked in

bold), the same holds for lines 2 to 9. Lines 10 to 12 were

inserted in r2, thus they have no origin in r1. Line 13 in r2

was unchanged but has a different line number (10) in r1,

this is indicated by the edge (same for 14 to 18 in r2).

Lines 19 to 23 were modified in r2 and originated from

lines 16 to 20 (edges are marked in bold). Note that we

approximate origin conservatively, i.e., for modifications

we need to connect all lines affected in r1 (lines 16 to 20)

with every line affected in r2 (lines 19 to 23).

Figure 5. An annotation graph shows line changes of a file

for three revisions [18]. A single node represents each line in a

revision; edges between nodes indicate that one line originates
from another, either by modification or by movement.

The annotation graph improves identification of bug-

introducing code by providing for each line in the bug-fix

change the line number in the bug-introducing revision.

This is computed by performing a backward directed

depth-first search. The resulting line number is then used

to identify the correct function name in the bug-fix

revision. For the above example, the annotation graph

would annotate the deleted lines with the line numbers in

revision 3, which are then used to identify function ‘bar’.

To demonstrate the usefulness of annotation graphs for

locating bug-introducing changes, we identify bug-

introducing changes at the method level for our two

projects with and without the use of annotation graphs.

The left circle in Figure 6 (a) shows the count of bug-

introducing changes at method level identified without

using the annotation graph; the right circle shows the

count when using the annotation graphs. Without the

annotation graph we have about 2% false positives and

1~4% false negatives (total 3~6% errors) in identifying

bug-introducing changes. Thus, annotation graphs provide

information for more accurate bug-introducing change

identification at the method level.

Figure 6. Bug-introducing change sets with and without

annotation graph.

4.2. Non Behavior Changes
Software bugs involve incorrect behavior of the

software [8], and hence are not located in the formatting

of the source code, or in comments. Changes to source

code format or comments, or the addition/removal of

blank lines, do not affect software’s behavior. For

example, Figure 7 shows a change in which one blank

line was deleted and an ‘if condition’ was added to fix a

bug. If we just apply SZZ, we identify the blank line as a

problematic line and search for the origin of the blank

line. We identify the revision and corresponding method

of the blank line as a bug-introducing change, which is a

false positive.

To remove such false positives, we ignore blank lines

and comment changes in the bug-fix hunks.

public void notifySourceElementRequestor()

{

-

+ if (reportReferenceInfo) {

+ notifyAllUnknownReferences();

+ }

 // collect the top level ast nodes

 int length = 0;

Figure 7. Blank line deletion example in Eclipse

(compiler/org/eclipse/jdt/internal/compiler/SourceElementP

arser.java)

Figure 8 shows the difference in identified bug-

introducing change sets by ignoring comment and blank

line changes. This approach removes 14%~20% of false

positives.

Figure 8. Identified bug-introducing change sets by ignoring

comment and blank line changes.

4.3. Format Changes
Similar to the comment and blank line changes, source

code format changes do not affect software behavior. So

if the source code’s format was changed during a bug-fix,

as is shown in Figure 9, the source code format change

should be ignored when we identify bug-introducing

changes.

- if (folder == null) return;

+ if (folder == null)

 + return;

Figure 9. Format change example in Columba

(mail/core/org/columba/mail/gui/table/FilterToolbar.java)

Unlike the comment and blank line changes, format

changes affect the SCM annotation information. For

example, consider the ‘foo’ function changes shown in

Figure 10. Revision 10 is a bug-fix change, involving

repair to a faulty ‘if’. To identify the corresponding bug-

introducing changes, we need to find the origin of the ‘if’

at revision 10. Revision 5 only involves a formatting

change to the code. If we do not ignore source code

format changes, when we examine the SCM annotation

information, we identify that ‘foo’ at revision 5 is a bug-

introducing change (a false positive). In fact, the

problematic line was originally created at revision 3 (this

was missed, hence a false negative). Due to inaccurate

annotation information, source code format changes lead

to significant amounts of false positives and false

negatives. Ignoring software format changes is an

important process in the accurate identification of bug-

introducing changes.

