
Towards the Next Generation of Bug Tracking Systems

Sascha Just
Saarland University

Saarbrücken, Germany
just@st.cs.uni-sb.de

Rahul Premraj
Saarland University

Saarbrücken, Germany
premraj@cs.uni-sb.de

Thomas Zimmermann
University of Calgary
Calgary, AB, Canada

tz@acm.org

Abstract

Developers typically rely on the information submitted by
end-users to resolve bugs. We conducted a survey on infor-
mation needs and commonly faced problems with bug re-
porting among several hundred developers and users of the
APACHE, ECLIPSE and MOZILLA projects. In this paper, we
present the results of a card sort on the 175 comments sent
back to us by the responders of the survey. The card sort
revealed several hurdles involved in reporting and resolv-
ing bugs, which we present in a collection of recommen-
dations for the design of new bug tracking systems. Such
systems could provide contextual assistance, reminders to
add information, and most important, assistance to collect
and report crucial information to developers.

1. Introduction

In many software projects, bug tracking systems play a cen-
tral role: they allow users to communicate with developers
to let them know about any problems and to request new
features. In addition, developers can keep track of any unre-
solved bugs and request more information from users. How-
ever, most bug tracking systems are far from perfect. Many
of them are merely better interfaces to a database that stores
all reported bugs. As a result, they often ask too much from
end-users who are not familiar with development practices.
At the same time they cause frustration for developers who
are disappointed about the quality of bug reports submitted
by users.

In order to find out which information matters most for
developers and what problems they face while fixing bugs,
we asked 872 developers (out of which 156 responded) from
the APACHE, ECLIPSE, and MOZILLA projects to complete
a survey on the quality of bug reports. In addition, we con-
tacted 1,354 reporters (out of which 310 responded) from
the same projects to complete a similar survey, in which we
asked about the information they typically provide and the
information that is most difficult to collect.

In an earlier paper [4], we reported quantitative results
of our survey, which can be briefly summarized as follows:

• Most helpful for developers are steps to reproduce,
stack traces, and test cases. The most serious problems
that they face are incorrect steps to reproduce and in-
complete information.

• Bug duplicates were not considered as harmful, be-
cause they often provide additional information.

• Reporters consider test cases, steps to reproduce, code
examples, and stack traces as most difficult to collect.

• There was evidence for an information mismatch, i.e.,
reporters provide not the information that developers
need most. Yet reporters seem to know what is impor-
tant for developers.

These results indicate a need for better bug reporting tools
that assist reporters in collecting relevant information. As
part of the survey, we received 175 comments by developers
and reporters about what makes good bug reports and how
bug reporting systems could be improved.

In this paper, we report the results of a qualitative anal-
ysis of these comments. To get a first grasp on the feed-
back, we organized comments with a card sort (Section 2)
to identify common themes and problems in bug reporting
(Section 3). Knowing what information developers need
and what hurdles developers and users face with today’s bug
tracking systems is crucial to develop the next-generation of
bug tracking systems. We close the paper with related work
(Section 4) and consequences (Section 5).

2. Card Sort

We applied a card sort to organize the comments into hier-
archies to deduce a higher level of abstraction and identify
common themes in the participants’ feedback. Card sorting
is an inexpensive and user-centered sorting technique that
is widely used in information architecture to create mental
models and derive taxonomies from input [2].

There are three phases within a card sort: (1) prepara-
tion, in which participants and contents of the card sort are
selected; (2) execution, where the indexed cards are sorted
into meaningful groups with a descriptive title; and lastly,
(3) analysis, in which the cards are sorted to form more ab-
stract hierarchies that are used to deduce themes.

In traditional card sorts, every statement by a partici-
pant results in the creation of exactly one card. However,
in our case the participants often provided several unrelated
statements in a comment. Therefore we split comments into
more atomic parts (statements), which was done by the first
author of this paper.

2.1. Data Preparation

We first cleaned the data because not every comment con-
tained useful information (“no comment” or “please send
me the results of the survey”). Filtering out such comments
left us with 120 comments that served as input for card cre-
ation. As described above, comments addressing multiple
topics were split using an interactive command line tools
we designed for this specific task.