Revision 3

 if (a == true) return;

Revision 5

 if (a == true)

 return;

Revision 10 (bug-fix)

 if (a == false)

 return;

Figure 10. False positive and false negative example caused

by format changes.

Figure 11 compares the results of the SZZ approach

with the improved approach that identifies bug-

introducing changes by ignoring format changes in bug-

fix hunks. Overall, ignoring source code format changes

removes 18%~25% of false positives and 13%~14% of

false negatives.

Figure 11. Bug-introducing change sets identified by

ignoring source code format changes.

4.4. Remove Fix Revision Outliers
It is questionable if all the file changes in a bug-fix

revision are bug-fixes, especially if a bug-fix revision

contains large numbers of file changes. It seems very

improbable that in a bug-fix change containing hundreds

of file changes every one would have some bearing on the

fixed bug. We observed the number of files changed in

each bug-fix revision for our two projects, as shown in

Figure 12. Most bug-fix revisions contain changes to just

one or two files. All 50% of file change numbers per

revision (between 25% and 75% quartiles) are about 1-3.

A typical approach for removing outliers from data is if a

data item is 1.5 times greater than the 50% quartile, it is

assumed to be an outlier. In our experiment, we adopt a

very conservative approach, and use as our definition of

outlier file change counts that are greater than 5 times the

50% quartile. This ensures that any changes we note as

outliers truly have a large number of file changes.

Changes identified as outliers for our two projects are

shown as ‘+’ in Figure 12.

Figure 12. Box plots for the number of file changes per

revision.

To ensure we were not incorrectly labeling these

changes as outliers, we manually inspected each file

change in the outlier revisions. We observed that most of

the changes are method name and parameter name

changes. For example, one parameter type changed from

‘TypeDeclaration’ to ‘LocalTypeDeclaration’, and hence

the revision contains 7 file changes related to this change,

as shown Figure 13.
- public boolean visit(TypeDeclaration

- typeDeclaration, BlockScope scope){

+ public boolean visit(LocalTypeDeclaration

+ typeDeclaration, BlockScope scope){

Figure 13. Object type change example in Eclipse

(search/org/eclipse/jdt/internal/core/search/matching/Match

Set.java)

As shown in Figure 14, ignoring outlier revisions

removes 7%~16% of false positives. Even though most

changes in the outlier revisions contain method name

changes or parameter changes, it is possible that these

changes are real bug-fixes. A determination of whether

they are truly ignorable outliers will depend on the

individual project. As a result, ignoring outlier revisions is

an optional aspect of our approach for identifying bug-

introducing changes.

Figure 14. Bug-introducing change sets identified by

ignoring outlier revisions.

4.5. Manual Fix Hunk Verification
We identify bug-fix revisions by mining change logs,

and bug-fix revision data is used to identify bug-

introducing changes. If a change log indicates the revision

is a bug-fix, we assume the revision is a bug-fix and all

hunks in the revision are bug-fixes. Then how many of

them are true bug-fixes? It depends on the quality of the

change log and understanding the degree of the bug-fixes.

One developer may think a change is a bug-fix, while

others think it is only a source code cleanup or a new

feature addition. To check how many bug-fix hunks are

true bug-fixes, we manually verified all bug-fix hunks and

marked them as bug-fix or non-bug-fix. Two human

judges, graduate students who have multiple years of Java

development experience, performed the manual

verification. A judge marks each bug-fix hunk of two

projects (see Table 1) and another judge reviews the

marks. Judges use a GUI-based bug-fix hunk verification

tool. The tool shows individual hunks in the bug-fix

revision. Judges read the change logs and source code

carefully and decide if the hunk is a bug-fix. The total

time spent is shown in Table 2.

Table 2. Manual fix hunk validation time of two human

judges.

Judges Columba Eclipse

Judge 1 3.5 hours 4 hours

Judge 2 4.5 hours 5 hours

The most common kind of non-bug-fix hunks in the

bug-fix revision involves variable renaming, as shown in

Figure 15. This kind of variable renaming does not affect

software behavior, but it is not easy to automatically

detect this kind of change without performing deep static

or dynamic analysis.
deleteResources(actualNonJavaResources,fForce);

- IResource[] remaingFiles;

+ IResource[] remainingFiles;

 try {

- remaingFiles=((IFolder)res).members();

+ remainingFiles=((IFolder)res).members();

 }

Figure 15. Variable Renaming example in Eclipse

(model/org/eclipse/jdt/internal/core/DeleteResourceElements

Operation)

We identify bug-introducing changes after the manual

fix hunk validation, as shown in Figure 16. Manual

verification removes 4~5% false positives. Unfortunately,

the manual validation requires domain knowledge and

does not scale. However, the amount of false positives

removed by manual verification was not substantial. We

believe it is possible to skip the manual validation for

bug-introducing change identification. We compare the

overall false positives and false negatives using the

automatic algorithms with manual validation in next

section.

Figure 16. Bug-introducing change sets after manual fix

hunk validation.

4.6. Summary
We applied the steps described in Figure 2 to remove

false positive and false negative bug-introducing changes.

In this section we compare the identified bug-introducing

change sets gathered using the original SZZ algorithm

[16] and those from our new algorithm (steps 1-5 in

Figure 2). Overall, Figure 17 shows that applying our

algorithms removes about 38%~51% of false positives

and 14~15% of false negatives—a substantial error

reduction.

Figure 17. Bug-introducing changes identified by the

original SZZ algorithm [16] (P) and by the approach (steps

1-5) proposed in this paper (R).

The manual bug-fix hunk verification gives us a good

sense of how many hunks in bug-fix revisions are true

bug-fixes. There is no doubt that manual bug-fix hunk

verification leads to more accurate bug-introducing

changes. Unfortunately, manual fix hunk verification does

not scale. The reason that we examined only the first

500~1000 revisions (Table 1) is the high cost of the

manual verification. Figure 18 shows the false positives

and false negatives removed by applying only automatic

algorithms (steps 1-4 in Figure 2). Automatic algorithms

remove about 36~48% of false positives and 14% of false

negatives, yielding only 1~3% difference as compared to

applying all algorithms (steps 1-5 in Figure 2). Since the

errors removed by manual verification are not significant,

manual fix hunk verification can be skipped when

identifying bug-introducing changes.

Figure 18. Bug-introducing changes identified by the

original SZZ algorithm [16] (P) and by the automatable

steps (1-4) described in this paper (R).

5. Discussion
In this section, we discuss the relationship between

identified bug-fixes and true bug-fixes. We also discuss

the relationship between identified bug-introducing

changes and true bugs.

5.1. Are All Identified Fixes True Fixes?
We used two approaches to identify bug-fixes:

searching for keywords such as "Fixed" or "Bug" [12] and

searching for references to bug reports like “#42233” [2,

4, 16]. The accuracy of bug-fix identification depends on

the quality of change logs and linkages between SCM and

bug tracking systems. The two open source projects we

examined have, to the best of our knowledge, the highest

quality change log and linkage information of any open

source project. In addition, two human judges manually

validated all bug-fix hunks. We believe the identified

bug-fix hunks are, in almost all cases, real fixes. Still

there might be false negatives. For example, even though

a change log does not indicate a given change is a fix, it is

possible that the change includes a fix. To measure false

negative fix changes, we need to manually inspect all

hunks in all revisions, a daunting task. This remains

future work.

5.2. Are Bug-Introducing Changes True Bugs?
Are all identified bug-introducing changes real bugs?

It may depend on the definition of ‘bug’. IEEE defines

anomaly, which is a synonym of fault, bug, or error, as:

“any condition that departs from the expected [8].”