The resulting 237 statements were printed on index
cards, containing a short title describing the central theme of
the card, the participant’s role (reporter/developer) and af-
filiation (APACHE/ECLIPSE/MOZILLA), and the respective
text of the statement.

2.2. Card Sort Execution and Analysis

We sorted the cards manually because none of the available
card sorting tools supported building hierarchies. Our aim
was to derive topics from the initial set of 237 cards, which
is why we chose to do an open card sort. Here, groups are
established while doing the card sort as opposed to having
pre-determined groups. Our card sort yielded the following
nine topics:

1. Important information. This topic contains everything
related to information provided in bug reports, e.g., the
value of information and how difficult it is to provide.
Most participants commented on steps to reproduce,
test cases and the difference between observed and ex-
pected behavior. (→ Section 3.1)

2. User component. The second largest topic contains
comments related to users. Many of them wished for
more feedback on reported bugs. Several comments
pointed out the different levels of users. On the one
hand there are experienced reporters who can easily
provide information needed by developers. On the
other hand, others struggle with how to collect relevant
information. (→ Section 3.2)

3. Quality of information. The quality of bug reports is
another important topic. Many comments discussed
the consequences of missing information. In this topic
more developers provided feedback than reporters.

4. Communication. In this topic we collected the com-
ments with respect to communication problems be-
tween developers and reporters and how they slow
down the process. The largest concept was abuse of
the system and several reporters were dissatisfied with
the large and overwhelming number of discussions in
bug reports.

5. Reduce the work of developers. This topic contains
ideas how work for developers could be reduced, ei-
ther by better tool support (e.g., automatic setup of
workspaces) or better bug reports with more data.

6. Duplicates and search. Many participants commented
on duplicates and on how the search feature in bug
tracking systems could be improved. (→ Section 3.3)

7. Automation. The comments in this topic are about au-
tomation in bug tracking systems. Reporters consider
automatic closing of bug reports as annoying. At the
same time they acknowledged the value and impor-
tance of tools that automatically collect data.

8. Creation process. This topic describes issues with the
interface of bug tracking systems when filing new bug
reports, e.g., difficult attachment handling.

9. Triaging. This topic describes comments on the triag-
ing process. Most comments discussed that assigning
of bugs takes too long.

3. Discussion

In this section, we discuss several comments by the survey
participants that lead to recommendations how bug tracking
systems could be improved.

3.1. Better Tool Support

Collect information. Several reporters pointed out the
need for tools that help them to collect information that they
need to file bug reports. Ideally, such tools would be inte-
grated in the software itself or in its bug reporting system.

“Sometimes I wish for a special UI-tracker, which tells me
what I have done to get into this.” [Comment 64]

“[M]aybe somehow it could be made possible to report bugs
more like recording a macro” [Comment 65]

Such support is likely to lead to better bug reports. One
example is ECLIPSE bug 113206, which was awarded “Best
of Bugzilla” by Ward Cunningham [5]. In this bug report,

Martin Burger used a flash movie to demonstrate the rather
complicated steps to reproduce. He stopped the video at
important points where he added annotations to draw the
attention of the developers to the crucial parts.

Recommendation #1: Provide tool support for users to
collect and prepare information that developers need.

Internationalization. Bug reports that are not written in
English are often closed immediately, although the software
is internationalized.

“Another frustrating issue with bug reporting sites is insen-
sitivity to language issues. I’ve seen bugs immediately closed
because they weren’t filed in English, without even asking or
waiting for someone to translate it into English.”
[Comment 56]

Recommendation #2: Find volunteers to translate bug
reports filed in foreign languages. Ideally the bug tracking
system should provide support for this.

3.2. Engage Reporters

User levels. Often users of a software have different levels
of knowledge, as pointed out by one developer.