Verifying whether all identified bug-introducing changes

meet a given definition of bug remains future work.

More importantly, we propose algorithms to remove

false positives and false negatives in the identified bugs.

As shown in Figure 19, even though we do not know the

exact set of real bugs, our algorithms can identify a set

that is closer to the real bug set than the set identified by

the original SZZ algorithm [16]. Even if not perfect, our

approach is better than the current state of the art.

Figure 19. False positives and false negatives of each bug-

introducing identification process.

5.3. Threat to Validity
There are four major threats to the validity of this work.

Systems examined might not be representative. We

examined 2 systems, so it is possible that we accidentally

chose systems that have better (or worse) than average

false positive and negative bug-introducing changes.

Since we intentionally only chose systems that had some

degree of linkage between bug tracking systems and the

change log (so we could determine bug-fixes), we have a

project selection bias. It certainly would be nice to have a

larger dataset.

Systems are all open source. The systems examined in

this paper all use an open source development

methodology, and hence might not be representative of all

development contexts. It is possible that the stronger

deadline pressure of commercial development could lead

to different results.

Bug-fix data is incomplete. Even though we selected

projects that have change logs with good quality, we still

are only able to extract a subset of the total number of

bug-fixes. For projects with a poor change log quality, the

false negatives of bug-introducing change identification

will be higher.

Manual fix hunk verification may include errors. Even

though we selected two human judges who have multiple

years of Java programming experience, their manual fix

hunk validation may contain errors.

6. Applications
In the first part of this paper, we presented an approach

for identifying bug-introducing changes more accurately

than SZZ. In this section, we discuss possible applications

for these bug-introducing changes.

6.1. Bug-Introduction Statistics
Information about bug-introducing changes can be

used to help understand software bugs. Unlike bug-fix

information, bug-introducing changes provide the exact

time a bug occurs. For example, it is possible to determine

the day in which bugs are most introduced. We can also

now determine the most bug-prone authors. When

combined with bug-fix information, we can determine

how long it took to fix a bug after it was introduced.

Sliwerski et al. performed an experiment to find out

the most bug-prone day by computing bug-introducing

change rates over all changes [16]. They found that Friday

is the most bug-prone day in the projects examined.

Figure 20. Eclipse author bug-fix and bug-introducing

change contributions.

Figure 21. Columba author bug-fix and bug-introducing

change contributions.

In the two projects we examined, we computed the bug-

introducing change rates and bug-fix change rates per

author, shown in Figure 20 and Figure 21. The figures

show that rates of bug-introduction and bug-fixing are

different. For example, in Eclipse, author a1 makes about

40% of all fixes, but introduces about 75% of all bugs. In

contrast, author a2 fixes far more bugs than they

introduce. These numbers do not allow conclusions on the

performance of individual developers: in many projects

the most skillful developers are assigned to the most

difficult parts; thus they are likely to introduce more bugs.

Using the bug-introducing change information, we can

determine the exact bug residency time, the elapsed time

between initial injection of a bug and its eventual fix. The

bug residency time provides a good understanding of the

entire life cycle of a bug, starting with the injection of the

bug in a bug-introducing change, appearance of the bug in

a bug report, and the end of the bug in a bug-fix change.

Previous research tries to measure the time it takes to fix a

bug after a bug report has been entered, but without the

bug-introducing changes, it is not possible to determine

the entire life cycle of a bug. Figure 22 shows the average

bug residency time using box-plots for Columba and

Eclipse. For example, the box-plot for Columba shows

that the average bug residency time is around 40 days, the

25% quartile is around 10 days and 75% quartile is

around 100 days.

Figure 22. Average bug residency time of Columba and

Eclipse.

6.2. Bug Prone Change Patterns
Since we can determine bug-introducing changes, it is

possible to analyze the source code for any patterns that

might exist in bug prone code. Signature changes [11] and

micro pattern changes [5] are examples of source code

change patterns. Suppose we identify bug-introducing

changes and function signature changes as shown in

Figure 23. We can then try to find correlations between

signature and bug-introducing changes [11].