“In OSS, there is a big gap with the knowledge level of bug
reporters. Some will include exact locations in the code to
fix, while others just report a wierd behavior that is difficult
to reproduce. In Eclipse, experienced users know that the
Error log exists, so they can provide stack traces and errors
[. . .]” [Comment 98]

Guidance through bug reporting is desirable, especially for
less experienced users, e.g., by helping to collect certain in-
formation, splitting up bug reporting across multiple pages.
However, experienced bug reporters prefer to have one page
where they can provide everything.

In addition to different levels of knowledge, not all re-
porters know what information is important for developers.

“it’s easily forgotten that many peoples’ brains just aren’t
wired the same as ours, and they just don’t understand what
we’re asking for in bug reports, and why!” [Comment 97]

Recommendation #3: Provide different user interfaces
for each user level (novice, expert). Give cues to inexperi-
enced reporters what information they should provide and
how they can collect it.

Reward reporters. Good quality reports are worthy of re-
wards: the “Mozilla Security Bug Bounty Program” [11]
awards US $500 and a Mozilla T-shirt for every critical se-
curity bug reported. In 2006, the Eclipse Foundation had a

“Callisto Simultaneous Release Bug Finding Contest” [6].
In this contest, any developer who saw a great bug report
marked that bug with the “greatbug” keyword. Both the re-
porter and triager of this bug then received a “I Helped Cal-
listo” shirt and participated in a random drawing of prizes
such as iPods and mountain bikes.

Recommendation #4: Do not just fix bugs, also reward
reporters, when they do a good job.

Reporter reputation. Several developers pointed out that
reporters who are well known, either personally or through
well-written past bug reports, will get more attention.

“Well known reporters usually get more consideration than
unknown reporters, assuming the reporter has a pretty good
history in bug reporting. So even if a “well-known” reporter
reports a bug which is pretty vague, he will get more attention
than another reporter, and the time spent trying to reproduce
the problem will also be larger.” [Comment 55]

An improvement to bug tracking systems would be to intro-
duce reputation into user profiles. This would help devel-
opers to quickly identify the experience of a reporter, even
when they do not know him personally. Hooimeijer and
Weimer measured the reputation of reporters as the success
rate, i.e, the percentage of submitted bug reports that were
fixed [8]. Ideally, reputation would have two components:
a project-independent one that tells the experience with bug
reporting in general and a project-specific one that tells the
experience for a given project.

Recommendation #5: Integrate reputation into user pro-
files to mark experienced reporters.

3.3. Duplicate Bug Reports and Search

Better search facility. Most reporters are aware that they
should check first, whether a bug has already been filed.
However, nine reporters commented on the limited search
functionality in bug tracking systems and requested features
such as regular expressions and a Google like search.

“It’s very hard to find possible duplicates, when filing bugs.
The ‘search’ tool in Bugzilla is very poor - it seems that a
search for ‘quick brown fox’ will return results for ‘quick
OR brown OR fox’, without prioritizing ‘quick AND brown
AND fox’. Furthermore, there’s no way to assign or search
keywords for a bug [. . .]“ [Comment 71]

“let me at a minimum enter ebay style search strings for
finding relevant bugs [. . .] I’d expect regular expressions.”
[Comment 72]

Recommendation #6: Provide a powerful, yet simple and
easy-to-use feature to search bug reports.

Information in bug duplicates can be useful. Many bug
reporting guidelines consider duplicates of bug reports to be
harmful. When a bug report is identified as a duplicate, it is
simply closed and the information discarded, which in the
long term discourages users from submitting bug reports.
They get reluctant to provide additional information, once
they see a bug report has already been filed.

“Typically bugs I have reported are already reported but by
much less savvy people who make horrible reports that lack
important details. It is frustrating to have spent lots of time
making an exceptionally detailed bug report to only have it
marked as a duplicate [. . .]” [Comment 18]

Developers also suggested that bug duplicates are not al-
ways bad, they often add important details.

“Duplicates [. . .] often add useful information. That this in-
formation were filed under a new report is not ideal thought.”
[Comment 19]

Recommendation #7: Encourage users to submit addi-
tional details, ideally to an already existing bug report.
Provide tool support for merging bugs.