We analyzed micro pattern changes in Java source

code using bug-introducing changes to determine what

kinds of micro pattern changes introduce more/less bugs

[9]. Micro patterns capture non-trivial idioms of Java

programming languages [5]. This work did identify some

bug prone micro patterns such as Box, CompoundBox,

Sampler, Pool, Outline, and CommonState [9].

The bug prone change pattern analysis depends on

having access to bug-introducing changes, since

otherwise we do not know when a bug was introduced.

Figure 23. Bug-introducing changes and signature changes.

6.3. Change Classification
In the previous section, we provided one example of

finding bug-prone source code change patterns. If a

source code change pattern is consistent with bug-

introducing changes, then we can use such factors to

predict unknown changes as buggy or clean. Suppose we

observe various change factors between 1 to n revisions

as shown in Figure 24. We know which changes are bug-

introducing changes and which changes are not. This

permits us to train a model using labeled change factors,

where the changes are labeled as being bug-introducing or

clean. Using the trained model, we can predict whether

future unknown changes are buggy or clean.

Figure 24. Predicting future changes using identified bug-

introducing changes.

There are many machine learning algorithms [17] that

take pre-labeled instances, train a model, and predict

unknown instances using the model. Finding consistent

bug-prone factors might be challenging, but it is possible

to label changes and make a training data set using bug-

introducing changes. Such change classification is not

possible without the bug-introducing change data. Hence,

one key benefit of ready access to bug-introducing

changes is the ability to apply machine learning

techniques to bug prediction.

6.4. Awareness Tool: HATARI
 Every programmer knows that there are locations in

the code where it is difficult to get things right. The

HATARI tool [15] identifies the individual risk for all

code locations by examining, for each location, whether

earlier changes caused problems. To identify such

changes HATARI mines bug-introducing changes

automatically from version archives and bug databases.

The risk of a location L is then estimated as the

percentage of “bad” changes at that location:

L

L
L

at changes ofnumber

at changes gintroducin bug ofnumber
)risk(=

Figure 25. Source code highlights of HATARI.

Risky locations are important for maintenance, such as

adding extra documentation or restructuring, and for

quality assurance, because changes that occur at risky

locations should get more attention. In order to support

developers during these tasks, HATARI highlights such

locations (see Figure 25) and provides views to browse

the most risky locations and to analyze the risk history of

particular locations. HATARI depends strongly on the

quality of bug-introducing changes. By reducing false

positives and negatives, its annotations will be improved.

7. Conclusions
Bug-introducing changes are important information for

understanding properties of bugs, mining bug prone

change patterns, and predicting future bugs. In this paper

we describe a new approach for more accurately

identifying bug-introducing changes from bug-fix data.

The approach in this paper removes many false positives

and false negatives as compared to the prior SZZ

algorithm. Our experiments show that our approach,

including manual validation, can remove 38~51% of false

positives and 14% of false negatives as compared to SZZ.

Omitting the manual validation and using only

automatable processes, we can still remove 36%~48% of

false positives and 14% of false negatives. Using our

approach, we can identify bug-introducing changes more

accurately than the prior SZZ algorithm, which is the

current state of the art. We also showed various

applications of the bug-introducing changes. We believe

that software bug related research should use bug-

introducing change information.

8. References
[1] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey,

"Facilitating Software Evolution with Kenyon," Proc. of

the 2005 European Software Engineering Conference and

2005 Foundations of Software Engineering (ESEC/FSE

2005), Lisbon, Portugal, pp. 177-186, 2005.

[2] D. Cubranic and G. C. Murphy, "Hipikat: Recommending

pertinent software development artifacts," Proc. of 25th

International Conference on Software Engineering (ICSE

2003), Portland, Oregon, pp. 408-418, 2003.

[3] M. D'Ambros and M. Lanza, "Software Bugs and

Evolution: A Visual Approach to Uncover Their

Relationships," Proc. of 10th European Conference on

Software Maintenance and Reengineering (CSMR 2006),

Bari, Italy, pp. 227-236, 2006.

[4] M. Fischer, M. Pinzger, and H. Gall, "Populating a Release

History Database from Version Control and Bug Tracking

Systems," Proc. of 19th International Conference on

Software Maintenance (ICSM 2003), pp. 23-32, 2003.

[5] J. Y. Gil and I. Maman, "Micro Patterns in Java Code,"

Proc. of the 20th Object Oriented Programming Systems

Languages and Applications (OOPSLA '05), San Diego,

CA, USA, pp. 97 - 116, 2005.

[6] M. W. Godfrey and L. Zou, "Using Origin Analysis to

Detect Merging and Splitting of Source Code Entities,"

IEEE Trans. on Software Engineering, vol. 31, pp. 166-

181, 2005.

[7] A. E. Hassan and R. C. Holt, "The Top Ten List: Dynamic

Fault Prediction," Proc. of 21st International Conference on

Software Maintenance (ICSM 2005), Budapest, Hungary,

pp. 263-272, 2005.

[8] IEEE, "IEEE Standard Classification for Software

Anomalies," IEEE Std 1044-1993 Dec 1993.

[9] S. Kim, K. Pan, and E. J. Whitehead, Jr., "Micro Pattern

Evolution," Proc. of Int'l Workshop on Mining Software

Repositories (MSR 2006), Shanghai, China, pp. 40 - 46,

2006.

[10] S. Kim, K. Pan, and E. J. Whitehead, Jr., "When Functions

Change Their Names: Automatic Detection of Origin

Relationships," Proc. of 12th Working Conference on

Reverse Engineering (WCRE 2005), Pennsylvania, USA,

pp. 143-152, 2005.

[11] S. Kim, E. J. Whitehead, Jr., and J. Bevan, "Properties of

Signature Change Patterns," Proc. of 22nd International

Conference on Software Maintenance (ICSM 2006),

Philadelphia, Pennsylvania, 2006.

[12] A. Mockus and L. G. Votta, "Identifying Reasons for

Software Changes Using Historic Databases," Proc. of 16th

International Conference on Software Maintenance (ICSM

2000), San Jose, California, USA, pp. 120-130, 2000.

[13] N. Nagappan and T. Ball, "Use of Relative Code Churn

Measures to Predict System Defect Density," Proc. of 27th

International Conference on Software Engineering (ICSE

2005), Saint Louis, Missouri, USA, pp. 284-292, 2005.

[14] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, "Where the

Bugs Are," Proc. of 2004 ACM SIGSOFT International

Symposium on Software Testing and Analysis, Boston,

Massachusetts, USA, pp. 86 - 96, 2004.

[15] J. !liwerski, T. Zimmermann, and A. Zeller, "HATARI:

Raising Risk Awareness. Research Demonstration," Proc.

of the 2005 European Software Engineering Conference

and 2005 Foundations of Software Engineering

(ESEC/FSE 2005), Lisbon, Portugal, pp. 107-110, 2005.

[16] J. !liwerski, T. Zimmermann, and A. Zeller, "When Do

Changes Induce Fixes?" Proc. of Int'l Workshop on Mining

Software Repositories (MSR 2005), Saint Louis, Missouri,

USA, pp. 24-28, 2005.

[17] I. H. Witten and E. Frank, Data Mining: Practical Machine

Learning Tools and Techniques (Second Edition): Morgan

Kaufmann, 2005.

[18] T. Zimmermann, S. Kim, A. Zeller, and E. J. Whitehead,

Jr., "Mining Version Archives for Co-changed Lines,"

Proc. of Int'l Workshop on Mining Software Repositories

(MSR 2006), Shanghai, China, pp. 72 - 75, 2006.