4. Related Work

There is plenty of anecdotical evidence on what makes good
bug reports and how to efficiently report bugs. For instance,
Joel Spolsky described how to achieve painless bug track-
ing [12] and numerous articles and guidelines on effective
bug reporting float around the Internet (e.g., [7]). Still, the
comments by the participants of our survey suggest that bug
reporting tools are far from being painless and that there is
lots of room for improvement.

In our own previous work, we reported the results of our
survey without a detailed analysis of the comments. In ad-
dition, we proposed a tool to measure the quality of bug
reports that also provides feedback to reporters how they
can improve their bug report and increase their chances of
getting it fixed quickly [3, 4].

In order to inform the design of new bug reporting tools,
Ko et al. [10] conducted a linguistic analysis of the titles
of bug reports. They observed a large degree of regularity
and a substantial number of references to visible software
entities, physical devices, or user actions. Their results sug-
gest that future bug tracking systems should collect data in
a more structured way. In 2004, Antoniol et al. [1] pointed
out the lack of integration between version archives and bug
databases. Providing such integration allows queries to lo-
cate the most faulty methods in a system. While the lack
of integration was problematic a few years ago, things have
changed: the Mylyn tool by Kersten and Murphy [9] allows
to attach a task context to bug reports so that changes can
be tracked on a very fine-grained level.

5. Conclusion and Consequences

In this paper we presented the results from a quantitative
analysis on the feedback that we received by 175 develop-
ers and users of the APACHE, ECLIPSE, MOZILLA projects.
The result of this discussion is a list of seven recommen-
dations for the design of new bug tracking systems. In our
future work, we will construct design prototypes for such
systems and test their usability.

To learn more about our work on bug tracking systems
and mining software archives, visit

http://www.softevo.org/

Acknowledgments. Many thanks to Nicolas Bettenburg, Mar-
tin Burger, Maximilian Grothusmann, Christian Holler, and the
anonymous VL/HCC reviewers for valuable suggestions on ear-
lier revisions of this paper. A special thanks to all developers and
users of the APACHE, ECLIPSE, and MOZILLA projects who
responded to our survey.

References

[1] G. Antoniol, H. Gall, M. D. Penta, and M. Pinzger. Mozilla:
Closing the circle. Technical Report TUV-1841-2004-05,
Technical University of Vienna, 2004.

[2] I. Barker. What is information architecture? KM Column,
available at http://www.steptwo.com.au, April 2005.

[3] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj,
and T. Zimmermann. Quality of bug reports in Eclipse.
In Proceedings of the 2007 OOPSLA Workshop on Eclipse
Technology eXchange (ETX), pages 21–25, October 2007.

[4] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj,
and T. Zimmermann. What makes a good bug report? In
FSE ’08: Proceedings of the 16th ACM SIGSOFT Interna-
tional Symposium on the Foundations of Software Engineer-
ing. ACM Press, November 2008. To appear.

[5] W. Cunningham. Best of bugzilla. http://eclipse-projects.
blogspot.com/2005/12/best-of-bugzilla.html, 2005.

[6] Eclipse Foundation. Callisto simultaneous release bug find-
ing contest. http://www.eclipse.org/projects/callisto-files/
callisto-bug-contest.php.

[7] E. Goldberg. Bug writing guidelines. https://bugs.eclipse.
org/bugs/bugwritinghelp.html. Last accessed 2007-08-04.

[8] P. Hooimeijer and W. Weimer. Modeling bug report quality.
In ASE ’07: Proceedings of the International Conference on
Automated Software Engineering, pages 34–43, 2007.

[9] M. Kersten and G. C. Murphy. Using task context to im-
prove programmer productivity. In Proceedings of the 14th
ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE 2006), pages 1–11, 2006.

[10] A. J. Ko, B. A. Myers, and D. H. Chau. A linguistic analysis
of how people describe software problems. In Proceedings
of the Symposium on Visual Languages and Human-Centric
Computing (VL/HCC 2006), pages 127–134, 2006.

[11] Mozilla.org. Mozilla security bug bounty program. http:
//www.mozilla.org/security/bug-bounty.html.

[12] J. Spolsky. Joel on Software. APress, US, 2004.

